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A systemic study of some families of g-Genocchi numbers and families of polynomials of Norlund
type is presented by using the multivariate fermionic p-adic integral on Zp. The study of these
higher-order g-Genocchi numbers and polynomials yields an interesting g-analog of identities for
Stirling numbers.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q,, C, and C, denote the ring
of p-adic rational integers, the field of p-adic rational numbers, the complex number field,
and the completion of the algebraic closure of Q,, respectively. Let N be the set of natural
numbers and Z, = NU {0}. Let v, be the normalized exponential valuation of C, with |p| p =
pr® =1/p.

When one talks of g-extension, g is variously considered as an indeterminate, a
complex g € C, or a p-adic number q € C,. If g4 € C, then one normally assumes |g] < 1.
If g € C,, then we assume |q — 1|p < 1. In this paper, we use the following notation:

—gF 1-(=g)*
R T T (8

see [1-10]. Hence lim, .1 [x], = x for all x € Z,,.

q
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The g-factorial is defined as [#n] = [n] q [n-1] PR [2] q [1] @ and the Gaussian binomial
coefficient is defined by the standard rule

n\ [n],! ~ [n],[n-1],-- [n-k+1]!
<k>q NCECN G [T, / (12

(see [7,9]). Note that limg1(}), = (k) =n!/(n—k)lk! =n(n-1)--- (n -k +1)/k!. It readily
follows from (1.2) that

n+1 B n Yk n kel n . n (1.3)
k ) \k-1) TT\k) 71 k-1 k)’ '
q q q q q
(see [4,7]).

The g-binomial formulas are known,

(b:9), = 1 =b)(1-bg) - (1-bg"") = Z(?) 2w,
i=0 q

(1.4)

1 1 © /m+i—1 .
= = bl.
(bia),  (1=b)(1=bq) - (1-bq" ) Z< i >

We say that f : Z, — C, is uniformly differentiable function at a point a € Z,, and
we write f € UD(Z,), if the difference quotients ®; : Z, x Z, — C, such that ®¢(x,y) =
(f(x) = f(v))/(x - y) have a limit f'(a) as (x,y) — (a,a). For f € UD(Zy,), the g-deformed
fermionic p-adic integral is defined as

1 .
L) = [ S@aeg(@) = Jim o S " 15)
(see [7,9]). Note that
ILi(f) = imI_4(f) =J‘ f(x)dp_1(x). (1.6)
q—1 Z,

For n € N, write f,(x) = f(x + n). Then, we have

n-1
Li(fu) = (CD)"La(f) + 2D (1) £ (). (1.7)
1=0
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Using (1.7), we can readily derive the Genocchi polynomials, G, (x), namely,

th e a4 (y) = ZG (x) gl (1.8)

P

(see [1-27]). Note that G,,(0) = G,, are referred to as the nth Genocchi numbers. Let us now
introduce the Genocchi polynomials of Norlund type as follows:

2t
i e(x+x1+~-+xr)td (x1) - du (xr — ( > G(") ,
fz,, jz,, o o)+ dea () = (s Z O e

r times

(e +1> Zd " (x )—, (1.10)

(see [7,9]). In the special case x =0, G4 (0) =G, and G (0) = G are referred to as the
Genocchi numbers of Norlund type. Let (Eh)(x) = h(x + 1) be the shift operator. Then, the
g-difference operator A, is defined as

Ag = ﬁ(E - qi_”)r where (Ih)(x) = h(x), (1.11)

i=1

(see [4,7,9]). It follows from (1.11) that

n>0

flx) = <z> A7£(0), (1.12)
q

where A’q’f(O) =i (z)qq(g)f(n — k) (see [5, 6, 10]). The g-Stirling number of the second
kind (as defined by Carlitz) is given by

q° j=0

—( ) k
o) = e () ey 13
q

(see [7,10]). By (1.12) and (1.13), we see that

-k
Sy(nk;q) = 1 2Ako" 1.14
2(71, ’q) (k]! (1.14)
q°

(see [6, 10]).
In this paper, the g-extensions of (1.9) are considered in several ways. Using these g-
extensions, we derive some interesting identities and relations for Genocchi polynomials and
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numbers of Norlund type. The purpose of this paper is to present a systemic study of some
families g-Genocchi numbers and polynomials of Norlund type by using the multivariate
fermionic p-adic integral on Z,.

2. g-Extensions of Genocchi Numbers and
Polynomials of Norlund Type

In this section, we assume that g € C, with [1 -], < 1. We first consider the g-extensions of
(1.8) given by the rule

o) tn .
> Goalrg =t [ e (v)
=0 n. 7

P

, (2.1)
=y Z<(’)( Dk >——2tZ( 1)melm it
0(1 q) =0 l+q n
Thus, we obtain the following lemma.
Lemma 2.1. If n > 0, then
Gri1,4(X) L (1) (-1)'g™
— =2 1 . 22
e Z( )" [m + x|} = e q)nlz 1o g (22)
By (1.14)
n x k
[x]3=2< > [k],!S2(k,n - k;q)q"2’
k=0 \k q
n q<2> ("5
= Dlx] [x-1], - [x -k +1] —Ag-kok (2.3)

" [n- K],

5)-("%)

_ w4 2 (D) (_1) ghek+1)
A [n-k],! A7*0 (1 q)kZ< > 2(-q

Thus, we have

Gn+, 1t )S k k ! l me+, (1—k)
n+11q :Z 2(k,n— q)z< > q<§>(—1)z%<m><q_1) % (2.4)
] -

k=0 (1-9) 1=0

and we obtain the following theorem.



International Journal of Mathematics and Mathematical Sciences 5

Theorem 2.2. If n >0, then

( ) !
nt q2'Sy(k,n-k;q ! ! m+1,(1 = k)
n+11q o )Z< )qq(z)<-1>’§0<m>( g-1)" —” ,(25)

k=0 (1—) 1=0

where Gpq = Gy,4(0) stand for the nth Genocchi numbers.

Consider a g-extensoin of (1.9) such that G(r) () = Gg;(x) = Gir)l ,(x) =0and
+rq(x) n
T x+x1+"'+xr]qd/"—1(x1)"'d//‘—l(xr)
ri("") Z,, Z,
(2.6)

or & o1\ & /mir-1
= %()( 0t (i) 250 e

Let F\(t,x) = X0 GY) (x)(¢"/n!). Then,

© /m+r-1
FO(tx) =21 ( . )(—1)%[’"”1#. (2.7)

m=0

In the special case x = 0, the numbers GS:Z,(O) = Gg; are referred to as g-extension of
the Genocchi numbers of order r. In the sense of the g-extension in (1.10), consider the g-
extension of Genocchi polynomials of Norlund type given by

r -r 1 S r [m+x] T
GV (t,x) = F{ " (t,x) = Zt,;)<m> g —Zd ) (x )—. (2.8)
By (28), Gy, (x) =Gy (x) =---=G, ) (x) =0 and rI(})G, ,(x) = (1/2") Sl 3 )Im + 1.

Therefore, we obtain the followmg theorem.

Theorem 2.3. Forr € N, and, n > 0, write

¢S <’" . 1> (1)"e™ e = 3G L (29)

m=0 n=0

Then,

Gitrgr,q (X) 2 1 ! ix ® /fm+r—-1 " .
oy s (ng) 25T e

n (=) n ! Ix r_ 1 r r n
r!<r>Gnrlq(x) 27(1 z(;< >( 1)'q l <1+q’> _?mz::o<m> [m+x]q.

(2.10)



6 International Journal of Mathematics and Mathematical Sciences

The numbers G( 2 g (0) = Gf,;; ) are referred to as the g-extension of Genocchi numbers
of Norlund type. For h € Z and r € N, introduce the extended higher-order g-Genocchi
polynomials as follows:

h
Gyliry(x)

f f 2 DN e oy e xR () - dp (). (2.11)
T'( ) Zp Z,

Then,
hr) ’ I Ix or n I _Ix
Grirg(x) 2 Z (HED g Z 1(1)g
) (=) " E g, (1-9)" 5 (-4 ),
(2.12)
© /m+r-1
=2 < > (=1)"q" " x + m]g.
m=0 m
q
Let Flgh’r) t,x) =32, G(h 7 (x) (" /n!). Then, we can readily see that
e /m+r-1
F;h,r) (t/ x) — Zrtrz < > (_1)mq(hfr)me[x+m]qt‘ (213)
m=0 m
q
Therefore, we obtain the following theorem.
Theorem 2.4. For h € Z and n > 0, let
© /fm+r-1 n
2y, < > (1)l = S () 214)
m=0 m g n=0 n

Then,

hr) I
+rq( ) 2r (D=1 qlx PR m+r-1 v (hrym ;
My (- q)nlz 7 q), ZmZ_O< . >q( 1™q [x+m]y.  (215)

Let us now define the extended higher-order Norlund type g-Genocchi polynomials
as follows:

, 3 (HD'g™
< >G§f‘rq> ) D . (16)
r (1-9)"= [y, @t g2 O dp () - dpa ()

IZ oy

P
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By (2.16),

(1) c I bx(_ herel
<r>cn,q< i )§< >< V'q*(-4""q)

(2.17)
1 r My _(h-r)ym n
= ?Z q'2’q [m +x]g.
m=0 \M q
(h,-r) (h,-r) n
Let Fy ' (t,x) = 2520 Gng  (x)(t"/n!). Then, we have
F(h,—r) _ 1 < r (151) (h—-r)ym j[m+x],t 21
q (t/x) - 27’trz q q e 1 7 ( . 8)
m=0 \11 q
where, Gh (x) = G(h (x) = = Gihlg (x) = 0. Therefore, we obtain the following
theorem.
Theorem 2.5. Forh € Z,n >0, and r € N, write
1 - r (31) (h—r)m m+x G(h ’”) - 219
zrtrz q-'q Z . (2.19)
m=0 \ 1 q
Then,
GO () N 1)t (—ghrH
<> P - sy )V e a),
(2.20)
Lo (7 08 term
= ;Z q2'q [m + x]g,
m=0 \1 q
where, Gy (x) = G (x) = - = GI"1 7 () = 0

r-1,q

Forh=r,

Gi,rfr)q(x) or & <7>( 1)'g* © /m+r-1
’ = =2 1 , 2.21
(") <1—q>"1§ a2 >q‘ el G20

(r,-r) - 1 _Ix _ l r (m) n
(e s, -5(0) et

(2.22)

<



8 International Journal of Mathematics and Mathematical Sciences
It can readily be seen that

quzr

Caia), ,[ I q= I G () - dpea ()

:f J ([x+x1+ 4+ x,] (q 1)+1> Zfr':ljxfdﬂq(xl)---d‘uq(xr)

M§

< >(q 1).[ I [x 41+ + 2 1pg 2 dp () - dpa (%)

(Giora ()
< >(q— ) rl‘(zzr :

I

Il
o

Ms

1=0
(2.23)
By (2.23), 42"/ (=4"";q), = S%(1)(q = 1)'(G7) (x)/r1(7)). As is known,
Li(f1) +11(f) =2f(0), where fi(x)=f(x+1). (2.24)
It follows from (2.24) that
qh—lj f [Xx+14x1++ xr];quF:l(h—j)xfdﬂ_l(xl) coedp (x)
f 2 f s 2 15 N dp sy () - dpa (xr) (2.25)
p
+2 J; e J‘Z [x+x2+-+ xr];’ng(h_l_j)"f*1 dp_1(x2) - - dp_q (xr).
By (2.25),
}i:)q(xﬁL 1) G(}i:)q( ) —ogth1r- 1)( ). (2.26)

n+r n+r n+r=1q

A simple manipulation shows that
q J‘ f X+ X +- ];q27=l(h’j+1)xjdﬂ_l (x1) -+~ dp-a(xr)
Z, Z,
=(q-1) I J [x+x1+ -+ xr]ZﬂqZ;:l(h_j)x"dﬂ-l(x1) cedp (%) (2.27)
z z,

+J‘ ’[ [x+x1 +"'+xr];lqur'zl(h_j)xjdﬂfl(x1)"'dl/lfl(xr)-
Z

By (227), 7" (Gyirg (x)/ (n+ 1)) = (q - 1)(Gur), ()/(n+71+1)) + (G, () / (n + 1)),

n+r+l,q
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Therefore, we obtain the following proposition.

Proposition 2.6. For h € Z, r € Nand n > 0, the following equations

h,r h,r
1 ,(4+,)q(x+1) G$1+r)q( ) —oghLr- 1)( %)
n+r n+r nr=lgq A7
o (2.28)
h+1,r r h,r
1(1+J;q )( ) _ ( _ ) n+r+1 q( ) G1(1+r,)q(x)
n+1 1 n+r+1 n+1
hold. Moreover, (¢"™*2")/((-q™";9),) = 2% (T)(q - 1)I(Gl(2’;)7(x)/r!( ).
By (2.21),
(r,r)
Gn+r,q‘1 (1" - x) or i ( )(_1)lq—l(r—x)
(") 1-g1)" (-q7597Y),
( )" = (2.29)
(N)
n S (l)( 1)17 n n+rq( )
= (-1)"g"(2) z = (-1)"gm 2 =
(1- q)zz(qq) i)
Hence,
j f [r_x+x1+...+xr];l_quzjrﬁl(r’j)xjd‘u_l(xl)...dﬂ_l(xr)
z z
’ (2.30)
— (_1)nqn+(£)f J‘ [X+X1 +"'+xr];qz;zl(r_j)xjdﬂ—l(xl)"'d,ufl(xr)~
z z
Forh=r, ijjjq L(0) = (-1)"q™ DG (r). Tt also follows from (2.26) that
L Gu (x4 1 Gf{_{)
a4 1) 15 oG tr g, (231)

n+r n+r nir-1gq

The Stirling numbers of the first kind are defined as

[1(1+1kl,2) = ZSl(n,k q)z", (2.32)

k=1

(see[6,9]),

) R P m—
q(,zn)<r> _q 27[r], [r' m+1], _ 1 . 1([r]q—[k]q>. 033)
q
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It can readily be seen that
n [k] k = k
<z— [k]q> =z 1-— ZSl(n 1,k;q)(-1)*z (2.34)
By (2.33) and (2.34),

T(tr1, - 181,) = ZSl(m 1,k;q) (-] (2.35)

0

=~
Il

Formulas (2.22) and (2.35) imply the following assertion.

Proposition 2.7. Forr e Nandn € Z,,

<r>cfjr’,,( ) = 'ZZSl(m 1,k;.q) (=) [ * [m + ]2 (2.36)

q m=0 k=0
The generalized Genocchi numbers and polynomials of Norlund type are defined by

2"t F_ N £
(et +1)(e®t + 1) --- (ewrt + 1) v = ZoGn (x [wr,... ,wr)mz (2.37)
n=|

and G,(f)(wl,. CL,Wy) = G,(qr)(O | w1, ..., w,). We can now also define a g-extension of (2.37) as
follows. For wy, ..., w, € Z, and 64, ...,6, € Z, write

G (x| w1,...,w,;61,...,6)

= IZ ---IZ [x1201 + - + X0, + x]’;d/l,qal (1) =+ - dp_gor (x7),
P

P
(2.38)
and G}, o (w1,..., w3 61,...,6,) = Gty o0 | w1, ..., w0, 61, ..., 6,). Thus,
n+rq(x | w1, - 1wr;61r-~-/67) _ [2] Z 1)( 1)lq1x (2 39)
(") B (1 q) 3 (1+gottwn) oo (14 gorvler)” '

Another g-extension of Norlund type generalized Genocchi numbers and polynomials is also
of interest, namely,

:la-rrq(x|wll . /wr;61/---/6r)

(")

(2.40)
= J‘ .. I [x1w1 + o+ XpW, + x];lq51X1+m+5rxrd#_1 (xl) . dﬂ—l (xr),
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and G}, (w1, ..., wy;61,...,6,) = Gyl (0| wi, ..., w,; 61,...,6,). By (240),

Grlgx w1, w6, 6,) i (1) (-1)'g oan
r!(";”) (1 q) (1+q61+lwl . (1+q6,+lw,)' :
3. Further Remarks
For h = 0, consider the following polynomials G; +;)q(x) /r!(™7 ) and r!(" )Gr(gr;)( ):
Gy (%)
TN f j [x 41+ +x]5q X dy g (xy) - dper (%),
r!( . >
(3.1)
I _Ix
<>c<°”<> Loy (1)cvs .
) Q) G, g E P dp () - dje ()
Then,
G r " ( 1)1 a e /m+r-1
Creg®) 2 nZ< >,r =2’Z< g™ (1) [x + m]
(") -9)'E (e, A\ om /),
1 C - 1S/
G(O r) 1 1 _Ix . - 2 rm + n
<r> wera (¥) = 2r(1- )§< >( 'd" (- q), 2rmZ:0 ) 47 a el
q
(3.2)
Let F\"(t, x) = 320 Gy (x)(#"/n!) and let F" ™ (t,x) = 3%, GL " (x) (#"/n!). Then,
0Or) ryr & (m+r—1 —rm m _[x+m],t
F, (t,x)=2tZ . g ™m(-1"e 7,
m=0
! (3.3)
r r m
s r)(t’ ) = < > 5](2) —rm g [mix] t
1 2t A\
Consider the following polynomials:
G(h})( ) n ( )( 1)1 Ix
n+ q x1(h-1) X+ x nd ~ (x ) _ 1 ) (34)
n+1 J‘qu [ 1]q H-1(X1 (1 q)n; 1+ql+h1



12 International Journal of Mathematics and Mathematical Sciences

A simple calculation of the fermionic p-adic invariant integral on Z, show that

q° f [+ x1]5q7 "V dp (1)
Z
’ (3.5)
=(g-1) f [x+x1 ] g "D () + f [x +x1]5q " P dp s (x1).
ZP

Zp

By (3.5), 4°G\y), (%) = (q - 1)(Gl, (x) /2(n +2)) + G{/;;" (x). It can readily be proved that

f e+ ]2 D () = 3 <1;> [x];” qf"f [l " Vdp s (x).  (36)

Z, =0 Zp

By (3.6), ijfr’i)q(x)/(n +1) = Z?:o( M) [x];“iqjx(G](.}:’llr;/(j +1)). Using (2.24), we can also prove
that

f [oc + 1 + 1]5q% D Vadp (x1) + ’[ [x +x1 15" " Vdp s () = 2[x]]. (3.7)
ZP

Zy

Thus, qh‘l(G(h’l) (x)/(n+1)+(G") (x)/(n+1)) = 2[x]3. For x = 0, we have qh‘l(G(h’l) 1)/

n+l,q n+l,q n+l,q
(n+1))+ (G /(1 +1)) = 28,5, where 6, is the Kronecker delta,

It is easy to see that Ggﬁ;l) = _[Zp gt Vdu 1 (x) =2/(1+4¢"7) = 2/([2]+1)- By (34),

Gfﬁ’},)q,l (1-x) n_—xi(h-1)
MR f [1- 2+ ]2 g Dy (1)
Z

n+1
P
= (-1)"g" 2 L(D(D)'g™ (3.8)
(1-q)" 3 1+4""
(h1)
— (_1)11 n+h-1 Gn+1fq (x)
q n+1 °

In particular, if x = 1, then Giﬂ)q* 0)/(n+1) = (—1)”q”+h—1(c(h'1) M) /(n + 1) =

n+l,q
(_1)"_1q"(G1(1;ﬂ,)q/(" +1)) forn > 1.

Recently, Kim has studied p-adic fermionic integral on Z, connected with the problems
of mathematical physics (see [6, 10, 11]), and our result are closely related to his results. In
the future, we will try to study p-adic stochastic problems associated with our theorems.
For example, p-adic g-Bernstein polynomials seem to be closely related to our results (see

[6,14, 20]).
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