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We introduce an iterative scheme by the viscosity approximation to find the set of solutions of the
generalized system of relaxed cocoercive quasivariational inclusions and the set of common fixed
points of an infinite family of strictly pseudocontractive mappings problems in Hilbert spaces.
We suggest and analyze an iterative scheme under some appropriate conditions imposed on the
parameters; we prove that another strong convergence theorem for the above two sets is obtained.
The results presented in this paper improve and extend the main results of Li and Wu (2010) and
many others.

1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product and norm being denoted by 〈·, ·〉 and ‖ · ‖,
respectively, and let C be a nonempty closed convex subset of H. Recall that PC is the metric
projection of H onto C; that is, for each x ∈ H there exists the unique point in PCx ∈ C such
that

‖x − PCx‖ = min
y∈C

∥
∥x − y

∥
∥. (1.1)

A mapping T : C → C is called nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C (1.2)
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and the mapping f : C → C is called a contraction if there exists a constant α ∈ (0, 1) such
that

∥
∥f(x) − f

(

y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ C. (1.3)

A point x ∈ C is a fixed point of T provided Tx = x. We denote by F(T) the set of fixed points
of T ; that is, F(T) = {x ∈ C : Tx = x}. If C ⊂ H is bounded, closed and convex and T
is a nonexpansive mappings of C into itself, then F(T) is nonempty (see [1]). Recall that a
mapping A : C → H is said to be

(i) monotone if

〈

Ax −Ay, x − y
〉 ≥ 0, ∀x, y ∈ C, (1.4)

(ii) k-Lipschitz continuous if there exists a constant k > 0 such that

∥
∥Ax −Ay

∥
∥ ≤ k

∥
∥x − y

∥
∥, ∀x, y ∈ C, (1.5)

if k = 1, then A is a nonexpansive,

(iii) pseudocontractive if

∥
∥Ax −Ay

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I −A)x − (I −A)y

∥
∥
2
, ∀x, y ∈ C, (1.6)

(iv) k-strictly pseudocontractive if there exists a constant k ∈ [0, 1) such that

∥
∥Ax −Ay

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I −A)x − (I −A)y

∥
∥
2
, ∀x, y ∈ C, (1.7)

it is obvious that A is a nonexpansive if and only if A is a 0-strictly pseudocontrac-
tive,

(v) α-strongly monotone if there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥x − y

∥
∥
2
, ∀x, y ∈ C, (1.8)

(vi) α-inverse-strongly monotone (or α-cocoercive) if there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C, (1.9)

if α = 1, then A is called that firmly nonexpansive; it is obvious that any α-inverse-
strongly monotone mapping A is monotone and (1/α)-Lipschitz continuous,

(vii) relaxed α-cocoercive if there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ (−α)∥∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C, (1.10)
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(viii) relaxed (α, r)-cocoercive if there exists two constants α, r > 0 such that

〈

Ax −Ay, x − y
〉 ≥ (−α)∥∥Ax −Ay

∥
∥
2 + r

∥
∥x − y

∥
∥
2
, ∀x, y ∈ C, (1.11)

it is obvious that any the r-strongly monotonicity implies to the relaxed (α, r)-
cocoercivity.

Recall that a set-valued mapping M : H → 2H is called monotone if for all x, y ∈
H, f ∈ Mx and g ∈ My imply 〈x − y, f − g〉 ≥ 0. A monotone mapping M : H → 2H

is maximal if the graph of G(M) of M is not properly contained in the graph of any other
monotone mappings.

The existence common fixed points for a finite family of nonexpansive mappings has
been considered by many authers (see [2–5] and the references therein).

In this paper, we study the mapping Wn defined by

Un,n+1 = I,

Un,n = μnSnUn,n+1 +
(

1 − μn

)

I,

Un,n−1 = μn−1Sn−1Un,n +
(

1 − μn−1
)

I,

...

Un,k = μkSkUn,k+1 +
(

1 − μk

)

I,

Un,k−1 = μk−1Sk−1Un,k +
(

1 − μk−1
)

I,

...

Un,2 = μ2S2Un,3 +
(

1 − μ2
)

I,

Wn = Un,1 = μ1S1Un,2 +
(

1 − μ1
)

I,

(1.12)

where {μi} is nonnegative real sequence in (0, 1), for all i ∈ N, S1, S2, . . . form a family of
infinitely nonexpansive mappings of C into itself. It is obvious that Wn is nonexpansive
from C into itself, such a mapping Wn is called a W-mapping generated by S1, S2, . . . , Sn

and μ1, μ2, . . . , μn.
A typical problem is to minimize a quadratic function over the set of fixed points of a

nonexpansive mapping in a real Hilbert spaceH:

min
x∈C

{
1
2
〈Ax, x〉 − 〈x, b〉

}

, (1.13)

where A is a bounded linear operator on H, C is the fixed point set of a nonexpansive
mapping S on H and b is a given point in H. Recall that A be a strongly positive bounded
linear operator onH if there exists a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.14)
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Marino and Xu [6] introduced the following general iterative scheme based on the
viscosity approximation method introduced by Moudafi [7]:

xn+1 = αnγf(xn) + (I − αnA)Sxn, ∀n ∈ N, (1.15)

where A is a strongly positive bounded linear operator on H, f is a contraction on H and S
is a nonexpansive on H. They proved that under those conditions are corrected, if F(S)/= ∅,
then the sequence {xn} generated by (1.15) converges strongly to the unique solution z of the
variational inequality

〈(

A − γf
)

z, x − z
〉 ≥ 0, ∀x ∈ F(S), (1.16)

which is the optimality condition for the minimization problem

min
x∈F(S)

{
1
2
〈Ax, x〉 − h(x)

}

, (1.17)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
The so-called the system of generalized quasivariational inclusions problem is to find

(x∗, y∗) ∈ H ×H such that

0 ∈ x∗ − y∗ + λ1
(

(B1 + C1)y∗ +M1x
∗),

0 ∈ y∗ − x∗ + λ2
(

(B2 + C2)x∗ +M2y
∗),

(1.18)

where Bi, Ci : H → H, Mi : H → 2H are nonlinear mappings and λi > 0 for each i = 1, 2. As
special cases of problem (1.18), we have the following.

(1) If B1 = B2 = B, C1 = C2 = C and M1 = M2 = M, then problem (1.18) is reduced to
find (x∗, y∗) ∈ H ×H such that

0 ∈ x∗ − y∗ + λ1
(

(B + C)y∗ +Mx∗),

0 ∈ y∗ − x∗ + λ2
(

(B + C)x∗ +My∗).
(1.19)

(2) If C1 = C2 = 0, then problem (1.18) is reduced to find (x∗, y∗) ∈ H ×H such that

0 ∈ x∗ − y∗ + λ1
(

B1y
∗ +M1x

∗),

0 ∈ y∗ − x∗ + λ2
(

B2x
∗ +M2y

∗),
(1.20)

which called that the system of quasivariational inclusions problem.
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(3) If B1 = B2 = B and M1 = M2 = M, then problem (1.20) is reduced to find (x∗, y∗) ∈
H ×H such that

0 ∈ x∗ − y∗ + λ1
(

By∗ +Mx∗),

0 ∈ y∗ − x∗ + λ2
(

Bx∗ +My∗).
(1.21)

(4) If x∗ = y∗, then problem (1.21) is reduced to find x∗ ∈ H such that

0 ∈ Bx∗ +Mx∗. (1.22)

We denote by VI(H,B,M) the set of solutions of variational inclusion of the
problem (1.22).

(5) If M = ∂φ : H → 2H , where φ : H → R ∪ {+∞} is a proper convex lower
semicontinuous function and ∂φ is the subdifferential of φ, then problem (1.22) is
equivalent to find x∗ ∈ H such that

〈Bx∗, v − x∗〉 + φ(v) − φ(x∗) ≥ 0, ∀v ∈ H, (1.23)

which is said to be the mixed quasivariational inequality (see, e.g., [8, 9] for more
details).

(6) If φ is the indicator function of C, then problem (1.23) is equivalent to the classical
variational inequality problem, denoted by VI(C,B), to find x∗ ∈ C such that

〈Bx∗, v − x∗〉 ≥ 0, ∀v ∈ C. (1.24)

Iiduka and Takahashi [10] introduced iterative scheme for finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality (1.24) as the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let B be an α-inverse-
strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) ∩ VI(C,B)/= ∅. Suppose that x1 = x ∈ C and {xn} is the sequence defined by

xn+1 = αnx + (1 − αn)SPC(xn − λnBxn), ∀n ∈ N, (1.25)

where {αn} ⊂ [0, 1) and {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |λn+1 − λn| < ∞.

Then {xn} converges strongly to PF(S)∩VI(C,B)x.

Definition 1.1 (see [11]). Let M : H → 2H be a multivalued maximal monotone mapping.
Then the single-valued mapping JM,λ : H → H defined by JM,λ(u) = (I + λM)−1(u), for all
u ∈ H, is called the resolvent operator associated with M, where λ is any positive number
and I is the identity mapping.
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Recently, Zhang et al. [11] considered the problem (1.22). To be more precise, they
proved the following theorem.

Theorem ZLC. Let H be a real Hilbert space, B : H → H be an α-inverse-strongly monotone
mapping, M : H → 2H be a maximal monotone mapping, and S : H → H be a nonexpansive
mapping. Suppose that the set F(S) ∩ VI(H,B,M)/= ∅, where VI(H,B,M) is the set of solutions of
variational inclusion (1.22). Suppose that x1 = x ∈ H and {xn} is the sequence defined by

yn = JM,λ(xn − λBxn),

xn+1 = αnx + (1 − αn)Syn,
(1.26)

for all n ∈ N, where λ ∈ (0, 2α) and {αn} ⊂ [0, 1] satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞.

Then {xn} converges strongly to PF(S)∩VI(H,B,M)x.

Very recently, Li and Wu [12] introduced an iterative scheme:

yn = JM,λ(xn − λBxn),

xn+1 = αnγf(xn) + βnxn +
((

1 − βn
)

I − αnA
)(

μSkxn +
(

1 − μ
)

yn

)

,
(1.27)

for all n ∈ N, where x1 ∈ H, A is a strongly positive bounded linear operator on H, f is a
contraction on H and Sk is a mapping on H defined by Skx = kx + (1 − k)Sx such that S
is a k-strictly pseudocontractive mapping on H with a fixed point. They proved that under
missing condition of μ, it should be 0 < μ < 1 by those Lemma 1.6, others are corrected, if
Ω = F(S)∩VI(H,B,M)/= ∅, then the sequence {xn} generated by (1.27) converges strongly to
z = PΩ(I −A + γf)z of the variational inequality

〈(

A − γf
)

z, x − z
〉 ≥ 0, ∀x ∈ Ω, (1.28)

which is the optimality condition for the minimization problem:

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (1.29)

where h is a potential function for γf .
Inspired and motivated by the works mentioned above, in this paper, we introduce an

iterative scheme (2.2) below by the viscosity approximation to find the set of solutions of the
generalized system of relaxed cocoercive quasivariational inclusions and the set of common
fixed points of an infinite family of strictly pseudocontractive mappings problems in Hilbert
spaces. We suggest and analyze an iterative scheme under some appropriate conditions
imposed on the parameters, we prove that another strong convergence theorem for the above
two sets is obtained. The results presented in this paper improve and extend the main results
of Li and Wu [12] and many others.
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We collect the following lemmas which be used in the proof for the main results in the
next section.

Lemma 1.2 (see [6]). Let H be a Hilbert space, C be a nonempty closed convex subset of H, f :
H → H be a contraction with coefficient 0 < α < 1, and A be a strongly positive linear bounded
operator with coefficient γ > 0. Then,

(1) if 0 < γ < γ/α, then 〈x − y, (A − γf)x − (A − γf)y〉 ≥ (γ − γα)‖x − y‖2, x, y ∈ H;

(2) if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ .

Lemma 1.3 (see [13]). Let {xn} and {zn} be bounded sequences in a Banach space E and {βn} be a
sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (1.30)

Suppose that

xn+1 =
(

1 − βn
)

xn + βnzn, n ≥ 1 (1.31)

and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞‖zn − xn‖ = 0.

Lemma 1.4 (see [14]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − ηn
)

an + δn, n ≥ 1, (1.32)

where {ηn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 ηn = ∞;

(2) lim supn→∞(δn/ηn) ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

Lemma 1.5 (see [15]). Let C be a nonempty closed convex subset of a Hilbert space H, define
mapping Wn as (1.12), let Si : C → C be a family of infinitely nonexpansive mappings with
⋂∞

i=1 F(Si)/= ∅, and let {μi} be a sequence such that 0 < μi ≤ μ < 1, for all i ≥ 1. Then

(1) Wn is nonexpansive and F(Wn) =
⋂∞

i=1 F(Si) for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, limn→∞Un,kx exists;

(3) the mapping W : C → C define by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C, (1.33)

is a nonexpansive mapping satisfying F(W) =
⋂∞

i=1 F(Si) and it is called the W-mapping
generated by S1, S2, . . . and μ1, μ2, . . . .

Lemma 1.6 (see [11]). The resolvent operator JM,λ associated with M is single-valued and
nonexpansive for all λ > 0.
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Lemma 1.7 (see [11]). u ∈ H is a solution of variational inclusion (1.22) if and only if u = JM,λ(u−
λBu), for all λ > 0, that is,

VI(H,B,M) = F(JM,λ(I − λB)), ∀λ > 0. (1.34)

Lemma 1.8. For any (x∗, y∗) ∈ H ×H, where y∗ = JM2,λ2(I − λ2(B2 + C2))x∗, we have (x∗, y∗) is
a solution of problem (1.18) if and only if x∗ is a fixed point of the mapping D defined by

Dx = JM1,λ1((I − λ1(B1 + C1))JM2,λ2(I − λ2(B2 + C2))x). (1.35)

Proof. Observe from (1.18) that

0 ∈ x∗ − y∗ + λ1
(

(B1 + C1)y∗ +M1x
∗),

0 ∈ y∗ − x∗ + λ2
(

(B2 + C2)x∗ +M2y
∗)

⇐⇒
x∗ = JM1,λ1(I − λ1(B1 + C1))y∗,

y∗ = JM2,λ2(I − λ2(B2 + C2))x∗

⇐⇒Dx∗ = JM1,λ1((I − λ1(B1 + C1))JM2,λ2(I − λ2(B2 + C2))x∗) = x∗.

(1.36)

Lemma 1.9 (see [16]). Let C be a closed convex subset of a strictly convex Banach space E. Let S and
T be two nonexpansive mappings on C. Suppose that F(S) ∩ F(T) is nonempty. Then a mapping R
on C defined by Rx = aSx + (1 − a)Tx, where a ∈ (0, 1), for x ∈ C is well defined and nonexpansive
and F(R) = F(S) ∩ F(T) holds.

Lemma 1.10 (see [17]). Let H be a real Hilbert space, let C be a nonempty closed convex subset of
H, and let S : C → C be a nonexpansive mapping. Then I − S is demiclosed at zero.

Lemma 1.11 (see [18]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C be a k-strict pseudocontraction. Define S : C → H by Sx = αx + (1 − α)Tx for each
x ∈ C. Then, as α ∈ [k, 1), S is a nonexpansive such that F(S) = F(T).

2. Main Results

Let H be a real Hilbert space, Mi : H → 2H be a maximal monotone mapping, Bi : H → H
be a relaxed (αi, ri)-cocoercive and ξi-Lipschitz continuous mappings, respectively, Ci : H →
H be a relaxed (αi, ri)-cocoercive and ξi-Lipschitz continuousmappings, respectively, for each
i = 1, 2. Let A : H → H be a strongly positive linear bounded self-adjoint operator mapping
with coefficient δ ∈ (0, 1] such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping
with coefficient δ ∈ (0, 1). Let {Tn : H → H} be a family of kn-strictly pseudocontractive
mappings with a fixed point such that kn ∈ [0, 1) for all n ∈ N. Define Snx = δnx+(1−δn)Tnx,
where δn ∈ [kn, 1), for all n ∈ N, and let Wn : H → H be a W-mapping generated by {Sn}
and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1).
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Define sequence of mappings {Pn : H → H} and mapping Q : H → H as follows:

Pnx = αnγf(Wnx) + βnx +
((

1 − βn
)

I − αnA
)(

γnWnx +
(

1 − γn
)

Qx
)

,

Qx = JM1,λ1((I − λ1(B1 + C1))JM2,λ2(I − λ2(B2 + C2))x),
(2.1)

for all n ∈ N, where {αn}, {βn}, {γn} ⊂ (0, ‖A‖−1), λi ∈ (0, εi], εi = min{2(ri − αiξ
2
i )/ξi(ξi +

ξi), 2(ri − αiξ
2
i )/ξi(ξi + ξi)}, ri > αiξ

2
i , ri > αiξ

2
i , for each i = 1, 2 and 0 < γ < δ/δ.

Under some appropriate imposed on the parameters {αn} and {βn}, we also know
that ‖(1 − βn)I − αnA‖ ≤ 1 − βn − αnδ, and, we also have that Wn, JMi,λi and I − λi(Bi + Ci)
are nonexpansive for each i = 1, 2 (see argument in the proof of Theorem 2.1 below). Observe
thatQ is a nonexpansive, and so Pn is a contraction with coefficient 1 − (δ − γδ)αn. Therefore,
by Banach contraction principle guarantees that Pn has a unique fixed point in H.

By the idea above, we obtain an iteration scheme by the viscosity approximation for
solving the generalized system of relaxed cocoercive quasivariational inclusions and fixed
point problems of an infinite family of strictly pseudocontractive mappings as the following
theorem.

Theorem 2.1. Let H be a real Hilbert space, Mi : H → 2H be a maximal monotone mapping,
Bi : H → H be a relaxed (αi, ri)-cocoercive and ξi-Lipschitz continuous mappings, respectively,
Ci : H → H be a relaxed (αi, ri)-cocoercive and ξi-Lipschitz continuous mappings, respectively, for
each i = 1, 2. LetA : H → H be a strongly positive linear bounded self-adjoint operator mapping with
coefficient δ ∈ (0, 1] such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping with coefficient
δ ∈ (0, 1). Let {Tn : H → H} be a family of kn-strictly pseudocontractive mappings with a fixed
point such that kn ∈ [0, 1) for all n ∈ N. Define Snx = δnx + (1 − δn)Tnx, where δn ∈ [kn, 1), for all
n ∈ N, and let Wn : H → H be a W-mapping generated by {Sn} and {μn} such that {μn} ⊂ (0, μ],
for some μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ where D : H → H

defined by Dx = JM1,λ1((I − λ1(B1 +C1))JM2,λ2(I − λ2(B2 +C2))x). For x1 ∈ H, suppose that {xn}
be generated iteratively by

zn = JM2,λ2(xn − λ2(B2 + C2)xn),

yn = JM1,λ1(zn − λ1(B1 + C1)zn),

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(2.2)

for all n ∈ N, where {αn},{βn},{γn} ⊂ (0, 1), λi ∈ (0, εi], εi = min{2(ri − αiξ
2
i )/ξi(ξi + ξi), 2(ri −

αiξ
2
i )/ξi(ξi + ξi)}, ri > αiξ

2
i , ri > αiξ

2
i , for each i = 1, 2, satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.
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Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (2.3)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (2.4)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM2,λ2(I − λ2(B2 +
C2))w) is a solution of problem (1.18).

Proof. From (C1) and (C2), we have αn → 0 and lim supn→∞βn < 1. Thus, we may assume
without loss of generality that αn ≤ (1 − βn)‖A‖−1 for all n ∈ N. For each i = 1, 2, since

0 < λi ≤ εi ≤
2
(

ri − αiξ
2
i

)

ξi
(

ξi + ξi

) , 0 < λi ≤ εi ≤
2
(

ri − αiξ
2
i

)

ξi

(

ξi + ξi

) , (2.5)

where ri > αiξ
2
i and ri > αiξ

2
i , we have

λ2i ξi
(

ξi + ξi

)

+ 2λiαiξ
2
i − 2λiri ≤ 0, λ2i ξi

(

ξi + ξi

)

+ 2λiαiξ
2
i − 2λiri ≤ 0. (2.6)

For any x, y ∈ H, it follows by the relaxed (αi, ri)-cocoercivity and ξi-Lipschitz continuity of
Bi and the relaxed (αi, ri)-cocoercivity and ξi-Lipschitz continuity of Ci that

∥
∥(I − λi(Bi + Ci))x − (I − λi(Bi + Ci))y

∥
∥
2

=
∥
∥(x − y) − λi

(

(Bi + Ci)x − (Bi + Ci)y
)∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2λi

〈

x − y, (Bi + Ci)x − (Bi + Ci)y
〉

+ λ2i
∥
∥(Bi + Ci)x − (Bi + Ci)y

∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2λi

〈

x − y, Bix − Biy
〉 − 2λi

〈

x − y,Cix − Ciy
〉

+ λ2i
∥
∥(Bix − Biy) +

(

Cix − Ciy
)∥
∥
2
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≤ ∥
∥x − y

∥
∥
2 − 2λi

(

−αi

∥
∥Bix − Biy

∥
∥
2 + ri

∥
∥x − y

∥
∥
2
)

− 2λi
(

−αi

∥
∥Cix − Ciy

∥
∥
2 + ri

∥
∥x − y

∥
∥
2
)

+ λ2i
(∥
∥Bix − Biy

∥
∥ +

∥
∥Cix − Ciy

∥
∥
)2

≤ ∥
∥x − y

∥
∥
2 − 2λi

(

−αiξ
2
i

∥
∥x − y

∥
∥
2 + ri

∥
∥x − y

∥
∥
2
)

− 2λi
(

−αiξ
2
i

∥
∥x − y

∥
∥
2 + ri

∥
∥x − y

∥
∥
2
)

+ λ2i

(

ξi
∥
∥x − y

∥
∥ + ξi

∥
∥x − y

∥
∥

)2

=
(

1 +
(

λ2i ξi
(

ξi + ξi

)

+ 2λiαiξ
2
i − 2λiri

)

+
(

λ2i ξi

(

ξi + ξi

)

+ 2λiαiξ
2
i − 2λiri

))
∥
∥x − y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
,

(2.7)

which implies that I − λi(Bi + Ci) is a nonexpansive. Since, A is a linear bounded self-adjoint
operator, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ E, ‖x‖ = 1}. (2.8)

Observe that

〈((

1 − βn
)

I − αnA
)

x, x
〉

=
(

1 − βn
)〈x, x〉 − αn〈Ax, x〉

≥ (

1 − βn
) − αn‖A‖

≥ 0.

(2.9)

Therefore, we obtain (1 − βn)I − αnA is positive. Thus, by the strong positively of A, we get

∥
∥
(

1 − βn
)

I − αnA
∥
∥ = sup

{〈((

1 − βn
)

I − αnA
)

x, x
〉

: x ∈ E, ‖x‖ = 1
}

= sup
{(

1 − βn
)〈x, x〉 − αn〈Ax, x〉 : x ∈ E, ‖x‖ = 1

}

≤ 1 − βn − αnδ.

(2.10)

Pick x∗ ∈ Ω. Then, we have

x∗ = Dx∗ = JM1,λ1((I − λ1(B1 + C1))JM2,λ2(I − λ2(B2 + C2))x∗). (2.11)
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And, let y∗ = JM2,λ2(x
∗ − λ2(B2 + C2)x∗). Therefore, from (2.11), we have

x∗ = JM1,λ1

(

y∗ − λ1(B1 + C1)y∗). (2.12)

By the nonexpansivity of JMi,λi and I − λi(Bi + Ci), we have

∥
∥zn − y∗∥∥ = ‖JM2,λ2(xn − λ2(B2 + C2)xn) − JM2,λ2(x

∗ − λ2(B2 + C2)x∗)‖
≤ ‖(xn − λ2(B2 + C2)xn) − (x∗ − λ2(B2 + C2)x∗)‖
≤ ‖xn − x∗‖.

(2.13)

And, we have

∥
∥yn − x∗∥∥ =

∥
∥JM1,λ1(zn − λ1(B1 + C1)zn) − JM1,λ1

(

y∗ − λ1(B1 + C1)y∗)∥∥

≤ ∥
∥(zn − λ1(B1 + C1)zn) −

(

y∗ − λ1(B1 + C1)y∗)∥∥

≤ ∥
∥zn − y∗∥∥.

(2.14)

Therefore, by (2.13) and (2.14), we have

∥
∥yn − x∗∥∥ ≤ ∥

∥zn − y∗∥∥ ≤ ‖xn − x∗‖. (2.15)

Let tn = γnWnxn + (1− γn)yn. Since Snx = δnx+ (1−δn)Tnx, where δn ∈ [kn, 1) and {Tn}
be a family of kn-strict pseudocontraction. By Lemma 1.11, we have Sn is a nonexpansive and
F(Sn) = F(Tn). Therefore, by Lemma 1.5(1), we get F(Wn) =

⋂∞
i=1 F(Si) =

⋂∞
i=1 F(Ti), which

implies that Wnx
∗ = x∗. It follows by (2.15) and the nonexpansivity of Wn that

‖tn − x∗‖ =
∥
∥γnWnxn +

(

1 − γn
)

yn − x∗∥∥

=
∥
∥γn(Wnxn − x∗) +

(

1 − γn
)(

yn − x∗)∥∥

≤ γn‖xn − x∗‖ + (

1 − γn
)∥
∥yn − x∗∥∥

≤ ‖xn − x∗‖.

(2.16)
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From (2.16), by the contraction of f and the nonexpansivity of Wn, we have

‖xn+1 − x∗‖ =
∥
∥αnγf(Wnxn) + βnxn +

((

1 − βn
)

I − αnA
)

tn − x∗∥∥

=
∥
∥αn

(

γf(Wnxn) −Ax∗) + βn(xn − x∗) +
((

1 − βn
)

I − αnA
)

(tn − x∗)
∥
∥

≤ αn

∥
∥γf(Wnxn) −Ax∗∥∥ + βn‖xn − x∗‖ + ∥

∥
(

1 − βn
)

I − αnA
∥
∥‖tn − x∗‖

≤ αnγ
∥
∥f(Wnxn) − f(x∗)

∥
∥ + αn

∥
∥γf(x∗) −Ax∗∥∥ + βn‖xn − x∗‖

+
(

1 − βn − αnδ
)

‖xn − x∗‖

≤ αnγδ‖Wnxn − x∗‖ + αn

∥
∥γf(x∗) −Ax∗∥∥ +

(

1 − αnδ
)

‖xn − x∗‖

≤
(

1 −
(

δ − γδ
)

αn

)

‖xn − x∗‖ + αn

∥
∥γf(x∗) −Ax∗∥∥

≤ max

{

‖xn − x∗‖,
∥
∥γf(x∗) −Ax∗∥∥

δ − γδ

}

.

(2.17)

It follows from induction that

‖xn+1 − x∗‖ ≤ max

{

‖x1 − x∗‖,
∥
∥γf(x∗) −Ax∗∥∥

δ − γδ

}

, (2.18)

for all n ∈ N. Hence, {xn} is bounded, and so are {yn}, {zn}, {tn}, {Wnxn}, {f(Wnxn)} and
{Atn}.

Next, we prove that ‖vn −xn‖ → 0, ‖xn+1 −xn‖ → 0 and ‖tn −xn‖ → 0 as n → ∞. By
the nonexpansivity of JMi,λi and I − λi(Bi + Ci), we have

∥
∥yn+1 − yn

∥
∥ = ‖JM1,λ1(zn+1 − λ1(B1 + C1)zn+1) − JM1,λ1(zn − λ1(B1 + C1)zn)‖
≤ ‖(zn+1 − λ1(B1 + C1)zn+1) − (zn − λ1(B1 + C1)zn)‖
≤ ‖zn+1 − zn‖.

(2.19)

Similarly, we have

‖zn+1 − zn‖ ≤ ‖xn+1 − xn‖. (2.20)

Therefore, from (2.19) and (2.20), we have

‖yn+1 − yn‖ ≤ ‖zn+1 − zn‖ ≤ ‖xn+1 − xn‖. (2.21)
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By the nonexpansivity of Si and Un,i, we have

‖Wn+1xn −Wnxn‖ = ‖Un+1,1xn −Un,1xn‖
=
∥
∥μ1S1Un+1,2xn +

(

1 − μ1
)

xn −
(

μ1S1Un,2xn +
(

1 − μ1
)

xn

)∥
∥

≤ μ1‖Un+1,2xn −Un,2xn‖
= μ1

∥
∥μ2S2Un+1,3xn +

(

1 − μ2
)

xn −
(

μ2S2Un,3xn +
(

1 − μ2
)

xn

)∥
∥

≤ μ1μ2‖Un+1,3xn −Un,3xn‖
...

≤
(

n∏

i=1

μi

)

‖Un+1,n+1xn −Un,n+1xn‖

≤ M
n∏

i=1

μi,

(2.22)

for some constant M such that M ≥ ‖Un+1,n+1xn − Un,n+1xn‖ ≥ 0. Therefore, from (2.22), by
the nonexpansivity of Wn+1, we have

‖Wn+1xn+1 −Wnxn‖ ≤ ‖Wn+1xn+1 −Wn+1xn‖ + ‖Wn+1xn −Wnxn‖

≤ ‖xn+1 − xn‖ +M
n∏

i=1

μi.
(2.23)

Since

tn+1 − tn = γn+1Wn+1xn+1 +
(

1 − γn+1
)

yn+1 −
(

γnWnxn +
(

1 − γn
)

yn

)

= γn+1(Wn+1xn+1 −Wnxn) +
(

γn+1 − γn
)(

Wnxn − yn

)

+
(

1 − γn+1
)(

yn+1 − yn

)

,

(2.24)

combining (2.21), (2.23), and (2.24), we have

‖tn+1 − tn‖ ≤ γn+1‖Wn+1xn+1 −Wnxn‖ +
∣
∣γn+1 − γn

∣
∣
∥
∥Wnxn − yn

∥
∥ +

(

1 − γn+1
)∥
∥yn+1 − yn

∥
∥

≤ γn+1

(

‖xn+1 − xn‖ +M
n∏

i=1

μi

)

+
∣
∣γn+1 − γn

∣
∣
∥
∥Wnxn − yn

∥
∥ +

(

1 − γn+1
)∥
∥yn+1 − yn

∥
∥

≤ M
n∏

i=1

μi +
∣
∣γn+1 − γn

∣
∣
∥
∥Wnxn − yn

∥
∥ + ‖xn+1 − xn‖.

(2.25)
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Let vn = (xn+1 − βnxn)/(1 − βn). Then we have

xn+1 =
(

1 − βn
)

vn + βnxn. (2.26)

Since

vn+1 − vn =
αn+1γf(Wn+1xn+1) +

((

1 − βn+1
)

I − αn+1A
)

tn+1

1 − βn+1

− αnγf(Wnxn) +
((

1 − βn
)

I − αnA
)

tn

1 − βn

=
αn+1

1 − βn+1

(

γf(Wn+1xn+1) −Atn+1
) − αn

1 − βn

(

γf(Wnxn) −Atn
)

+ (tn+1 − tn),

(2.27)

combining (2.25) and (2.27), we have

‖vn+1 − vn‖ ≤ αn+1

1 − βn+1

∥
∥γf(Wn+1xn+1) −Atn+1

∥
∥ +

αn

1 − βn

∥
∥γf(Wnxn) −Atn

∥
∥ + ‖tn+1 − tn‖

≤ αn+1

1 − βn+1

∥
∥γf(Wn+1xn+1) −Atn+1

∥
∥ +

αn

1 − βn

∥
∥γf(Wnxn) −Atn

∥
∥

+M
n∏

i=1

μi +
∣
∣γn+1 − γn

∣
∣
∥
∥Wnxn − yn

∥
∥ + ‖xn+1 − xn‖.

(2.28)

Therefore, by (C1), (C2) and limn→∞
∏n

i=1μi = 0, we get

lim sup
n→∞

(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0. (2.29)

From (2.26) and (2.29), by (C2) and Lemma 1.3, we obtain

‖vn − xn‖ −→ 0 as n −→ ∞. (2.30)

From (2.26), by (2.30), we obtain

‖xn+1 − xn‖ =
(

1 − βn
)‖vn − xn‖ −→ 0 as n −→ ∞. (2.31)

Since

xn+1 − xn = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)

tn − xn

= αn

(

γf(Wnxn) −Atn
)

+
(

1 − βn
)

(tn − xn),
(2.32)
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therefore,

(

1 − βn
)‖tn − xn‖ ≤ αn

∥
∥γf(Wnxn) −Atn

∥
∥ + ‖xn+1 − xn‖. (2.33)

From (2.31), by (C1) and (C2), we obtain

‖tn − xn‖ −→ 0 as n −→ ∞. (2.34)

For all x, y ∈ H, by Lemma 1.2(2), the nonexpansivity of PΩ and the contraction of f ,
we have

∥
∥PΩ

(

I −A + γf
)

x − PΩ
(

I −A + γf
)

y
∥
∥ ≤ ∥

∥
(

I −A + γf
)

x − (

I −A + γf
)

y
∥
∥

≤ γ
∥
∥f(x) − f

(

y
)∥
∥ + ‖I −A‖∥∥x − y

∥
∥

≤ γδ
∥
∥x − y

∥
∥ +

(

1 − δ
)∥
∥x − y

∥
∥

=
(

1 −
(

δ − γδ
))∥

∥x − y
∥
∥.

(2.35)

Therefore, PΩ(I −A + γf) is a contraction with coefficient 1 − (δ − γδ), by Banach contraction
principle guarantees that PΩ(I − A + γf) has a unique fixed point, say w ∈ H, that is, w =
PΩ(I −A + γf)w.

Next, we claim that

lim sup
n→∞

〈

γf(w) −Aw,xn −w
〉 ≤ 0. (2.36)

To show this inequality, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈

γf(w) −Aw,xn −w
〉

= lim
i→∞

〈

γf(w) −Aw,xni −w
〉

. (2.37)

Since, {xni} is bounded, there exists a subsequence {xnij
} of {xni}which converges weakly to

w. Without loss of generality, we can assume that xni ⇀ w as i → ∞.
Next, we prove thatw ∈ Ω. Define sequence of mappings {Rn : H → H} andmapping

R : H → H by

Rnx = γnWnx +
(

1 − γn
)

Dx, ∀n ∈ N,

Rx = lim
n→∞

Rnx.
(2.38)

Thus, by Lemma 1.5(3) and (C3), we have

Rx = aWx + (1 − a)Dx, (2.39)
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where 0 < a = limn→∞γn < 1. Since, W and D are nonexpansive and by Lemma 1.5(3),
F(W) =

⋂∞
i=1 F(Si). Therefore, by Lemma 1.9, we get R is a nonexpansive and F(R) = F(W)∩

F(D) =
⋂∞

i=1 F(Si) ∩ F(D). Since, Snx = δnx + (1 − δn)Tnx, where δn ∈ [kn, 1). Thus, by
Lemma 1.11, we obtain

F(R) =
∞⋂

i=1

F(Si) ∩ F(D) =
∞⋂

i=1

F(Ti) ∩ F(D) = Ω. (2.40)

From (2.34), we have ‖tni −xni‖ → 0 as i → ∞. Thus, from (2.38), we get ‖Rxni −xni‖ → 0 as
i → ∞. It follows from xni ⇀ w and by Lemma 1.10 that w ∈ F(R), that is w ∈ Ω. Therefore,
from (2.37), we obtain

lim sup
n→∞

〈

γf(w) −Aw,xn −w
〉

= lim
i→∞

〈

γf(w) −Aw,xni −w
〉

=
〈(

γf −A
)

w,w −w
〉 ≤ 0.

(2.41)

Next, we prove that xn → w as n → ∞. Since w ∈ Ω, we have Wnw = w, and the
same as in (2.16), we have

‖tn −w‖ ≤ ‖xn −w‖. (2.42)

It follows by the contraction of f and the nonexpansivity of Wn that

‖xn+1 −w‖2 = ∥
∥αnγf(Wnxn) + βnxn +

((

1 − βn
)

I − αnA
)

tn −w
∥
∥
2

=
∥
∥
((

1 − βn
)

I − αnA
)

(tn −w) + βn(xn −w) + αn

(

γf(Wnxn) −Aw
)∥
∥

=
∥
∥
((

1 − βn
)

I − αnA
)

(tn −w) + βn(xn −w)
∥
∥
2 + α2

n

∥
∥γf(Wnxn) −Aw

∥
∥
2

+ 2αnβn
〈

xn −w, γf(Wnxn) −Aw
〉

+ 2αn

〈((

1 − βn
)

I − αnA
)

(tn −w), γf(Wnxn) −Aw
〉

≤
((

1 − βn − αnδ
)

‖tn −w‖ + βn‖xn −w‖
)2

+ α2
n

∥
∥γf(Wnxn) −Aw

∥
∥
2

+ 2αnβnγ
〈

xn −w, f(Wnxn) − f(w)
〉

+ 2αnβn
〈

xn −w, γf(w) −Aw
〉

+ 2αn

(

1 − βn
)

γ
〈

tn −w, f(Wnxn) − f(w)
〉

+ 2αn

(

1 − βn
)〈

tn −w, γf(w) −Aw
〉

− 2α2
n

〈

A(tn −w), γf(Wnxn) −Aw
〉
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≤
(

1 − αnδ
)2
‖xn −w‖2 + 2αnβnγ‖xn −w‖∥∥f(Wnxn) − f(w)

∥
∥

+ 2αn

(

1 − βn
)

γ‖tn −w‖∥∥f(Wnxn) − f(w)
∥
∥ + θn

≤
(

1 − αnδ
)2
‖xn −w‖2 + 2αnβnγδ‖xn −w‖2 + 2αn

(

1 − βn
)

γδ‖xn −w‖2 + θn

=
(

1 − αnδ
)2
‖xn −w‖2 + 2αnγδ‖xn −w‖2 + θn

=
(

1 − 2
(

δ − γδ
)

αn

)

‖xn −w‖2 + α2
nδ

2‖xn −w‖2 + θn

≤ (

1 − ηn
)‖xn −w‖2 + δ′

n,

(2.43)

where ηn := (δ − γδ)αn ∈ (0, 1), δ′
n := α2

nδ
2‖xn −w‖2 + θn and

θn := α2
n

∥
∥γf(Wnxn) −Aw

∥
∥
2 + 2αnβn

〈

xn −w, γf(w) −Aw
〉

+ 2αn

(

1 − βn
)〈

tn −w, γf(w) −Aw
〉 − 2α2

n

〈

A(tn −w), γf(Wnxn) −Aw
〉

.
(2.44)

By (2.34), (2.41), (C1) and (C3), we can found that
∑∞

n=1 ηn = ∞ and lim supn→∞(δ
′
n/ηn) ≤ 0.

By Lemma 1.4, we obtain {xn} converges strongly to w. This proof is completed.

Remarks 2.2. Theorem 2.1 improve and extend to the main results of Li and Wu [12] for
solving the generalized system of relaxed cocoercive quasivariational inclusions and fixed
points problems of an infinite family of strictly pseudocontractive mappings.

3. Applications

Theorem 3.1. Let H be a real Hilbert space, M : H → 2H be a maximal monotone mapping,
B : H → H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively, C :
H → H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively. Let A :
H → H be a strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1]
such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let
{Tn : H → H} be a family of kn-strictly pseudocontractive mappings with a fixed point such that
kn ∈ [0, 1) for all n ∈ N. Define Snx = δnx + (1 − δn)Tnx, where δn ∈ [kn, 1), for all n ∈ N, and
let Wn : H → H be a W-mapping generated by {Sn} and {μn} such that {μn} ⊂ (0, μ], for some
μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ where D : H → H defined

by Dx = JM,λ1((I − λ1(B + C))JM,λ2(I − λ2(B + C))x). For x1 ∈ H, suppose that {xn} be generated
iteratively by

zn = JM,λ2(xn − λ2(B + C)xn),

yn = JM,λ1(zn − λ1(B + C)zn),

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(3.1)
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for all n ∈ N, where {αn},{βn},{γn} ⊂ (0, 1), λi ∈ (0, ε], ε = min{2(r − αξ2)/ξ(ξ + ξ), 2(r −
αξ

2
)/ξ(ξ + ξ)}, r > αξ2, r > αξ

2
, for each i = 1, 2, satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.

Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (3.2)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (3.3)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM,λ2(I −λ2(B+C))w)
is a solution of problem (1.19).

Proof. It is concluded obviously, from Theorem 2.1 by putting M1 = M2 = M, B1 = B2 = B
and C1 = C2 = C.

Theorem 3.2. Let H be a real Hilbert space, M : H → 2H be a maximal monotone mapping, B :
H → H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively, C : H →
H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively. Let A : H → H

be a strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1] such that
‖A‖ ≤ 1 and f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let {Tn : H → H}
be a family of nonexpansive mappings. Define Snx = δnx + (1 − δn)Tnx, where δn ∈ [0, 1), for all
n ∈ N, and let Wn : H → H be a W-mapping generated by {Sn} and {μn} such that {μn} ⊂ (0, μ],
for some μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ where D : H → H

defined by Dx = JM,λ1((I − λ1(B + C))JM,λ2(I − λ2(B + C))x). For x1 ∈ H, suppose that {xn} be
generated iteratively by

zn = JM,λ2(xn − λ2(B + C)xn),

yn = JM,λ1(zn − λ1(B + C)zn),

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(3.4)

for all n ∈ N, where {αn}, {βn}, {γn} ⊂ (0, 1), λi ∈ (0, ε], ε = min{2(r − αξ2)/ξ(ξ + ξ), 2(r −
αξ

2
)/ξ(ξ + ξ)}, r > αξ2, r > αξ

2
, for each i = 1, 2, satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.
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Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (3.5)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (3.6)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM,λ2(I −λ2(B+C))w)
is a solution of problem (1.19).

Proof. It is concluded obviously, from Theorem 3.1 by putting kn = 0 for all n ∈ N.

Theorem 3.3. Let H be a real Hilbert space, Mi : H → 2H be a maximal monotone mapping,
Bi : H → H be a relaxed (αi, ri)-cocoercive and ξi-Lipschitz continuous mappings, respectively, for
each i = 1, 2. Let A : H → H be a strongly positive linear bounded self-adjoint operator mapping
with coefficient δ ∈ (0, 1] such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping with
coefficient δ ∈ (0, 1). Let {Tn : H → H} be a family of kn-strictly pseudocontractive mappings
with a fixed point such that kn ∈ [0, 1) for all n ∈ N. Define Snx = δnx + (1 − δn)Tnx, where
δn ∈ [kn, 1), for all n ∈ N, and letWn : H → H be aW-mapping generated by {Sn} and {μn} such
that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ

where D : H → H defined by Dx = JM1,λ1((I − ρ1B1)JM2,λ2(I − ρ2B2)x) such that λi = ρi/2 for
each i = 1, 2. For x1 ∈ H, suppose that {xn} be generated iteratively by

zn = JM2,λ2

(

xn − ρ2B2xn

)

,

yn = JM1,λ1

(

zn − ρ1B1zn
)

,

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(3.7)

for all n ∈ N, where {αn},{βn},{γn} ⊂ (0, 1), ρi ∈ (0, 2(ri − αiξ
2
i )/ξ

2
i ], ri > αiξ

2
i , for each i = 1, 2,

satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.

Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (3.8)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (3.9)
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where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM2,λ2(I − ρ2B2)w) is
a solution of problem

0 ∈ x∗ − y∗ + λ1
(

2B1y
∗ +M1x

∗),

0 ∈ y∗ − x∗ + λ2
(

2B2x
∗ +M2y

∗).
(3.10)

Proof. It is concluded obviously, from Theorem 2.1 by putting Bi = Ci for each i = 1, 2.

Theorem 3.4. Let H be a real Hilbert space, M : H → 2H be a maximal monotone mapping,
B : H → H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively. Let
A : H → H be a strongly positive linear bounded self-adjoint operator mapping with coefficient
δ ∈ (0, 1] such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping with coefficient δ ∈ (0, 1).
Let {Tn : H → H} be a family of kn-strictly pseudocontractive mappings with a fixed point such that
kn ∈ [0, 1) for all n ∈ N. Define Snx = δnx + (1 − δn)Tnx, where δn ∈ [kn, 1), for all n ∈ N, and
let Wn : H → H be a W-mapping generated by {Sn} and {μn} such that {μn} ⊂ (0, μ], for some
μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ where D : H → H defined

byDx = JM,λ1((I − ρ1B)JM,λ2(I − ρ2B)x) such that λi = ρi/2 for each i = 1, 2. For x1 ∈ H, suppose
that {xn} be generated iteratively by

zn = JM,λ2

(

xn − ρ2Bxn

)

,

yn = JM,λ1

(

zn − ρ1Bzn
)

,

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(3.11)

for all n ∈ N, where {αn},{βn},{γn} ⊂ (0, 1), ρi ∈ (0, 2(r − αξ2)/ξ2], r > αξ2, for each i = 1, 2,
satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.

Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (3.12)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (3.13)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM,λ2(I − ρ2B)w) is a
solution of problem

0 ∈ x∗ − y∗ + λ1
(

2By∗ +Mx∗),

0 ∈ y∗ − x∗ + λ2
(

2Bx∗ +My∗).
(3.14)
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Proof. It is concluded obviously, from Theorem 3.3 by putting B1 = B2 = B and M1 = M2

= M.

Theorem 3.5. Let H be a real Hilbert space, M : H → 2H be a maximal monotone mapping,
B : H → H be a relaxed (α, r)-cocoercive and ξ-Lipschitz continuous mappings, respectively. Let
A : H → H be a strongly positive linear bounded self-adjoint operator mapping with coefficient
δ ∈ (0, 1] such that ‖A‖ ≤ 1 and f : H → H be a contraction mapping with coefficient δ ∈ (0, 1).
Let {Tn : H → H} be a family of nonexpansive mappings. Define Snx = δnx + (1 − δn)Tnx, where
δn ∈ [0, 1), for all n ∈ N, and let Wn : H → H be a W-mapping generated by {Sn} and {μn} such
that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that Ω :=

⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ and 0 < γ < δ/δ

where D : H → H defined by Dx = JM,λ1((I − ρ1B)JM,λ2(I − ρ2B)x) such that λi = ρi/2 for each
i = 1, 2. For x1 ∈ H, suppose that {xn} be generated iteratively by

zn = JM,λ2

(

xn − ρ2Bxn

)

,

yn = JM,λ1

(

zn − ρ1Bzn
)

,

xn+1 = αnγf(Wnxn) + βnxn +
((

1 − βn
)

I − αnA
)(

γnWnxn +
(

1 − γn
)

yn

)

,

(3.15)

for all n ∈ N, where {αn},{βn},{γn} ⊂ (0, 1), ρi ∈ (0, 2(r − αξ2)/ξ2], r > αξ2, for each i = 1, 2,
satisfying the following conditions:

(C1) limn→∞αn = limn→∞|γn+1 − γn| = 0;

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C3)
∑∞

n=1 αn = ∞ and 0 < limn→∞γn < 1.

Then the sequence {xn} converges strongly tow ∈ Ωwherew = PΩ(I−A+γf)w is a unique solution
of the variational inequality

〈(

A − γf
)

w,y −w
〉 ≥ 0, ∀y ∈ Ω, (3.16)

which is the optimality condition for the minimization problem

min
x∈Ω

{
1
2
〈Ax, x〉 − h(x)

}

, (3.17)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H) and (w, JM,λ2(I − ρ2B)w) is a
solution of problem

0 ∈ x∗ − y∗ + λ1
(

2By∗ +Mx∗),

0 ∈ y∗ − x∗ + λ2
(

2Bx∗ +My∗).
(3.18)

Proof. It is concluded obviously, from Theorem 3.4 by putting kn = 0 for all n ∈ N.
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