
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2010, Article ID 890523, 26 pages
doi:10.1155/2010/890523

Research Article
Contractions of Product Density Operators of
Systems of Identical Fermions and Bosons

Wiktor Radzki1, 2

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18,
87-100 Toruń, Poland
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Recurrence and explicit formulae for contractions (partial traces) of antisymmetric and symmetric
products of identical trace class operators are derived. Contractions of product density operators
of systems of identical fermions and bosons are proved to be asymptotically equivalent to,
respectively, antisymmetric and symmetric products of density operators of a single particle,
multiplied by a normalization integer. The asymptotic equivalence relation is defined in terms
of the thermodynamic limit of expectation values of observables in the states represented by
given density operators. For some weaker relation of asymptotic equivalence, concerning the
thermodynamic limit of expectation values of product observables, normalized antisymmetric and
symmetric products of density operators of a single particle are shown to be equivalent to tensor
products of density operators of a single particle.

1. Introduction

This paper (see also preprint [1]), presenting the results of a part of the author’s thesis [2],
deals with contractions (partial traces) of antisymmetric and symmetric product density
operators representing mixed states of systems of identical noninteracting fermions and
bosons, respectively.

If H is a separable Hilbert space of a single fermion (boson), then the space of the n-
fermion (resp. n-boson) system is the antisymmetric (resp. symmetric) subspace H∧n (resp.
H∨n) ofH⊗n. Density operators of n-fermion (resp. n-boson) systems are identifiedwith those
defined on H⊗n and concentrated on H∧n (resp. H∨n).
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Recall that the expectation value of an observable represented by a bounded self-
adjoint operator B on given Hilbert space in a state described by a density operator ρ equals
TrBρ. If B is an unbounded self-adjoint operator on a dense subspace of given Hilbert space,
instead of B one can consider its spectral measure EB(Δ) (which is a bounded operator) of a
Borel subset Δ of the spectrum of B. Then TrEB(Δ)ρ is the probability that the result of the
measurement of the observable in question belongs to Δ [3].

k-particle observables of n-fermion and n-boson systems (k < n) are represented,
respectively, by operators of the form

∧
Γnk B = A(n)

H

(
B ⊗ I⊗(n−k)

)
A

(n)
H ,

∨
Γnk B = S(n)

H

(
B ⊗ I⊗(n−k)

)
S
(n)
H

(1.1)

(multiplied by ( nk )), where A
(n)
H and S

(n)
H are projectors of H⊗n onto H∧n and H∨n,

respectively, I is the identity operator on H and B is a self-adjoint operator on H⊗k (see [4]).
Operators (1.1) are called antisymmetric and symmetric expansions of B. In view of the earlier
remark it is assumed that B is bounded. The expectation values of observables represented

by
∧
Γnk B and

∨
Γnk B in states represented by n-fermion and n-boson density operatorsK and G,

respectively, can be expressed as

TrK
∧
Γnk B = TrBLknK, TrG

∨
Γnk B = TrBLknG (1.2)

(see [4, equations (1.7), (3.19)]), where k-particle density operators LknK and LknG are (n, k)-
contractions of K andG (see Definition 2.1), called also reduced density operators. Such operators
were investigated by Coleman [5], Garrod and Percus [6], and Kummer [4] (see also, e.g.,
[7–9] and references therein). A presentation of the basic ideas concerning reduced density
operators and their applications can be found in [10].

In the present paper particular interest is taken in the case when K and G are product
density operators, that is, they are of the form

K =
1

Tr ρ∧n
ρ∧n, G =

1
Tr ρ∨n

ρ∨n, (1.3)

where ρ∧n = A
(n)
H ρ⊗nA

(n)
H , ρ∨n = S

(n)
H ρ⊗nS

(n)
H , and ρ is a density operator of a single fermion

or boson, respectively. The first objective of this paper is to find the recurrence and explicit
formulae for LknK and LknG for K and G being, respectively, antisymmetric and symmetric
products of identical trace class operators, including operators (1.3). The explicit form of
the operators LknK and LknG proves to be quite complex. However, they can be replaced by
operators with simpler structure if only the limiting values of expectations (1.2), in the sense
of the thermodynamic limit, are of interest. The second objective of this paper is to find that
simpler forms of contractions LknK and LknG for product density operators (1.3), equivalent to
the complete expressions in the thermodynamic limit.

The problems described above have been solved for k = 1, 2 by Kossakowski
and Maćkowiak [11], and Maćkowiak [12]. The formulae they derived were exploited in
calculations of the free energy density of large interacting n-fermion and n-boson systems
[11, 12], as well as in the perturbation expansion of the free energy density for theM-impurity
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Kondo Hamiltonian [13]. In the case of investigation of many-particle interactions of higher
order [14–17], or higher order perturbation expansion terms of the free energy density, the
expressions for (Tr ρ∧n)−1Lknρ

∧n and (Tr ρ∨n)−1Lknρ
∨n with k ≥ 3 can be used in the canonical

and grand canonical ensemble approach, which is the physical motivation for the present
paper.

The main results of this paper are Theorems 3.1, 3.4, 4.9, and 4.14.

2. Preliminaries

In this section notation and terminology are set up.

2.1. Basic Notation

Let (H, 〈·, ·〉) be a separable Hilbert space over C or R. The following notation is used in the
sequel.

I: the identity operator on H,

B(H): the space of bounded linear operators on Hwith the operator norm ‖ · ‖,
T(H): the space of trace class operators on H with the trace norm Tr | · |,
B∗(H): the space of bounded self-adjoint operators on H,

B∗
≥0(H): the set of nonnegative definite bounded self-adjoint operators on H,

D(H): the set of density operators (matrices) on H, that is,

D(H) = {D ∈ T(H) | D = D∗, D ≥ 0, TrD = 1}. (2.1)

SetH⊗n = H⊗ · · · ⊗ H︸ ︷︷ ︸
n

and denote by Sn the group of permutations of the set {1, . . . , n}.

Let A(n)
H , S

(n)
H ∈ B(H⊗n) be the projectors such that

A
(n)
H

(
ψ1 ⊗ · · · ⊗ ψn

)
=

1
n!

∑
π∈Sn

sgnπψπ(1) ⊗ · · · ⊗ ψπ(n),

S
(n)
H

(
ψ1 ⊗ · · · ⊗ ψn

)
=

1
n!

∑
π∈Sn

ψπ(1) ⊗ · · · ⊗ ψπ(n)
(2.2)

for every ψ1, . . . , ψn ∈ H. The closed linear subspaces H∧n = A
(n)
H H⊗n and H∨n = S

(n)
H H⊗n of

H⊗n are called the antisymmetric and symmetric subspace, respectively.
The antisymmetric and symmetric product of operators B ∈ B(H⊗k), C ∈ B(H⊗m) are

defined as B ∧ C = A
(k+m)
H (B ⊗ C)A(k+m)

H and B ∨ C = S
(k+m)
H (B ⊗ C)S(k+m)

H , respectively. It
is assumed B∧n = B ∧ · · · ∧ B︸ ︷︷ ︸

n

, B∨n = B ∨ . . . ∨ B︸ ︷︷ ︸
n

, and B∧1 = B∨1 = B. Clearly, if B ∈ B(H)

then B∧n = A
(n)
H B⊗n = B⊗nA

(n)
H , B∨n = S

(n)
H B⊗n = B⊗nS

(n)
H , and if B ∈ B∗

≥0(H) then B∧n, B∨n ∈
B∗
≥0(H⊗n).
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Set R+ = [0,+∞) and R+ = R+ ∪ {+∞}. The product of measures μ,μ1 is denoted by
μ ⊗ μ1 and μ⊗n stands for μ ⊗ · · · ⊗ μ︸ ︷︷ ︸

n

. In subsequent sections use is made of product integral

kernels, described in the appendix.

2.2. Contractions of Operators

The definition and basic properties of contractions of operators are now recalled for the
reader’s convenience. They were studied in [4–7]. A discussion of properties of reduced
density operators can also be found in [10].

Let H be a separable Hilbert space over the field K = C or R.

Definition 2.1. Let k, n ∈ N, k < n, and K ∈ T(H⊗n). Then the (n, k)-contraction of K is the
operator LknK ∈ T(H⊗k) such that

∀C∈B(H⊗k) : TrH⊗n

(
C ⊗ I⊗(n−k)

)
K = TrH⊗kCLknK. (2.3)

It is also assumed LnnK = K.

Remark 2.2. The operator LknK always exists and is defined uniquely by (2.3). LknK is a partial
trace of K with respect to the component H⊗(n−k) of H⊗n = H⊗k ⊗ H⊗(n−k). If H = HY :=
L2(Y, μ), where the measure μ is separable and σ-finite, and K is a product integral kernel of
K (see the appendix) then LknK has an integral kernel K0 given by formula (A.4), according
to Lemma A.5 and Corollary A.6.

Under the assumptions of Definition 2.1 one has TrH⊗kLknK = TrH⊗nK, and if p ∈ N,
k < p < n, then Lkp(L

p
nK) = LknK. Moreover, if K ∈ B∗(H⊗n) then LknK ∈ B∗(H⊗k), and if

K ∈ B∗
≥0(H⊗n) then LknK ∈ B∗

≥0(H⊗k).
Contractions of density operators are called reduced density operators. Contractions

preserve the Fermi and the Bose-Einstein statistics of the contracted operator, that is, for
K ∈ A

(n)
H T(H⊗n)A(n)

H and G ∈ S
(n)
H T(H⊗n)S(n)

H one has LknK ∈ A
(k)
H T(H⊗k)A(k)

H and LknG ∈
S
(k)
H T(H⊗k)S(k)

H . For such K and G (1.2) hold.
The following theorem is a part of Coleman’s theorem [4, 5].

Theorem 2.3. Let n ∈ N, n ≥ 2. For every (n-fermion) density operator D ∈ D(H⊗n), D =
A

(n)
H DA

(n)
H , one has ‖L1nD‖ ≤ (1/n)‖D‖.

3. Recurrence and Explicit Formulae for Contractions of Products of
Trace Class Operators

In this section recurrence and explicit formulae for contractions of antisymmetric and
symmetric powers of single particle operators are derived.

In the whole section use is made of the Hilbert space HY := L2(Y, μ) over the field
K = C or R, where the measure μ is separable and σ-finite.
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The following theorem in the case of k = 1, 2 was proved in [11, 12].

Theorem 3.1 (Recurrence formulae). Let ρ ∈ T(HY ). If k, n ∈ N, 1 < k < n, then

(
n

k

)
Lknρ

∧n =

(
n − 1

k − 1

)(
Lk−1n−1ρ

∧(n−1)
)
∧ ρ

−
(
n − 1

k

)(
Lkn−1ρ

∧(n−1)
)(
I⊗(k−1) ⊗ ρ

)
A

(k)
HY
,

(3.1)

(
n

k

)
Lknρ

∨n =

(
n − 1

k − 1

)(
Lk−1n−1ρ

∨(n−1)
)
∨ ρ

+

(
n − 1

k

)(
Lkn−1ρ

∨(n−1)
)(
I⊗(k−1) ⊗ ρ

)
S
(k)
HY
,

(3.2)

and if n ∈ N, n ≥ 2, then

nL1
nρ

∧n =
(
Tr ρ∧(n−1)

)
ρ − (n − 1)

(
L1
n−1ρ

∧(n−1)
)
ρ, (3.3)

nL1
nρ

∨n =
(
Tr ρ∨(n−1)

)
ρ + (n − 1)

(
L1
n−1ρ

∨(n−1)
)
ρ. (3.4)

Proof. Let � : Y × Y → K be a product integral kernel of ρ. For every m ∈ N define the
mapping �∧m : Ym × Ym → K by the formula

�∧m
(
x1, . . . , xm

y1, . . . , ym

)
= det

⎡
⎢⎢⎢⎣

�
(
x1, y1

)
· · · �

(
x1, ym

)

... · · ·
...

�
(
xm, y1

)
· · · �

(
xm, ym

)

⎤
⎥⎥⎥⎦. (3.5)

Then the mapping K : Yn × Yn → K given by

K
(
x1, . . . , xn, y1, . . . , yn

)
=

1
n!
�∧n

(
x1, . . . , xn

y1, . . . , yn

)
(3.6)

is a product integral kernel of ρ∧n = A(n)
HY
ρ⊗n.
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Equation (3.1) will be first proved for n > k + 1. In view of Remark 2.2, an integral
kernel L : Yk × Yk → K of ( nk )L

k
nρ

∧n can be given by

L
(
x′, y′) =

(
n

k

)∫

Yn−k
K

(
x′, x′′, y′, x′′)dμ⊗(n−k)(x′′) (3.7)

for μ⊗2k-a.a. (x′, y′) ∈ Yk × Yk. Performing k! permutations of the first k rows and k!
permutations of the first k columns of the determinant defining K and expanding that
determinant with respect to the kth column one obtains

L
(
x1, . . . , xk, y1, . . . , yk

)

=

(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk
sgnπ sgnσ

k∑
j=1

(−1)k+j

×
∫

Yn−k
�
(
xπ(j), yσ(k)

)
· �∧(n−1)

(
xπ(1), . . . , xπ(j−1), xπ(j+1), . . . , xπ(k), xk+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)

× dμ⊗(n−k)(xk+1, . . . , xn) +

(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk
sgnπ sgnσ

n∑
j=k+1

(−1)k+j

×
∫

Yn−k
�
(
xj , yσ(k)

)
· �∧(n−1)

(
xπ(1), . . . , xπ(k), xk+1, . . . , xj−1, xj+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)

× dμ⊗(n−k)(xk+1, . . . , xn).

(3.8)

Consider the first term on the r.h.s. of (3.8). In all summands of
∑k

j=1 except the last
one the (k − 1)th row of the determinant (containing the variable xπ(k)) can be shifted into
the jth position, changing thereby the sign of the determinant by (−1)(k−2)−(j−1) = (−1)−k−j+1.
Then the first term of sum (3.8) assumes the form

(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk
sgnπ sgnσ

k−1∑
j=1

(−1)k+j(−1)−k−j+1

×
∫

Yn−k
�
(
xπ(j), yσ(k)

)
· �∧(n−1)

(
xπ(1), . . . , xπ(j−1), xπ(k), xπ(j+1), . . . , xπ(k−1), xk+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)
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× dμ⊗(n−k)(xk+1, . . . , xn) +

(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk
sgnπ sgnσ(−1)k+k

×
∫

Yn−k
�
(
xπ(k), yσ(k)

)
· �∧(n−1)

(
xπ(1), . . . , xπ(k−1), xk+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)
dμ⊗(n−k)(xk+1, . . . , xn).

(3.9)

Let Tjk ∈ Sk denote the transposition j ↔ k for j < k (then (−1)k+j(−1)−k−j+1 = (−1) = sgn Tjk)
and the identity permutation for j = k (with sgn Tkk = 1). Expression (3.9) can be written as

k∑
j=1

(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk

(
sgnπ sgn Tjk

)
sgnσ

×
∫

Yn−k
�
(
x(π◦Tjk)(k), yσ(k)

)
· �∧(n−1)

(
x(π◦Tjk)(1), . . . , x(π◦Tjk)(k−1), xk+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)

× dμ⊗(n−k)(xk+1, . . . , xn)

=

(
n − 1

k − 1

)
1

(k!)2
∑

τ,σ∈Sk
sgn τ sgnσ�

(
xτ(k), yσ(k)

)

×
∫

Yn−k

1
(n − 1)!

· �∧(n−1)
(
xτ(1), . . . , xτ(k−1), xk+1, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)
dμ⊗(n−k)(xk+1, . . . , xn).

(3.10)

The function P1 : Yk × Yk → K, such that P1(x1, . . . , xk, y1, . . . , yk) is μ⊗2k-a.e. equal to
expression (3.10), is an integral kernel of the operator

(
n − 1

k − 1

)(
Lk−1n−1ρ

∧(n−1)
)
∧ ρ, (3.11)

which appears on the r.h.s. of (3.1).
Consider now the second term of the sum on the r.h.s. of (3.8). One can change

the indices of the integral variables xk+1, . . . , xj in all summands of
∑n

j=k+1 except the first
one, according to the rule xj → xk+1 → xk+2 → · · · → xj for the jth summand, and
simultaneously change the order of the columns of the determinant inversely (which changes
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the sign by (−1)(j−1)−k = (−1)(k+1)−j). The resulting sum
∑n

j=k+1 then contains n − k terms
identical to the one with j = k + 1. Thus the second term of sum (3.8) equals

− (n − k)
(
n

k

)
1
n!

1

(k!)2
∑

π,σ∈Sk
sgnπ sgnσ

×
∫

Yn−k
�
(
xk+1, yσ(k)

)
· �∧(n−1)

(
xπ(1), . . . , xπ(k), xk+2, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)
dμ⊗(n−k)(xk+1, . . . , xn).

= −
(
n − 1

k

)
1
k!

∑
σ∈Sk

sgnσ

×
∫

Y

�
(
xk+1, yσ(k)

)(∫

Yn−1−k

1
(n − 1)!

· �∧(n−1)
(

x1, . . . , xk, xk+2, . . . , xn

yσ(1), . . . , yσ(k−1), xk+1, . . . , xn

)

×dμ⊗(n−1−k)(xk+2, . . . , xn)
)
dμ(xk+1).

(3.12)

The function P2 : Yk × Yk → K, such that P2(x1, . . . , xk, y1, . . . , yk) is μ⊗2k-a.e. equal to
expression (3.12), is an integral kernel of the operator

−
(
n − 1

k

)(
Lkn−1ρ

∧(n−1)
)(
I⊗(k−1) ⊗ ρ

)
A

(k)
HY
, (3.13)

which occurs on the r.h.s. of (3.1). One concludes that the kernel L of the operator on the
l.h.s. of (3.1) is μ⊗2k-a.e. equal to the kernel P1 +P2 of the operator on the r.h.s. of (3.1), which
proves the equality of both operators.

The proof of (3.1) for n = k + 1 and the proof of (3.3) proceed analogously.
Similarly, the proof of (3.2) and (3.4) is accomplished by changing the product ∧ into ∨

and replacing determinants in all formulae by pernaments, defined for every complex matrix
A = [ai,j]

m
i,j=1 as

perA =
∑
π∈Sm

aπ(1),1 · · ·aπ(m),m. (3.14)

Notice that signs of permutations are omitted in this case, similarly as the multipliers ±1 in
the Laplace expansions.

Lemma 3.2. Let k,m ∈ N, 1 < k < m, ρ ∈ T(HY ), jk ∈ {k, . . . ,m}, and

R :=
jk−1∑

jk−1=k−1

jk−1−1∑
jk−2=k−2

. . .
j2−1∑
j1=1

ρj1 ⊗ ρj2−j1 ⊗ · · · ⊗ ρjk−jk−1 (3.15)

(for k = 2 the only summation index is jk−1 = j1). Then A
(k)
HY
R = RA(k)

HY
and S(k)

HY
R = RS(k)

HY
.
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The proof of the above lemma consists in demonstrating the invariance of R under
permutations of factors in the tensor products. To this end it suffices to observe that R is
invariant under transpositions of neighbouring factors.

Lemma 3.3. Let ρ ∈ T(HY ), ξ∧s := Tr ρ∧s, ξ∨s := Tr ρ∨s for s ∈ N, ξ∧0 := 1, ξ∨0 := 1, and

Π∧p
m

(
ρ
)
:=

m∑
jp=p

jp−1∑
jp−1=p−1

. . .
j2−1∑
j1=1

ξ∧m−jp(−1)
p+jpρj1 ∧ ρj2−j1 ∧ · · · ∧ ρjp−jp−1 ,

Π∨p
m

(
ρ
)
:=

m∑
jp=p

jp−1∑
jp−1=p−1

. . .
j2−1∑
j1=1

ξ∨m−jpρ
j1 ∨ ρj2−j1 ∨ · · · ∨ ρjp−jp−1

(3.16)

for p,m ∈ N, p ≤ m. (For p = 1 the only summation index is j1 and the summation runs over the
operators ρj1 .) If 2 ≤ p < m then

Π∧p
m

(
ρ
)
=
(
Π∧(p−1)
m−1

(
ρ
))

∧ ρ −
(
Π∧p
m−1

(
ρ
))(

I⊗(p−1) ⊗ ρ
)
A

(p)
HY
, (3.17)

Π∨p
m

(
ρ
)
=
(
Π∨(p−1)
m−1

(
ρ
))

∨ ρ +
(
Π∨p
m−1

(
ρ
))(

I⊗(p−1) ⊗ ρ
)
S
(p)
HY
. (3.18)

Proof. Equation (3.17) will be first proved for p > 2. One has

Π∧p
m

(
ρ
)
= ξ∧m−pρ ∧ · · · ∧ ρ

+
m−1∑
lp=p

lp∑
lp−1=p−1

lp−1−1∑
lp−2=p−2

. . .
l2−1∑
l1=1

ξ∧m−lp−1(−1)
p+lp+1ρl1 ∧ ρl2−l1 ∧ · · · ∧ ρlp−1−lp−2 ∧ ρlp−lp−1+1

(3.19)

= ξ∧m−pρ ∧ · · · ∧ ρ

+
m−1∑
lp=p

lp−1∑
lp−1=p−1

lp−1−1∑
lp−2=p−2

. . .
l2−1∑
l1=1

ξ∧m−lp−1(−1)
p+lp+1ρl1 ∧ ρl2−l1 ∧ · · · ∧ ρlp−1−lp−2 ∧ ρlp−lp−1+1

+
m−1∑
lp=p

lp−1∑
lp−2=p−2

lp−2−1∑
lp−3=p−3

. . .
l2−1∑
l1=1

ξ∧m−lp−1(−1)
p+lp+1ρl1 ∧ ρl2−l1 ∧ · · · ∧ ρlp−2−lp−3 ∧ ρlp−lp−2 ∧ ρ.

(3.20)

The first and the third term after the last of equalities (3.20) yield

m−1∑
jp−1=p−1

jp−1−1∑
jp−2=p−2

. . .
j2−1∑
j1=1

(
ξ∧(m−1)−jp−1(−1)

(p−1)+jp−1ρj1 ∧ ρj2−j1 ∧ · · · ∧ ρjp−1−jp−2
)
∧ ρ (3.21)
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for lp ≡ jp−1, lp−2 ≡ jp−2, . . ., l1 ≡ j1. By Lemma 3.2, the second term after the last of equalities
(3.20) equals

−
(
Π∧p
m−1

(
ρ
))(

I⊗(p−1) ⊗ ρ
)
A

(p)
HY
. (3.22)

The sum of expressions (3.21) and (3.22) is equal to the r.h.s. of (3.17) for p > 2. After
simplifications the proof also applies to the case of p = 2.

The proof of (3.18) is analogous to that of (3.17).

The next theorem provides the explicit form of (n, k)-contractions of product
operators. The proof for k = 1, 2 was given in [11, 12]. The author of [12] emphasized that
formula (3.23) for k = 2 was derived by S. Pruski in 1978.

Theorem 3.4 (Explicit formulae). Let k, n ∈ N, k < n, ρ ∈ T(HY ), ξ∧s := Tr ρ∧s, ξ∨s := Tr ρ∨s for
s ∈ N, and ξ∧0 := 1, ξ∨0 := 1. Then

(
n

k

)
Lknρ

∧n =
n∑

jk=k

jk−1∑
jk−1=k−1

. . .
j2−1∑
j1=1

ξ∧n−jk(−1)
k+jkρj1 ∧ ρj2−j1 ∧ · · · ∧ ρjk−jk−1

=
n−(k−1)∑
i1=1

n−i1−(k−2)∑
i2=1

. . .
n−i1−···−ik−2−1∑

ik−1=1

n−i1−···−ik−1∑
ik=1

ξ∧n−i1−···−ik(−1)
k+i1+···+ikρi1 ∧ · · · ∧ ρik ,

(3.23)

(
n

k

)
Lknρ

∨n =
n∑

jk=k

jk−1∑
jk−1=k−1

. . .
j2−1∑
j1=1

ξ∨n−jkρ
j1 ∨ ρj2−j1 ∨ · · · ∨ ρjk−jk−1

=
n−(k−1)∑
i1=1

n−i1−(k−2)∑
i2=1

. . .
n−i1−···−ik−2−1∑

ik−1=1

n−i1−···−ik−1∑
ik=1

ξ∨n−i1−···−ikρ
i1 ∨ · · · ∨ ρik .

(3.24)

(For k = 1 the only summation indices are j1 and i1 and the summation runs over the operators ρj1

and ρi1 , resp.)

Proof. For every p,m ∈ N, p ≤ m, let Π∧p
m (ρ) be defined as in Lemma 3.3. Then the first of

equalities (3.23) can be written as

(
n

k

)
Lknρ

∧n = Π∧k
n

(
ρ
)
. (3.25)

The proof of (3.25) will be carried out by (double) induction with respect to k and, for fixed
k, with respect to n > k.

(1◦) (k = 1) This part of the proof is by induction with respect to n > 1.

(a) (n = 2) According to Theorem 3.1, 2L1
2ρ

∧2 = (Tr ρ)ρ − ρ2 = Π∧1
2 (ρ).

(b) Assuming validity of formula (3.25) (with k = 1) for n ∈ {2, . . . , m − 1}, where
m ∈ N,m > 2, its validity will be shown for n = m.
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One has

Π∧1
m

(
ρ
)
= ξ∧m−1ρ +

m∑
j1=2

ξ∧m−j1(−1)
1+j1ρj1 = ξ∧m−1ρ −

(
Π∧1
m−1

(
ρ
))
ρ. (3.26)

Thus, according to the inductive hypothesis for n ∈ {2, . . . , m − 1},

Π∧1
m

(
ρ
)
= ξ∧m−1ρ − (m − 1)

(
L1
m−1ρ

∧(m−1)
)
ρ, (3.27)

which, in view of Theorem 3.1, yields (m1 )L
1
mρ

∧m = Π∧1
m (ρ).

(2◦) Assuming validity of formula (3.25) for k ∈ {1, . . . , p − 1} (and every n > k), where
p ∈ N, p > 1, its validity will be shown for k = p. For arbitrarily fixed p the proof
will be carried out by induction with respect to n > p.

(a) (n = p + 1) By the inductive hypothesis with respect to k and Lemma 3.3,

Π∧p
p+1

(
ρ
)
=

((
p + 1

)
− 1

p − 1

)(
Lp−1(p+1)−1ρ

∧((p+1)−1)
)
∧ ρ − ρ∧p

(
I⊗(p−1) ⊗ ρ

)
A

(p)
HY
, (3.28)

hence
(
p+1
p

)
Lpp+1ρ

∧(p+1) = Π∧p
p+1(ρ), according to Theorem 3.1.

(b) Assuming validity of formula (3.25) for n ∈ {p + 1, . . . , m − 1}, where k = p,
m ∈ N,m > p + 1, its validity will be shown for n = m.

By the inductive hypothesis for k ∈ {1, . . . , p − 1} and Lemma 3.3 one has

Π∧p
m

(
ρ
)
=

(
m − 1

p − 1

)(
Lp−1m−1ρ

∧(m−1)
)
∧ ρ −

(
Π∧p
m−1

(
ρ
))(

I⊗(p−1) ⊗ ρ
)
A

(p)
HY
. (3.29)

According to the inductive hypothesis for n ∈ {p + 1, . . . , m − 1} one thus obtains

Π∧p
m

(
ρ
)
=

(
m − 1

p − 1

)(
Lp−1m−1ρ

∧(m−1)
)
∧ ρ −

(
m − 1

p

)(
Lpm−1ρ

∧(m−1)
)(
I⊗(p−1) ⊗ ρ

)
A

(p)
HY
, (3.30)

which, in view of Theorem 3.1, yields
(m
p
)
Lpmρ∧m = Π∧p

m (ρ). This completes the inductive
proof for (3.25) with respect to n > p and with respect to k.

Now turn to the second of equalities (3.23). For k = 1 it is identity. Let k ≥ 2. Setting
j1 = i1, j2 = i1 + i2,. . ., jk = i1 + · · · + ik or, equivalently, i1 = j1, i2 = j2 − j1, i3 = j3 − j2,. . .,
ik = jk − jk−1, one checks that both sides of the equality in question are equal to

n−(k−1)∑
j1=1

n−(k−2)∑
j2=j1+1

. . .
n−1∑

jk−1=jk−2+1

n∑
jk=jk−1+1

ξ∧n−jk(−1)
k+jkρj1 ∧ ρj2−j1 ∧ · · · ∧ ρjk−jk−1 . (3.31)

The proof of (3.24) is analogous to that of (3.23).
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4. Asymptotic Form for Contractions of Product States

The explicit forms of the contractions of product states given by Theorem 3.4 are quite
complex. In the present section they are replaced by simpler operators, equivalent in the
thermodynamic limit. The main results in this section are Theorems 4.9 and 4.14.

In what follows use is made of the Hilbert space HΩ := L2(Ω, μ) (over C or R), where
the measure μ is separable, σ-finite, and satisfies the condition μ(Ω) = +∞. For every μ-
measurable subset Y ⊂ Ω it is assumed HY := L2(Y, μ).

Let M(Ω) be a fixed family of measurable subsets of Ω such that 0 < μ(Y ) < +∞ for
every Y ∈ M(Ω) (it can be the family of all such subsets). Fix d ∈ R, d > 0, and assume that
there exists a sequence {Yn}n∈N

⊂ M(Ω) such that n/μ(Yn) → d as n → ∞.

Definition 4.1. Fix d ∈ R, d > 0, and let {bY,n}(Y,n)∈M(Ω)×N
be a family of complex numbers. A

complex number b is said to be the thermodynamic limit of this family if for every sequence
{Yn}n∈N

⊂ M(Ω) such that limn→∞n/μ(Yn) = d the condition limn→∞bYn,n = b is fulfilled. In
such a case b is denoted by d − limn,μ(Y )→∞bY,n.

Special attention will be given to the families of complex numbers of the form
Tr(LknKY,n)CY , where k, n ∈ N, n > k, KY,n ∈ T(H⊗n

Y ), and CY ∈ B(H⊗k
Y ).

Definition 4.1 does not guarantee the convergence of families {bY,n} of interest in
physics. To obtain such a convergence, additional conditions (such as conditions of uniform
growth [18]) are usually imposed on the sequence {Yn}n∈N

in question. However, those
additional conditions do not affect considerations in this paper.

Expression of expectation values of observables in mixed states by using trace,
mentioned in Introduction, is the motivation for the following definition.

Definition 4.2. Fix k ∈ N and d ∈ R, d > 0. Families {AY,n}(Y,n)∈M(Ω)×N
and {BY,n}(Y,n)∈M(Ω)×N

of operators AY,n, BY,n ∈ T(H⊗k
Y ) are said to be asymptotically equivalent (symbolically:

AY,n ≈ BY,n), if for every family {CY,n}(Y,n)∈M(Ω)×N
of operators CY,n ∈ B(H⊗k

Y ) with uniformly
bounded operator norms one has

d − lim
n,μ(Y )→∞

Tr(AY,n − BY,n)CY,n = 0. (4.1)

Condition (4.1) is required to hold in particular for families {CY,n}(Y,n)∈M(Ω)×N
such that

CY,n = CY,m for all Y ∈ M(Ω), n,m ∈ N.

Remark 4.3. The authors of [11, 12] used some different definition of asymptotic equivalence
of families of operators, closer to Definition 4.10 in this paper.

Remark 4.4. For fixed k ∈ N and d ∈ R, d > 0, the relation ≈ is an equivalence
relation. If AY,n ≈ BY,n then for every family of operators CY,n as in Definition 4.2 the limit
d − limn,μ(Y )→∞ TrAY,nCY,n exists if and only if the limit d − limn,μ(Y )→∞ TrBY,nCY,n exists, in
which case both limits are equal. Notice also that if AY,n ≈ BY,n then AY,n +DY,n ≈ BY,n +DY,n

and aAY,n ≈ aBY,n for every family {DY,n}(Y,n)∈M(Ω)×N
⊂ T(H⊗k

Y ) and a ∈ C. Furthermore, for
every family {AY,n}(Y,n)∈M(Ω)×N

⊂ T(H⊗k
Y ) with uniformly bounded trace norms Tr |AY,n| and

for every sequence {an}n∈N
⊂ C convergent to a ∈ C one has anAY,n ≈ aAY,n.
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Lemma 4.5. Let {AY,n}(Y,n)∈M(Ω)×N
and {BY,n}(Y,n)∈M(Ω)×N

be as in Definition 4.2. Then

d − lim
n,μ(Y )→∞

Tr|AY,n − BY,n| = 0 =⇒ AY,n ≈ BY,n. (4.2)

Moreover, if the operators AY,n, BY,n are self-adjoint then

AY,n ≈ BY,n =⇒ d − lim
n,μ(Y )→∞

Tr|AY,n − BY,n| = 0. (4.3)

Proof. Implication (4.2) follows from Definition 4.2 and the estimate

|Tr(AY,n − BY,n)CY,n| ≤ ‖CY,n‖ Tr|AY,n − BY,n|. (4.4)

Now assume that AY,n ≈ BY,n, which is equivalent to the condition

DY,n ≈ 0, (4.5)

where DY,n := AY,n − BY,n. The operators DY,n have the spectral representations

DY,n =
∞∑
i=1

λi(Y, n)Pϕi(Y,n), (4.6)

where Pϕi(Y,n) are the projectors onto orthogonal one dimensional subspaces of eigenvectors
ϕi(Y, n) of DY,n, corresponding to eigenvalues λi(Y, n) ∈ R. Since

∑∞
i=1 |λi(Y, n)| = Tr |DY,n| <

+∞, for every (Y, n) ∈ M(Ω) ×N there existsm(Y, n) ∈ N such that
∑∞

i=m(Y,n)+1 |λi(Y, n)| < 1/n.
Thus the operators

FY,n =
m(Y,n)∑
i=1

λi(Y, n)Pϕi(Y,n) (4.7)

satisfy the condition

d − lim
n,μ(Y )→∞

Tr|DY,n − FY,n| = d − lim
n,μ(Y )→∞

∞∑
i=m(Y,n)+1

|λi(Y, n)| = 0, (4.8)

which, in view of implication (4.2) proved and condition (4.5), yields FY,n ≈ DY,n ≈ 0. In
particular,

d − lim
n,μ(Y )→∞

TrFY,nCY,n = 0, (4.9)
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where

CY,n =
m(Y,n)∑
i=1

sgn(λi(Y, n))Pϕi(Y,n), ‖CY,n‖ = 1. (4.10)

Observe that TrFY,nCY,n = Tr |FY,n|, hence condition (4.9) gives

d − lim
n,μ(Y )→∞

Tr|FY,n| = 0. (4.11)

Since Tr |DY,n| ≤ Tr |DY,n − FY,n| + Tr |FY,n|, conditions (4.8) and (4.11) yield

d − lim
n,μ(Y )→∞

Tr|AY,n − BY,n| ≡ d − lim
n,μ(Y )→∞

Tr|DY,n| = 0, (4.12)

which proves implication (4.3).

The following lemma follows from Lemma 4.5.

Lemma 4.6. Fix k,m ∈ N. Let {AY,n}(Y,n)∈M(Ω)×N
and {BY,n}(Y,n)∈M(Ω)×N

be families of self-adjoint
operators AY,n, BY,n ∈ T(H⊗k

Y ) such that AY,n ≈ BY,n, and let {DY,n}(Y,n)∈M(Ω)×N
be a family of

operators DY,n ∈ T(H⊗m
Y ) with uniformly bounded trace norms Tr |DY,n|. Then

AY,n ⊗DY,n ≈ BY,n ⊗DY,n, DY,n ⊗AY,n ≈ DY,n ⊗ BY,n,

AY,n ∧DY,n ≈ BY,n ∧DY,n, DY,n ∧AY,n ≈ DY,n ∧ BY,n,

AY,n ∨DY,n ≈ BY,n ∨DY,n, DY,n ∨AY,n ≈ DY,n ∨ BY,n.

(4.13)

In the sequel {ρY}Y∈M(Ω) denotes a family of nonnegative definite self-adjoint
operators ρY ∈ T(HY ), and for every (Y, n) ∈ M(Ω) × N it is assumed that

ξ∧Y,0 := 1, ξ∨Y,0 := 1, ρ∧1Y := ρY , ρ∨1Y := ρY ,

ξ∧Y,n := Tr ρ∧nY > 0, ξ∨Y,n := Tr ρ∨nY > 0,

s∧Y,n :=
ξ∧Y,n−1

ξ∧Y,n
, s∨Y,n :=

ξ∨Y,n−1

ξ∨Y,n
.

(4.14)

The objective of this section is to find density operators of the most simple form which
are asymptotically equivalent to the operators

∧
σ
(k)

Y,n := Lkn

(
1
ξ∧Y,n

ρ∧nY

)
,

∨
σ
(k)

Y,n := Lkn

(
1
ξ∨Y,n

ρ∨nY

)
, (4.15)

defined for fixed k ∈ N and every (Y, n) ∈ M(Ω) × N, n > k.
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Remark 4.7. For every (Y, n) ∈ M(Ω) × N the operator I + s∧Y,n+1ρY is invertible and
‖(I + s∧Y,n+1ρY )

−1‖ = 1. Furthermore, if s∨Y,n+1‖ρY‖ < 1 then I − s∨Y,n+1ρY is invertible and
‖(I − s∨Y,n+1ρY )

−1‖ = (1 − s∨Y,n+1‖ρY‖)
−1.

The next theorem is a version of a theorem studied in [11, 12] (see Remark 4.3).

Theorem 4.8. If
∧
σ
(1)

Y,n ≈ ∧
σ
(1)

Y,n+1 and the reals s∧Y,n+1‖ρY‖, (Y, n) ∈ M(Ω) × N, are uniformly bounded
then

∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

)
≈ (n + 1)−1s∧Y,n+1ρY , (4.16)

∧
σ
(1)

Y,n ≈ (n + 1)−1s∧Y,n+1ρY
(
I + s∧Y,n+1ρY

)−1
. (4.17)

If
∨
σ
(1)

Y,n ≈ ∨
σ
(1)

Y,n+1 and the reals s∨Y,n‖ρY‖, (Y, n) ∈ M(Ω) × N, are uniformly bounded then

∨
σ
(1)

Y,n

(
I − s∨Y,n+1ρY

)
≈ (n + 1)−1s∨Y,n+1ρY . (4.18)

If, additionally, s∨Y,n‖ρY‖ ≤ ε for some ε < 1 and every (Y, n) ∈ M(Ω) × N then

∨
σ
(1)

Y,n ≈ (n + 1)−1s∨Y,n+1ρY
(
I − s∨Y,n+1ρY

)−1
. (4.19)

Proof. By Theorem 3.1 and the assumption
∧
σ
(1)

Y,n ≈ ∧
σ
(1)

Y,n+1 one has

∧
σ
(1)

Y,n − (n + 1)−1s∧Y,n+1ρY ≈ −(n + 1)−1n
∧
σ
(1)

Y,n

(
s∧Y,n+1ρY

)
. (4.20)

Since Tr | ∧σ
(1)

Y,n(s
∧
Y,n+1ρY )| ≤ s

∧
Y,n+1‖ρY‖ Tr | ∧σ

(1)

Y,n| = s∧Y,n+1‖ρY‖, relation (4.20) yields (4.16), in view
of Remark 4.4.

Now turn to the proof of relation (4.17). According to Remark 4.7,

Tr
∣∣∣∣
∧
σ
(1)

Y,n − (n + 1)−1s∧Y,n+1ρY
(
I + s∧Y,n+1ρY

)−1
∣∣∣∣

≤
∥∥∥∥
(
I + s∧Y,n+1ρY

)−1
∥∥∥∥Tr

∣∣∣∣
∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

)
− (n + 1)−1s∧Y,n+1ρY

∣∣∣∣

= Tr
∣∣∣∣
∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

)
− (n + 1)−1s∧Y,n+1ρY

∣∣∣∣.

(4.21)

The explicit form of
∧
σ
(1)

Y,n given by Theorem 3.4 shows that
∧
σ
(1)

Y,n commutes with I + s∧Y,n+1ρY ,

and since both operators are self-adjoint,
∧
σ
(1)

Y,n(I+s
∧
Y,n+1ρY ) is also self-adjoint. Thus conditions

(4.16), (4.21), and Lemma 4.5 yield (4.17).
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The proof of relations (4.18), (4.19) runs parallel to that of (4.16), (4.17). Notice
that in this case the expression ‖(I + s∧Y,n+1ρY )

−1‖ = 1 from estimate (4.21) is replaced by

‖(I − s∧Y,n+1ρY )
−1‖ = (1 − s∧Y,n+1‖ρY‖)

−1 ≤ (1 − ε)−1 (see Remark 4.7).

The following theorem for k = 2 (with the reservation of Remark 4.3) was obtained in
[11, 12]. The author of [12] gave also arguments that can be used to check the assumptions of
this theorem.

Theorem 4.9 (Asymptotic formulae I). If
∧
σ
(k)

Y,n ≈ ∧
σ
(k)

Y,n+1 for every k ∈ N and

s∧Y,n
∥∥ρY

∥∥ ≤ 2 for every (Y,n) ∈ M(Ω) × N (4.22)

then, for every k ∈ N, k ≥ 2,

∧
σ
(k)

Y,n ≈ k! ∧σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
k

. (4.23)

If
∨
σ
(k)

Y,n ≈ ∨
σ
(k)

Y,n+1 for every k ∈ N and

s∨Y,n
∥∥ρY

∥∥ ≤ ε for some ε < 1 and every (Y, n) ∈ M(Ω) × N (4.24)

then, for every k ∈ N, k ≥ 2,

∨
σ
(k)

Y,n ≈ k! ∨σ
(1)

Y,n ∨ · · · ∨ ∨
σ
(1)

Y,n︸ ︷︷ ︸
k

. (4.25)

Proof. First equivalence (4.23) will be proved. Observe that

2 Tr
∣∣∣∣
∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

∣∣∣∣

= Tr
∣∣∣∣
(

∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

)(
I⊗(q−1) ⊗

(
I + s∧Y,n+1ρY

))
A

(q)
HY

+
(

∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

)(
I⊗(q−1) ⊗

(
I − s∧Y,n+1ρY

))
A

(q)
HY

∣∣∣∣

≤ Tr
∣∣∣∣
(

∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

)(
I⊗(q−1) ⊗

(
I + s∧Y,n+1ρY

))
A

(q)
HY

∣∣∣∣

+
∥∥∥I − s∧Y,n+1ρY

∥∥∥Tr
∣∣∣∣
∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

∣∣∣∣,

(4.26)



International Journal of Mathematics and Mathematical Sciences 17

hence

(
2 −

∥∥∥I − s∧Y,n+1ρY
∥∥∥
)
Tr
∣∣∣∣
∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

∣∣∣∣

≤ Tr
∣∣∣∣
(

∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

)(
I⊗(q−1) ⊗

(
I + s∧Y,n+1ρY

))
A

(q)
HY

∣∣∣∣.
(4.27)

Since the operators ρY are trace class, infϕ∈HY ; ‖ϕ‖=1〈ϕ, ρYϕ〉 = 0. Thus, by assumption (4.22)
and the self-adjointness of the operators I − s∧Y,n+1ρY , one obtains

∥∥∥I − s∧Y,n+1ρY
∥∥∥ = sup

ϕ∈HY

‖ϕ‖=1

∣∣∣
〈
ϕ,

(
I − s∧Y,n+1ρY

)
ϕ
〉∣∣∣

= max

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
1 − s∧Y,n+1 inf

ϕ∈HY

‖ϕ‖=1

〈
ϕ, ρYϕ

〉
, s∧Y,n+1 sup

ϕ∈HY

‖ϕ‖=1

〈
ϕ, ρYϕ

〉
− 1

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= 1.

(4.28)

The rest of the proof of (4.23) is by induction with respect to k ≥ 2.
(1◦) (k = 2) By Theorem 3.1 for n ≥ 2 one has

1

(n + 1)2

(
n + 1

2

)
∧
σ
(2)

Y,n+1 =
n

n + 1
∧
σ
(1)

Y,n ∧
(
(n + 1)−1s∧Y,n+1ρY

)

− 1

(n + 1)2

(
n

2

)
∧
σ
(2)

Y,n

(
I ⊗

(
s∧Y,n+1ρY

))
A

(2)
HY
.

(4.29)

Assumption (4.22) gives Tr | ∧σ
(2)

Y,n(I⊗(s∧Y,n+1ρY ))A
(2)
HY

| ≤ s∧Y,n+1‖ρY‖ Tr | ∧σ
(2)

Y,n| ≤ 2, hence, by (4.29),

Remark 4.4, and the assumption
∧
σ
(2)

Y,n ≈ ∧
σ
(2)

Y,n+1, one obtains

∧
σ
(2)

Y,n +
∧
σ
(2)

Y,n

(
I ⊗

(
s∧Y,n+1ρY

))
A

(2)
HY

≈ 2
n

n + 1
∧
σ
(1)

Y,n ∧
(
(n + 1)−1s∧Y,n+1ρY

)
. (4.30)

Thus, in view of equivalence (4.16) from Theorem 4.8 and Lemma 4.6, one has

∧
σ
(2)

Y,n +
∧
σ
(2)

Y,n

(
I ⊗

(
s∧Y,n+1ρY

))
A

(2)
HY

≈ 2
n

n + 1
∧
σ
(1)

Y,n ∧
(

∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

))
. (4.31)

Furthermore, assumption (4.22) implies that the trace norms of the operators on the r.h.s of
(4.31) are uniformly bounded. Therefore, according to Remark 4.4,

(
∧
σ
(2)

Y,n − 2
∧
σ
(1)

Y,n ∧
∧
σ
(1)

Y,n

)(
I ⊗

(
I + s∧Y,n+1ρY

))
A

(2)
HY

≈ 0. (4.32)
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The explicit form of
∧
σ
(2)

Y,n,
∧
σ
(1)

Y,n ∧
∧
σ
(1)

Y,n given by Theorem 3.4 implies that
∧
σ
(2)

Y,n − 2
∧
σ
(1)

Y,n ∧
∧
σ
(1)

Y,n and
(I ⊗(I +s∧Y,n+1ρY ))A

(2)
HY

commute, which proves the self-adjointness of the operator on the l.h.s
of (4.32). Thus conditions (4.32), (4.27) for q = 2, (4.28), and Lemma 4.5 yield relation (4.23)
for k = 2.

(2◦) Assuming validity of equivalence (4.23) for k ∈ {2, . . . , q − 1}, where q ∈ N, q > 2,
its validity will be proved for k = q.

By Theorem 3.1 for n ≥ q one has

1
(n + 1)q

(
n + 1

q

)
∧
σ
(q)

Y,n+1 =
1

(n + 1)q−1

(
n

q − 1

)
∧
σ
(q−1)
Y,n ∧

(
(n + 1)−1s∧Y,n+1ρY

)

− 1
(n + 1)q

(
n

q

)
∧
σ
(q)

Y,n

(
I⊗(q−1) ⊗

(
s∧Y,n+1ρY

))
A

(q)
HY
.

(4.33)

Assumption (4.22) implies

Tr
∣∣∣∣
∧
σ
(q)

Y,n

(
I⊗(q−1) ⊗

(
s∧Y,n+1ρY

))
A

(q)
HY

∣∣∣∣ ≤ s∧Y,n+1
∥∥ρY

∥∥ Tr
∣∣∣∣
∧
σ
(q)

Y,n

∣∣∣∣ ≤ 2, (4.34)

hence, in view of (4.33), Remark 4.4, and the assumption
∧
σ
(q)

Y,n ≈ ∧
σ
(q)

Y,n+1,

∧
σ
(q)

Y,n +
∧
σ
(q)

Y,n

(
I⊗(q−1) ⊗

(
s∧Y,n+1ρY

))
A

(q)
HY

≈
q!

(n + 1)q−1

(
n

q − 1

)
∧
σ
(q−1)
Y,n ∧

(
(n + 1)−1s∧Y,n+1ρY

)
.

(4.35)

Thus, by relation (4.16) from Theorem 4.8, Lemma 4.6, and Remark 4.4, one has

∧
σ
(q)

Y,n +
∧
σ
(q)

Y,n

(
I⊗(q−1) ⊗

(
s∧Y,n+1ρY

))
A

(q)
HY

≈
q!(

q − 1
)
!
∧
σ
(q−1)
Y,n ∧

(
∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

))
, (4.36)

since the trace norms of the operators on the r.h.s. of (4.36) are uniformly bounded, by

assumption (4.22). Furthermore, in view of Lemma 4.6 and the inductive hypothesis
∧
σ
(q−1)
Y,n ≈

(q − 1)!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
q−1

, condition (4.36) yields

∧
σ
(q)

Y,n +
∧
σ
(q)

Y,n

(
I⊗(q−1) ⊗

(
s∧Y,n+1ρY

))
A

(q)
HY

≈ q! ∧σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
q−1

∧
(

∧
σ
(1)

Y,n

(
I + s∧Y,n+1ρY

))
, (4.37)
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hence

⎛
⎜⎜⎝

∧
σ
(q)

Y,n − q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
q

⎞
⎟⎟⎠

(
I⊗(q−1) ⊗

(
I + s∧Y,n+1ρY

))
A

(q)
HY

≈ 0. (4.38)

From the explicit form of
∧
σ
(q)

Y,n,
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n given by Theorem 3.4 one finds that
∧
σ
(q)

Y,n −

q!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n and (I⊗(q−1) ⊗ (I + s∧Y,n+1ρY ))A
(q)
HY

commute, which proves the self-adjointness
of the operator on the l.h.s of (4.38). Thus conditions (4.38), (4.27), (4.28), and Lemma 4.5

yield
∧
σ
(q)

Y,n ≈ q! ∧σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
q

. Validity of relation (4.23) has been proved.

Now turn to equivalence (4.25). Similarly to (4.27) one has

(
2 −

∥∥∥I + s∨Y,n+1ρY
∥∥∥
)
Tr
∣∣∣∣
∨
σ
(q)

Y,n − q!
∨
σ
(1)

Y,n ∨ · · · ∨ ∨
σ
(1)

Y,n

∣∣∣∣

≤ Tr
∣∣∣∣
(

∨
σ
(q)

Y,n − q!
∨
σ
(1)

Y,n ∨ · · · ∨ ∨
σ
(1)

Y,n

)(
I⊗(q−1) ⊗

(
I − s∨Y,n+1ρY

))
S
(q)
HY

∣∣∣∣.
(4.39)

Furthermore, according to assumption (4.24),

2 −
∥∥∥I + s∨Y,n+1ρY

∥∥∥ ≥ 2 −
(
1 + s∨Y,n+1

∥∥ρY
∥∥) ≥ 1 − ε > 0. (4.40)

The rest of the proof of (4.25) is by induction with respect to k ≥ 2 and proceeds analogously
to the proof of (4.23) with condition (4.28) replaced by (4.40) and the operators I ∓ s∧Y,n+1ρY
replaced by I ± s∨Y,n+1ρY (inversion of signs).

Theorem 4.9 allows to replace (n, k)-contractions of antisymmetric and symmetric
product density operators by antisymmetric and symmetric products of 1-particle contrac-
tions, respectively, if the number n of particles in the system is large. Further simplification,
consisting in replacement of antisymmetric and symmetric products by tensor products,
will be now proved possible. To this end weaker conditions on the asymptotic equivalence
relation will be imposed.

Definition 4.10. Fix k ∈ N and d ∈ R, d > 0. Families {AY,n}(Y,n)∈M(Ω)×N
, {BY,n}(Y,n)∈M(Ω)×N

of
operators AY,n, BY,n ∈ T(H⊗k

Y ) are called weakly asymptotically equivalent (symbolically: AY,n ∼
BY,n), if d − limn,μ(Y )→∞ Tr(AY,n − BY,n)CY,n = 0 for every family {CY,n}(Y,n)∈M(Ω)×N

of operators

of the form CY,n =
⊗k

i=1C
(i)
Y,n, where C(i)

Y,n ∈ B(HY ) (i ∈ {1, . . . , k}, (Y, n) ∈ M(Ω) × N) are
operators with uniformly bounded operator norms.

The relation ∼ has the properties analogous to the properties of the relation ≈ from
Remark 4.4.

Definition 4.11. Let k ∈ N, k ≥ 2. Fix π ∈ Sk. A set X ⊂ {1, . . . , k} is called a cyclic set of
the permutation π , if X = {l1, . . . , lq} for some l1, . . . , lq ∈ {1, . . . , k}, q ∈ {2, . . . , k}, such that
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π(ls) = ls+1 for every s ∈ {1, . . . , q − 1}, and π(lq) = l1. A singleton {l} ⊂ {1, . . . , k} such that
π(l) = l is also called a cyclic set of the permutation π .

Note that the set {1, . . . , k} from the above definition can be represented as the union
of disjoint cyclic sets of π .

Lemma 4.12. Let k ∈ N, k ≥ 2. If B(1), . . . , B(k) ∈ T(HY ) then

k! Tr
(
B
(1)
Y,n ⊗ · · · ⊗ B(k)

Y,n

)
A

(k)
HY

=
∑
π∈Sk

sgnπ
p(π)∏
j=1

Tr
qj∏
s=1

B
(lj,s)
Y,n , (4.41)

where p(π) ∈ {1, . . . , k} is the number of disjoint cyclic sets of π , indexed by j, and qj denotes the
number of elements of the jth cyclic set of π , which is {lj,1, . . . , lj,qj}, where

π
(
lj,qj

)
= lj,1, for qj ≥ 2, π

(
lj,s

)
= lj,s+1, s = 1, . . . , qj − 1. (4.42)

Clearly,
∑p(π)

j=1 qj = k and
⋃p(π)
j=1

⋃qj
s=1{lj,s} = {1, . . . , k}.

Proof. Let {ϕi}i∈N
be an orthonormal basis of HY . One has

k! Tr
(
B
(1)
Y,n ⊗ · · · ⊗ B(k)

Y,n

)
A

(k)
HY

=
∑
π∈Sk

sgnπ
p(π)∏
j=1

Mj, (4.43)

where

Mj :=
∞∑

ilj,1=1

. . .
∞∑

ilj,qj
=1

〈
ϕilj,1 , B

(lj,1)ϕiπ(lj,1)

〉
· · ·

〈
ϕilj,qj

, B
(lj,qj )ϕiπ(lj,qj )

〉
. (4.44)

If qj > 2 for some j ∈ {1, . . . , p(π)} then, by condition (4.42) and Parseval’s formula,

Mj =
∞∑

ilj,1=1

. . .
∞∑

ilj,qj
=1

〈
ϕilj,1 , B

(lj,1)ϕilj,2

〉〈
ϕilj,2 , B

(lj,2)ϕilj,3

〉
· · ·

〈
ϕilj,qj

, B
(lj,qj )ϕilj,1

〉

=
∞∑

ilj,1=1

∞∑
ilj,3=1

. . .
∞∑

ilj,qj
=1

〈
ϕilj,1 , B

(lj,1)B(lj,2)ϕilj,3

〉
· · ·

〈
ϕilj,qj

, B
(lj,qj )ϕilj,1

〉
.

(4.45)

Performing successive summations one then obtains

Mj =
∞∑

ilj,1=1

〈
ϕilj,1 ,

( qj∏
s=1

B(lj,s)

)
ϕilj,1

〉
= Tr

qj∏
s=1

B(lj,s). (4.46)
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The derivation of the above formula for qj = 1, 2, after simplifications, proceeds analogously.
This completes the proof of (4.41), in view of (4.43).

Lemma 4.13. One has

d − lim
n,μ(Y )→∞

∥∥∥∥
∧
σ
(1)

Y,n

∥∥∥∥ = 0, (4.47)

and if
∨
σ
(2)

Y,n ≈ 2
∨
σ
(1)

Y,n ∨
∨
σ
(1)

Y,n (see Theorem 4.9) then

d − lim
n,μ(Y )→∞

∥∥∥∥
∨
σ
(1)

Y,n

∥∥∥∥ = 0. (4.48)

Proof. To prove (4.47) it suffices to observe that, according to Theorem 2.3,

∥∥∥∥
∧
σ
(1)

Y,n

∥∥∥∥ =

∥∥∥∥∥L
1
n

(
1
ξ∧Y,n

ρ∧nY

)∥∥∥∥∥ ≤ 1
n

1
ξ∧Y,n

∥∥ρ∧nY
∥∥ ≤ 1

n

1
ξ∧Y,n

Tr ρ∧nY =
1
n
. (4.49)

Now (4.48) will be proved. Let {ϕi}i∈N
be an orthonormal basis of HY for fixed Y ∈

M(Ω). Then

Tr 2
∨
σ
(1)

Y,n ∨
∨
σ
(1)

Y,n = 2Tr
(

∨
σ
(1)

Y,n ⊗
∨
σ
(1)

Y,n

)
S
(2)
HY

=
∑
π∈S2

∞∑
i1,i2=1

〈
ϕi1 ,

∨
σ
(1)

Y,nϕiπ(1)

〉〈
ϕi2 ,

∨
σ
(1)

Y,nϕiπ(2)

〉

=
(
Tr

∨
σ
(1)

Y,n

)2

+ Tr
(

∨
σ
(1)

Y,n

∨
σ
(1)

Y,n

)
.

(4.50)

Taking into account (4.50), the relation
∨
σ
(2)

Y,n ≈ 2
∨
σ
(1)

Y,n ∨
∨
σ
(1)

Y,n, Definition 4.2 for CY,n = I⊗2, and

the equality Tr
∨
σ
(2)

Y,n = Tr
∨
σ
(1)

Y,n = 1, one obtains

d − lim
n,μ(Y )→∞

Tr
(

∨
σ
(1)

Y,n

∨
σ
(1)

Y,n

)
= 0. (4.51)

Furthermore,

∥∥∥∥
∨
σ
(1)

Y,nϕ

∥∥∥∥
2

=
〈
ϕ,

∨
σ
(1)

Y,n

∨
σ
(1)

Y,nϕ

〉
≤ Tr

(
∨
σ
(1)

Y,n

∨
σ
(1)

Y,n

)
(4.52)

for every ϕ ∈ HY such that ‖ϕ‖ = 1, hence (4.51) yields (4.48).

Notice that (4.47) can be also proved analogously to (4.48) under the additional

assumption
∧
σ
(2)

Y,n ≈ 2
∧
σ
(1)

Y,n ∧
∧
σ
(1)

Y,n.
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The proof of the next theorem for k = 2 was given in [11, 12].

Theorem 4.14 (Asymptotic formulae II). Let k ∈ N, k ≥ 2. One has

k!
∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n︸ ︷︷ ︸
k

∼ ∧
σ
(1)

Y,n ⊗ · · · ⊗ ∧
σ
(1)

Y,n︸ ︷︷ ︸
k

, (4.53)

and if d − limn,μ(Y )→∞‖
∨
σ
(1)

Y,n‖ = 0 (see Lemma 4.13) then

k!
∨
σ
(1)

Y,n ∨ · · · ∨ ∨
σ
(1)

Y,n︸ ︷︷ ︸
k

∼ ∨
σ
(1)

Y,n ⊗ · · · ⊗ ∨
σ
(1)

Y,n︸ ︷︷ ︸
k

. (4.54)

Proof. First (4.53) will be proved. Fix a family {CY,n}(Y,n)∈M(Ω)×N
of operators such as in

Definition 4.10 and set

B
(r)
Y,n :=

∧
σ
(1)

Y,nC
(r)
Y,n, r = 1, . . . , k. (4.55)

Then, by Lemma 4.12, one has

Tr k!
(

∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n

)(
C

(1)
Y,n ⊗ · · · ⊗ C(k)

Y,n

)

= k! Tr
(
B
(1)
Y,n ⊗ · · · ⊗ B(k)

Y,n

)
A

(k)
HY

=
∑
π∈Sk

sgnπ
p(π)∏
j=1

Tr
qj∏
s=1

B
(lj,s)
Y,n

= Tr
(

∧
σ
(1)

Y,n ⊗ · · · ⊗ ∧
σ
(1)

Y,n

)(
C

(1)
Y,n ⊗ · · · ⊗ C(k)

Y,n

)

+
∑
π∈Sk
π /= Id

sgnπ
p(π)∏
j=1

Tr
qj∏
s=1

B
(lj,s)
Y,n .

(4.56)

Thus

Tr
(
k!

∧
σ
(1)

Y,n ∧ · · · ∧ ∧
σ
(1)

Y,n −
∧
σ
(1)

Y,n ⊗ · · · ⊗ ∧
σ
(1)

Y,n

)(
C

(1)
Y,n ⊗ · · · ⊗ C(k)

Y,n

)

=
∑
π∈Sk
π /= Id

sgnπ
p(π)∏
j=1

Tr
qj∏
s=1

B
(lj,s)
Y,n .

(4.57)
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Now, let π ∈ Sk, π /= Id, be fixed. If qj = 1 for some j ∈ {1, . . . , p(π)} then

∣∣∣∣∣Tr
qj∏
s=1

B
(lj,s)
Y,n

∣∣∣∣∣ ≡
∣∣∣TrB(lj,1)

Y,n

∣∣∣ ≤
∥∥∥C(lj,1)

Y,n

∥∥∥ Tr
∣∣∣∣
∧
σ
(1)

Y,n

∣∣∣∣ =
∥∥∥C(lj,1)

Y,n

∥∥∥, (4.58)

whereas if qj ≥ 2 then

∣∣∣∣∣Tr
qj∏
s=1

B
(lj,s)
Y,n

∣∣∣∣∣ ≤
∥∥∥∥∥∥

qj−1∏
s=1

B
(lj,s)
Y,n

∥∥∥∥∥∥
Tr
∣∣∣∣B

(lj,qj )

Y,n

∣∣∣∣

≤
∥∥∥∥

∧
σ
(1)

Y,n

∥∥∥∥
qj−1

⎛
⎝

qj−1∏
s=1

∥∥∥C(lj,s)
Y,n

∥∥∥
⎞
⎠

∥∥∥∥C
(lj,qj )

Y,n

∥∥∥∥Tr
∣∣∣∣
∧
σ
(1)

Y,n

∣∣∣∣

≤
∥∥∥∥

∧
σ
(1)

Y,n

∥∥∥∥
qj−1 qj∏

s=1

∥∥∥C(lj,s)
Y,n

∥∥∥.

(4.59)

Since π /= Id, there exists at least one j ∈ {1, . . . , p(π)} such that qj ≥ 2, hence

∣∣∣∣∣∣
p(π)∏
j=1

Tr
qj∏
s=1

B
(lj,s)
Y,n

∣∣∣∣∣∣
≤

⎛
⎝

p(π)∏
j=1

∥∥∥∥
∧
σ
(1)

Y,n

∥∥∥∥
qj−1

⎞
⎠

p(π)∏
j=1

qj∏
s=1

∥∥∥C(lj,s)
Y,n

∥∥∥

= ‖CY,n‖
p(π)∏
j=1

∥∥∥∥
∧
σ
(1)

Y,n

∥∥∥∥
qj−1

(4.60)

and at least one exponent qj − 1 is nonzero. Thus, by the uniform boundedness of the norms
‖CY,n‖ and Lemma 4.13, the termodynamic limit of the l.h.s of (4.57) equals 0, which proves
the validity of relation (4.53).

The proof of relation (4.54), after discarding the permutation signs and replacing ∧ by
∨, proceeds analogously.

Appendix

Product Integral Kernels of Trace Class Operators

In this section theorems concerning product integral kernels, exploited in Section 3, are
formulated.

Fix the Hilbert space HY := L2(Y, μ) over the field K = C or R, where the measure μ is
separable and σ-finite. For every n ∈ N the space H⊗n

Y is identified with L2(Yn, μ⊗n). Unless
otherwise stated, elements of L2 spaces are identified with their representatives and denoted
by the same symbols.
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Let K ∈ L2(Y 2, μ⊗2). In the case of the integral operator K : HY → HY defined for
every ϕ ∈ HY and μ-a.a. x ∈ Y by

(
Kϕ

)
(x) =

∫

Y

K
(
x, y

)
ϕ
(
y
)
dμ

(
y
)

(A.1)

bothK regarded as an element of L2(Y 2, μ⊗2) as well as its arbitrary representative is called an
integral kernel of K. The kernel K is unique as an element of L2(Y 2, μ⊗2) but a representative
of K of a special form, given in Lemma A.3 and Definition A.4, is useful in computations of
the trace of K.

LetHS(HY ) be the space of Hilbert-Schmidt operators onHY with the inner product
defined by 〈A,B〉HS(HY ) := TrA∗B and the induced norm denoted by ‖ · ‖HS(HY ). In the sequel
use is made of the following theorem, the proof of which can be found in [19].

Theorem A.1. An operator K ∈ B(HY ) is Hilbert-Schmidt if and only if it is an integral operator
with an integral kernelK ∈ L2(Y 2, μ⊗2). Furthermore, ‖K‖HS(HY ) = ‖K‖L2(Y 2,μ⊗2).

Corollary A.2. Let K,G ∈ HS(HY ) and let K,G ∈ L2(Y 2, μ⊗2) be integral kernels of the operators
K, G, respectively. Then 〈K,G〉HS(HY ) = 〈K,G〉L2(Y 2,μ⊗2).

Recall that K ∈ B(HY ) is a trace class operator if and only if there exist operators
K1, K2 ∈ HS(HY ) such that K = K1K2. Moreover, TrK = 〈K∗

1, K2〉HS(HY )
. This fact,

Theorem A.1, and Corollary A.2 imply the following lemma, in which elements of the L2

space are distinguished from their representatives. The element of the L2 space represented
by a function f is denoted by [f].

Lemma A.3. Let K ∈ T(HY ), K = K1K2, where K1, K2 ∈ HS(HY ). Let [K1], [K2] ∈
L2(Y 2, μ⊗2) be integral kernels of K1, K2. Then for any choice of representatives K1 ∈ [K1],
K2 ∈ [K2] the function K : Y × Y → K defined for μ⊗2-a.a. (x, y) ∈ Y × Y by

K
(
x, y

)
=
∫

Y

K1(x, z)K2
(
z, y

)
dμ(z) (A.2)

is μ⊗2-square integrable and it is an integral kernel of K. The function L : Y → K defined for μ-a.a.
x ∈ Y by L(x) = K(x, x) is μ-integrable. Moreover,

TrK =
∫

Y

L(x)dμ(x) ≡
∫

Y

K(x, x)dμ(x). (A.3)

Definition A.4. Under the assumptions of Lemma A.3, the functionK given by formula (A.2)
(for any choice of representativesK1,K2 of [K1], [K2]) is called a product integral kernel of K.

Notice that for μ being the Lebesgue measure on [0, 1] × [0, 1] formula (A.3) is valid,
for example, if K is any continuous function.

In the following lemma, which follows from Lemma A.3, the function K0 need not be
a product integral kernel of K0 but the integral formula for the trace of K0 still holds for K0.
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Lemma A.5. Let k, n ∈ N, k < n, and let K be a product integral kernel of K ∈ T(H⊗n
Y ) ≡

T(L2(Yn, μ⊗n)). Then the function K0 : Yk × Yk → K defined for μ⊗2k-a.a. (x′, y′) ∈ Yk × Yk by

K0
(
x′, y′) =

∫

Yn−k
K

(
x′, x′′, y′, x′′)dμ⊗(n−k)(x′′) (A.4)

is μ⊗2k-square integrable and the integral operator K0 with the kernel K0 belongs to T(H⊗k
Y ). For

every χ, ϕ ∈ H⊗k
Y and every orthonormal basis {ψi}i∈N

ofH⊗(n−k)
Y one has

〈
χ,K0ϕ

〉
H⊗k

Y
=

∞∑
i=1

〈
χ ⊗ ψi,K(ϕ ⊗ ψi)

〉
H⊗n

Y
. (A.5)

The function L0 : Yk → K defined for μ⊗k-a.a. x′ ∈ Yk by L0(x′) = K0(x′, x′) is μ⊗k-integrable.
Moreover,

∫

Yk

K0
(
x′, x′)dμ⊗k(x′) ≡

∫

Yk

L0
(
x′)dμ⊗k(x′) = TrK0 = TrK. (A.6)

Corollary A.6. Under the assumptions of Lemma A.5, if C ∈ B(H⊗k
Y ) then TrCK0 = Tr(C ⊗

I⊗(n−k))K.
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