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We introduce an iterative scheme by the viscosity approximation to find the set of solutions of the
generalized system of relaxed cocoercive quasivariational inclusions and the set of common fixed
points of an infinite family of strictly pseudocontractive mappings problems in Hilbert spaces.
We suggest and analyze an iterative scheme under some appropriate conditions imposed on the
parameters; we prove that another strong convergence theorem for the above two sets is obtained.
The results presented in this paper improve and extend the main results of Li and Wu (2010) and
many others.

1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product and norm being denoted by (:,-) and || - ||,
respectively, and let C be a nonempty closed convex subset of H. Recall that Pc is the metric
projection of H onto C; that is, for each x € H there exists the unique point in Pcx € C such
that

e ~ Pex] = min]|x - y. (1.1)

A mapping T : C — C is called nonexpansive if

|Tx-Ty|| <|lx-y|, vYxyeC (12)
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and the mapping f : C — C is called a contraction if there exists a constant « € (0,1) such
that

IfC)=fW)ll <allx-yl, VYxyeC. (1.3)

A point x € C is a fixed point of T provided Tx = x. We denote by F(T) the set of fixed points
of T; that is, F(T) = {x € C : Tx = x}. If C ¢ H is bounded, closed and convex and T
is a nonexpansive mappings of C into itself, then F(T) is nonempty (see [1]). Recall that a
mapping A : C — H is said to be

(i) monotone if

(Ax-Ay,x-y)>0, Vx,yeC, (1.4)

(ii) k-Lipschitz continuous if there exists a constant k > 0 such that

||[Ax - Ay|| <k||x-vy]|, VYxyeC (1.5)

if k = 1, then A is a nonexpansive,

(iii) pseudocontractive if

|Ax - Ay|* < ||lx - y||> + ||(I - A)x - (I - A)y|]’, Vx,yeC (1.6)

(iv) k-strictly pseudocontractive if there exists a constant k € [0, 1) such that

JAx - Ayl < flx -yl + Kl - A - (1~ AP, ¥,y eC, 17)

it is obvious that A is a nonexpansive if and only if A is a 0-strictly pseudocontrac-
tive,

(v) a-strongly monotone if there exists a constant & > 0 such that

(Ax - Ay, x-y) > a||x-y|>, Vx,yeC (1.8)

(vi) a-inverse-strongly monotone (or a-cocoercive) if there exists a constant & > 0 such that
(Ax - Ay, x - y) Z[x”Ax—Ay”Z, Vx,y €C, (1.9)

if @ = 1, then A is called that firmly nonexpansive; it is obvious that any a-inverse-
strongly monotone mapping A is monotone and (1/a)-Lipschitz continuous,

(vii) relaxed a-cocoercive if there exists a constant a > 0 such that

(Ax - Ay, x - y) > (-a)||Ax - Ay 2 Vx,y €C, (1.10)
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(viii) relaxed (a, r)-cocoercive if there exists two constants &, 7 > 0 such that

(Ax - Ay, x-y) > (-a)||Ax - Ay”2 +r|x-vy 2 Vx,y €C, (1.11)

it is obvious that any the r-strongly monotonicity implies to the relaxed (a,r)-
cocoercivity.

Recall that a set-valued mapping M : H — 2H is called monotone if for all x,y €
H,f € Mx and g € My imply (x -y, f - g) > 0. A monotone mapping M : H — 2H
is maximal if the graph of G(M) of M is not properly contained in the graph of any other
monotone mappings.

The existence common fixed points for a finite family of nonexpansive mappings has
been considered by many authers (see [2-5] and the references therein).

In this paper, we study the mapping W, defined by

un,n+1 = I/

un,n = ﬂnsnun,nﬂ + (1 - ﬂn)I/
Upn1 = Spalpy + (1 - ﬂn—l)L

Uk = Sk + (1 - px) I, (1.12)

Uy -1 = p-1 Skt + (1= )1,

Uyp = poSollys + (1 - o)1,
Wy =Upy = i Silyp + (1-m)I,

where {p;} is nonnegative real sequence in (0,1), for alli € N, S1,55,... form a family of
infinitely nonexpansive mappings of C into itself. It is obvious that W, is nonexpansive
from C into itself, such a mapping W, is called a W-mapping generated by S1,S,,...,S,
and p1, {o, ..., Pn-

A typical problem is to minimize a quadratic function over the set of fixed points of a
nonexpansive mapping in a real Hilbert space H:

n';ig{%(Ax,x) - (x,b)}, (1.13)

where A is a bounded linear operator on H, C is the fixed point set of a nonexpansive
mapping S on H and b is a given point in H. Recall that A be a strongly positive bounded
linear operator on H if there exists a constant ¥ > 0 such that

(Ax,x) >¥||lx|>, VYxeH. (1.14)
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Marino and Xu [6] introduced the following general iterative scheme based on the
viscosity approximation method introduced by Moudafi [7]:

Xn1 = oY f(xn) + (I — 2, A)Sx,, VneN, (1.15)

where A is a strongly positive bounded linear operator on H, f is a contraction on H and S
is a nonexpansive on H. They proved that under those conditions are corrected, if F(S) #0,
then the sequence {x,} generated by (1.15) converges strongly to the unique solution z of the
variational inequality

((A-yf)z,x-z) >0, VxeF(S), (1.16)

which is the optimality condition for the minimization problem

xrér;i(r;){%(Ax,x} —h(x)}, (1.17)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).
The so-called the system of generalized quasivariational inclusions problem is to find
(x*,y*) € H x H such that

0ex* - y* + )L]((B] + Cl)y* + M1x*),
(1.18)
0e y* —-x* 4+ )Lz((Bz + Cz)x* + sz*),

where B;,C; : H — H, M; : H — 2! are nonlinear mappings and A; > 0 for eachi =1,2. As
special cases of problem (1.18), we have the following.
(1) If By =By, =B, Cy = C; = Cand M; = M, = M, then problem (1.18) is reduced to

find (x*, y*) € H x H such that

Oex* -y +L((B+C)y* + Mx*),
(1.19)
0ey' —x"+L((B+C)x*+ My*).

(2) If Cy = C; =0, then problem (1.18) is reduced to find (x*, y*) € H x H such that

0ex* - y* + M (Bly* + Mlx*),
(1.20)
0€y" —x*+ A (Box* + Moy*),

which called that the system of quasivariational inclusions problem.
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(3) If By = B, = Band M; = M, = M, then problem (1.20) is reduced to find (x*, y*) €
H x H such that

0ex* -y + A (By" + Mx"),

(1.21)
0€y" —x*+ 1 (Bx* + My").
(4) If x* = y*, then problem (1.21) is reduced to find x* € H such that
y p
0 € Bx* + Mx". (1.22)

We denote by VI(H, B, M) the set of solutions of variational inclusion of the
problem (1.22).

G)If M =0 : H — 2H where § : H — R U {+o0} is a proper convex lower
semicontinuous function and 0¢ is the subdifferential of ¢, then problem (1.22) is
equivalent to find x* € H such that

(Bx*,v-x")+¢(v) - p(x*) >0, VYveH, (1.23)

which is said to be the mixed quasivariational inequality (see, e.g., [8, 9] for more
details).

(6) If ¢ is the indicator function of C, then problem (1.23) is equivalent to the classical
variational inequality problem, denoted by VI(C, B), to find x* € C such that

(Bx*,v-x*)>0, YveC. (1.24)

liduka and Takahashi [10] introduced iterative scheme for finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality (1.24) as the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let B be an a-inverse-
strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) N VI(C, B) #@. Suppose that x1 = x € C and {x,} is the sequence defined by

Xps1 = ApX + (1 — a,)SPc(x, — AyBxy,), Vn €N, (1.25)

where {a,} C [0,1) and {1, } C [a,b] for some a,b € (0, 2a) satisfying the following conditions:
(C1) limy,—, o, = 0and X074 oy = 00;
(CZ) Z:lozl |an+l - (Xn| < oo and Zlil..;l |-)Ln+1 - )Ln| < o0.

Then {x,} converges strongly to Pr(synvi(c,B)X.

Definition 1.1 (see [11]). Let M : H — 2H be a multivalued maximal monotone mapping.
Then the single-valued mapping Jay : H — H defined by Jaa (1) = (I + AM) (), for all
u € H, is called the resolvent operator associated with M, where A is any positive number
and [ is the identity mapping.
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Recently, Zhang et al. [11] considered the problem (1.22). To be more precise, they
proved the following theorem.

Theorem ZLC. Let H be a real Hilbert space, B : H — H be an a-inverse-strongly monotone
mapping, M : H — 2H be a maximal monotone mapping, and S : H — H be a nonexpansive
mapping. Suppose that the set F(S) N VI(H, B, M) #0, where VI(H, B, M) is the set of solutions of
variational inclusion (1.22). Suppose that x1 = x € H and {x,} is the sequence defined by

Yn = ]M,A(xn - )Lan)/
(1.26)
Xn+1 = X + (1 — ) Sy,

foralln € N, where A € (0,2a) and {a,} C [0,1] satisfying the following conditions:
(C1) limy,—, oty = 0and 3774 ay = o0;

(C2) > |ane1 — | < oo.

Then {x,} converges strongly to Pr(synvi(H,B,m)X.

Very recently, Li and Wu [12] introduced an iterative scheme:

Yn = Jma(xn — ABxy,),

(1.27)
Xns1 = AnY f () + Py + (1= )] = anA) (uSkxn + (1= w) yn),

for all n € N, where x; € H, A is a strongly positive bounded linear operator on H, f is a
contraction on H and Sk is a mapping on H defined by Skx = kx + (1 - k)Sx such that S
is a k-strictly pseudocontractive mapping on H with a fixed point. They proved that under
missing condition of y, it should be 0 < p < 1 by those Lemma 1.6, others are corrected, if
Q = F(S)NVI(H, B, M) #0, then the sequence {x,} generated by (1.27) converges strongly to
z = Po(I — A+ yf)z of the variational inequality

((A-yf)z,x-2z)>0, YxeQ, (1.28)

which is the optimality condition for the minimization problem:
inf 5 (A%, %)~ h(x) (129
min, 5 (Ax, x x)t, :

where h is a potential function for yf.

Inspired and motivated by the works mentioned above, in this paper, we introduce an
iterative scheme (2.2) below by the viscosity approximation to find the set of solutions of the
generalized system of relaxed cocoercive quasivariational inclusions and the set of common
fixed points of an infinite family of strictly pseudocontractive mappings problems in Hilbert
spaces. We suggest and analyze an iterative scheme under some appropriate conditions
imposed on the parameters, we prove that another strong convergence theorem for the above
two sets is obtained. The results presented in this paper improve and extend the main results
of Li and Wu [12] and many others.
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We collect the following lemmas which be used in the proof for the main results in the
next section.

Lemma 1.2 (see [6]). Let H be a Hilbert space, C be a nonempty closed convex subset of H, f :
H — H be a contraction with coefficient 0 < a < 1, and A be a strongly positive linear bounded
operator with coefficient y > 0. Then,

W) if0<y <y/a then{(x -y, (A=yf)x—(A-yfly) > F-ya)llx -yl*>, x,y € H;
(2) if0 < p < Al then I - pA]| < 1 pF.

Lemma 1.3 (see [13]). Let {x,} and {z,} be bounded sequences in a Banach space E and {f,} be a
sequence in [0, 1] which satisfies the following condition:

0< liyfrlior;fﬁn < liflnés:jp Pn < 1. (1.30)
Suppose that
Xne1 = (1= Bu)Xn + Puzn, n21 (1.31)
and limsup, _, _ (1zn+1 = Zall = |Xn41 = xul]) < 0. Then limy, —, oo[|z, — x5 || = 0.

Lemma 1.4 (see [14]). Assume {a,} is a sequence of nonnegative real numbers such that

ans1 < (1 - ﬂn)an +6,, n2>1, (132)

where {1, } is a sequence in (0,1) and {6, } is a sequence in R such that

(1) 2521 71n = o0

(2) limsup,, _, (6n/1,) <007 377 64| < co.
Then lim,, _, xa, = 0.
Lemma 1.5 (see [15]). Let C be a nonempty closed convex subset of a Hilbert space H, define
mapping Wy, as (1.12), let S; : C — C be a family of infinitely nonexpansive mappings with
Niz1 E(S;) #0, and let {p;} be a sequence such that 0 < p; < p <1, forall i > 1. Then

(1) W, is nonexpansive and F(W,,) = N2, F(S;) for each n > 1;

(2) for each x € C and for each positive integer k, lim,, _, U, kX exists;

(3) the mapping W : C — C define by

Wx = lim Wyx = lim U, 1x, x€C, (1.33)

n— oo

is a nonexpansive mapping satisfying F(W) = N2, F(S;) and it is called the W-mapping
generated by S1,So,...and py, py, . ...

Lemma 1.6 (see [11]). The resolvent operator Japy associated with M is single-valued and
nonexpansive for all A > 0.
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Lemma 1.7 (see [11]). u € H is a solution of variational inclusion (1.22) if and only if u = Jpg (u—
ABu), for all A > 0, that is,

VI(H,B, M) = F(Jaa(I - AB)), ¥A>0. (1.34)

Lemma 1.8. For any (x*,y*) € H x H, where y* = Jap, 1, (I — A2(By + Cp))x*, we have (x*,y*) is
a solution of problem (1.18) if and only if x* is a fixed point of the mapping D defined by

Dx = Jm, (I = 41 (B1 + C1)) Iy, 0, (I = X2(Bz + C2))x). (1.35)
Proof. Observe from (1.18) that

0ex* - y* + )Ll((Bl + C1)y* + Mlx*),
0e y* -x*+ )Lz((Bz + Cz)x* + sz*)

x* = Javn (L= M(Br+Cr))y", (1.36)
v = (I = A2(Ba + Co))x*

eDx* = ]Mlﬂh((l —)L1(Bl + Cl))]Mz,/\z(I_ )Lz(Bz + Cz))x*) = x*.
]

Lemma 1.9 (see [16]). Let C be a closed convex subset of a strictly convex Banach space E. Let S and
T be two nonexpansive mappings on C. Suppose that F(S) N F(T) is nonempty. Then a mapping R
on C defined by Rx = aSx + (1 — a)Tx, where a € (0,1), for x € C is well defined and nonexpansive
and F(R) = F(S) N F(T) holds.

Lemma 1.10 (see [17]). Let H be a real Hilbert space, let C be a nonempty closed convex subset of
H,andlet S : C — C be a nonexpansive mapping. Then I — S is demiclosed at zero.

Lemma 1.11 (see [18]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C — C bea k-strict pseudocontraction. Define S : C — H by Sx = ax + (1 — a)Tx for each
x € C. Then, as a € [k, 1), S is a nonexpansive such that F(S) = F(T).

2. Main Results

Let H be a real Hilbert space, M; : H — 2! be a maximal monotone mapping, B; : H — H
be a relaxed (a;, r;)-cocoercive and ¢;-Lipschitz continuous mappings, respectively, C; : H —
H be arelaxed (a;, 7;)-cocoercive and ¢,-Lipschitz continuous mappings, respectively, for each
i=1,2.Let A: H — H be a strongly positive linear bounded self-adjoint operator mapping
with coefficient 6 € (0,1] such that ||A]| < 1 and f + H — H be a contraction mapping
with coefficient 6 € (0,1). Let {T,, : H — H} be a family of k,-strictly pseudocontractive
mappings with a fixed point such that k,, € [0,1) for all n € N. Define S,,x = 6,x+ (1-6,)Tyx,
where 6, € [k,, 1), foralln € N, and let W,, : H — H be a W-mapping generated by {S,}
and {pu,} such that {y,,} C (0, ], for some u € (0,1).
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Define sequence of mappings {P, : H — H} and mapping Q : H — H as follows:

Pux = any f(Wax) + Bpx + (1= Pu)I — anA) (yaWax + (1 - 12) Qx),
Qx = Jpmy, (I = A1(Br + C1)) vy 0, (I = A2(Ba + C2))x),

2.1)

for all n € N, where {an}, {Bu}, {ya} C (O, IAIT), &i € (0,€il, & = min{2(ri — aid?)/&i(&: +
), 27 - Wk ) /8 (& + &)}, 11 > aid, i > @, foreach i = 1,2 and 0 < y < 6/6.

Under some appropriate imposed on the parameters {a,} and {f,}, we also know
that [|(1 — B)I — a,All £ 1 -6, - ang, and, we also have that W, Ja, ), and I — Xi(B; + C))
are nonexpansive for each i = 1,2 (see argument in the proof of Theorem 2.1 below). Observe
that Q is a nonexpansive, and so P, is a contraction with coefficient 1 — (5 —y6)ay,. Therefore,
by Banach contraction principle guarantees that P, has a unique fixed point in H.

By the idea above, we obtain an iteration scheme by the viscosity approximation for
solving the generalized system of relaxed cocoercive quasivariational inclusions and fixed
point problems of an infinite family of strictly pseudocontractive mappings as the following
theorem.

Theorem 2.1. Let H be a real Hilbert space, M; : H — 2H be a maximal monotone mapping,
Bi : H — H be a relaxed (a;, r;)-cocoercive and ¢&;-Lipschitz continuous mappings, respectively,
Ci: H — H be a relaxed (a;, 7;)-cocoercive and &,-Lipschitz continuous mappings, respectively, for
eachi=1,2.Let A: H — H bea strongly positive linear bounded self-adjoint operator mapping with
coefficient 6 € (0,1] such that ||Al| < 1and f : H — H be a contraction mapping with coefficient
6 € (0,1). Let {T,, : H — HY} be a family of ky-strictly pseudocontractive mappings with a fixed
point such that k, € [0,1) for all n € N. Define S,,x = 6,x + (1 — 6,)Tyx, where 6, € [ky, 1), for all
neN,and let W, : H — H be a W-mapping generated by {S,} and {p,} such that {p,} C (0, u],
for some p € (0,1). Assume that Q := ;o F(Ty) NF(D)#@and 0 <y < 6/6whereD:H — H
defined by Dx = Jp, 0, (I = M (B1 + C1)) vy, (I = X2(Bz + C2))x). For x1 € H, suppose that {x,}
be generated iteratively by

Zn = My, (Xn = A2(Ba + Co)xy),
Yn = Ian (2o — M (Br + Ci)zy), (2.2)
Xni1 = @Y f(Waxn) + Buxn + (1= )l = anA) (yaWann + (1= Yn)Yn),

for all n € N, where {ay},{Ba} (12} C (0,1), Xi € (0,e], & = min{2(r; - aié?) /(& + &), 2(Fi ~
E,Ef)/;(gi +&)), 1> a;ié?, 7i > Eigf,for each i = 1,2, satisfying the following conditions:

(C1) limy, ., oy, = 1imn—>oo|Yn+1 - Yn| =0;
(C2) 0 < liminf, ., f, <limsup, B, <1;

(C3) Xvqyan =00and 0 < limy, oy, < 1.
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Then the sequence {x,} converges strongly to w € Q where w = Po(I-A+Yy f)w is a unique solution
of the variational inequality

(A-yflw,y-w) >0, YyeQ, (2.3)

which is the optimality condition for the minimization problem
min 1(Ax x) —h(x) (2.4)
ea |27 ’ ‘

where h is a potential function for yf (ie., h'(x) = yf(x) for x € H) and (w, Jp, 1, (I = A2(Bo +
Cy))w) is a solution of problem (1.18).

Proof. From (C1) and (C2), we have a, — 0 and limsup, _, _f, < 1. Thus, we may assume
without loss of generality that a,, < (1 — f3,)||A[|™! for all n € N. For each i = 1,2, since

)
) 2(ri—m; i>
0<MSGSM, O<ti<e < —F7——, (2.5)
gi (ii + éi) &i <§i + §l>
where r; > aigf and 7; > Eigf, we have
_ — — ) _
N8 +8) + 2k - 20 <0, Vg (&+&) + 2@ - 247 <0. (2.6)

For any x,y € H, it follows by the relaxed (a;, r;)-cocoercivity and ¢;-Lipschitz continuity of
B; and the relaxed (a;, 7;)-cocoercivity and ¢;-Lipschitz continuity of C; that

11 = Xi(B: + Ci))x = (I = Xi(B; + C))y|°
=[x = ) = (B + Co)x = (B; + Coyy) |
= [l = y||” = 2Xi(x — y, (B; + Ci)x — (B; + Ci)y) + A2||(Bi + Ci)x — (Bi + Ci)y ||
= |lx = ylI* - 24i(x - y, Bix - Biy) - 2Ai(x — y, Cix ~ Ciy)

+ )LIZH (Bix - Bly) + (Cix — Cl]/) ”2
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< [l = ylI” - 20 (=ail|Bix = Biy |* + rillx = y*) - 20 (-@|| Cix — Coy||* + Fil|x - )
+ 23 (|1Bx = By || + [|Cox ~ Cay])*
< Nl =yl - 20—l + il - I =20, (<78 -yl + Tl - )
+ 2 (5l -yl + Bl -yl)’
= (1 + (e(5+8) + 20 - 20m) + ()@gi (&+8) + 20 - 2@)) [l -y
< llx-vlP,

(2.7)

which implies that I — ;(B; + C;) is a nonexpansive. Since, A is a linear bounded self-adjoint
operator, we have

[All = sup{|[(Ax, x)| : x € E, |lx]| =1}. (2.8)

Observe that

(1= Bu)I = 2y A)x, x) = (1= fu) (x,x) — s ( Ax, x)
> (1-pn) -l Al (2.9)

> 0.

Therefore, we obtain (1 - f,)I — a, A is positive. Thus, by the strong positively of A, we get

(1= Bu)I - anAl| = sup{(((1 = pu)T - auA)x,x) : x € E, |Ix]| = 1}

= sup{(1 - fu)(x,x) - an(Ax,x) : x € E, ||x]| = 1} (2.10)

<1-p6,—a,6.
Pick x* € Q. Then, we have

x* = Dx* = [y 0, (I = M (Br + C1)) vy, (I = A2 (By + Cp))x™). (2.11)
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And, let y* = Jap, 0, (x* = 12(By + C2)x*). Therefore, from (2.11), we have

x* = Jmy o (Y = (B + C)y").

By the nonexpansivity of Ja, 1, and I — ;(B; + C;), we have

lzn = Y|l = 1Tagz, 00 (xn = X2 (B + C2)xn) = Ty 1 (x" = A2 (Bo + Co)x) |
<1(xn = A2(Bz + C2)xn) = (x7 = Aa(B2 + Co)x7) |

<l = 7.

And, we have

ly7n = x*|| = || vy, (20 = M By + C1)z) = Ty 0, (v = A1(Bi + C)y) ||
< || (zn = M (Br + C1)zn) — (¥* = M(B1 + C1)y) ||
<|lzn - y"]-

Therefore, by (2.13) and (2.14), we have

[yn = %1l < llzn =y <l =271

(2.12)

(2.13)

(2.14)

(2.15)

Lett, = yuaWyxn+ (1 —yn)Yn. Since Syx = 6,x + (1 - 6,)Tyx, where 6, € [ky, 1) and {T,,}
be a family of kj,-strict pseudocontraction. By Lemma 1.11, we have S, is a nonexpansive and
F(S,) = F(T,). Therefore, by Lemma 1.5(1), we get F(W,,) = N2, F(Si) = N5y F(Ti), which

implies that W,x* = x*. It follows by (2.15) and the nonexpansivity of W, that

lt, — x*|| = ||Yanxn + (1 - Yn)]/n _ x*”
= lynWaxn = x*) + (1 = yu) (yn — x) ||
< Yalloen = 2+ (1= y) [[ym — x7|

< lxn = x|

(2.16)
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From (2.16), by the contraction of f and the nonexpansivity of W,,, we have

lni1 = x"I| = [lany f Waxn) + Prxn + (1= Bu) I — anA)ty — x°|
=l (y f Waxa) = Ax™) + B0 = x*) + (1= Bu) I = anA) (s — x7)
< ttully f W) = Ax*|| + Bullxcn = X" + [| (1 = Bu) T — anA|| It — x|
< any || f (Waxn) = ) [| + nly f(x7) = Ax"[| + Bullocn - x|

+ (1= Pu = ad) I = x| (2.17)
< Y| Waty = x| + [y f () = Ax*[| + (1= a8 0 = x|
< (1= (8-78)an) ra = x* + |y f (") - Ax”|

A1)

< max{ [[2xn —

It follows from induction that

|21 — x¥|| < max{ |1 — (2.18)

x*) — Ax*
e oAl
6—-yb

for all n € N. Hence, {x,} is bounded, and so are {yn}, {z,}, {t.}, {Waxn}, {f (Wyx,)} and
{At,}.

Next, we prove that ||v, — x,|| — 0, ||xp1 —x4]| — Oand ||t, —x,|| = Oasn — oo. By
the nonexpansivity of Jas, ), and I — 4;(B; + C;), we have

lyner = yall = 1Mo (Zne1 = M (B1 + C1)Zna1) = Ty n, (20 — A1 (B1 + C1)z) ||
< ||(Zn+1 - .)Ll(B1 + C1)2n+1) - (Zn - )Ll (Bl + Cl)Zn)” (219)

< |1zns1 = Zall-
Similarly, we have
1Zne1 = Zall < 201 = Xl (2.20)
Therefore, from (2.19) and (2.20), we have

”yn+1 - ynH <Hznet = zall £ %041 — x4 (2.21)
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By the nonexpansivity of S; and U,,;, we have

”Wn+1xn - ann” = ”un+1,1xn - un,lxn”
= |1 S1Uns1ox0 + (1 = 1) xn — (1 S1Upoxn + (1= 1) x,) ||

< Hi ||un+1,2xn - un,an”
= ||/4252un+1,3xn + (1 - ,Hz)xn - (#252Un,3xn + (1 - /"2)x") ”

< U135, — Upsxy|| (2.22)

n
< <HI41> ||un+1,n+1xn - un,n+1xn”

i=1

n
< MH,“I'/
i=1

for some constant M such that M > ||U11441%7 — Uppn1X4|| > 0. Therefore, from (2.22), by
the nonexpansivity of W,.;, we have

W1 %41 = Waxnl| < [[Wha1Xne1 = W1 X || + [|Wiaa X, — Wi, ||

" (2.23)
< ||xn+1 - xn” + MH#:

i=1
Since

tiet =ty = Yt W1 Xpa1 + (1 - Yn+1)yn+1 - (Yanxn + (1 - Yn)yn)
= Yn+1(Wn+1xn+1 - Waxy) + (Yn+1 - Yn) (ann - yn) (2.24)

+ (1 - Yn+1) (yn+1 - ]/n)/
combining (2.21), (2.23), and (2.24), we have

||tn+1 - tn” < Yn+1||Wn+1xn+1 - ann” + |Yn+1 - Yn| ”ann - yn” + (1 - Yn+1) ”yn+1 - yn”

n
< Ynst <|Ixn+1 - xn” + Ml_[lfl1> + |Yn+1 - Ynl ”ann - yn” + (1 - Yn+l) ”]/n+1 - yn”

i=1

< MHﬂl + |Yn+1 - Ynl IIann - yn” + ”xn+1 - xn”-
i=1
(2.25)



International Journal of Mathematics and Mathematical Sciences

Let v, = (xp+1 — Pnuxn)/ (1 = Pr). Then we have

Xnt1 = (1 - ﬂn)vn + Puxy.

Since
an+1Yf(Wn+1xn+1) + ((1 - ﬁn+1)I - an+1A) tn1
Unt1 = On = 1_ﬂ+1
any f Wyxn) + (1= )] — a,A)ty,
1-pn
1 a"gl (Yf(Wn+1xn+1) Atn+1) - (Yf(w xn) At ) + (tn+1

combining (2.25) and (2.27), we have

|vne1 — vnl| < 1 r;l ||Yf(Wn+1xn+1) Atn+1” +
an+
< - ||Yf(Wn+1xn+1) Aty | + 1 ||Yf (W) -

1-

n
+ MH/’H + |Yn+1 - Yn| ”ann - yn” + “xn+1 - xn”-
i=1

Therefore, by (C1), (C2) and lim,, o, [ T i = 0, we get

lim sup([|vns1 = vnl = [|2%n41 = xnl]) <O.

From (2.26) and (2.29), by (C2) and Lemma 1.3, we obtain

loy —xul| — 0 as n— oo.

From (2.26), by (2.30), we obtain

lXne1 = xull = (1 = Bu)llvn — x4l — 0 as n — co.

Since

X1 — Xn = 0} f Wixn) + Buxy + (1= ) I — a, A)t, — x,
= an()ff(ann) - Atn) + (l - ﬂn) (th — xn),

tn),

n ”Yf(wnxn) - Atn” + ||tn+1 -

15

(2.26)

(2.27)

tal

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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therefore,
(1 - ﬁn) lltn — xull < “ﬂ”Yf(ann) - Atn” + [[Xne1 = Xl (2.33)
From (2.31), by (C1) and (C2), we obtain

Ity = xn|| — 0 as n — oo. (2.34)

For all x,y € H, by Lemma 1.2(2), the nonexpansivity of Po and the contraction of f,
we have

[Pa(I-A+yf)x-Po(I-A+y)y[ <[[(I-A+yf)x-(T-A+yf)y|
<yl f) = fFW)I + I = Alll[x - vl

<ydllx -yl +(1-8)lx -yl

= (1 (5-18)) Ix- vl

Therefore, Po(I — A +yf) is a contraction with coefficient 1 — (5 - y6), by Banach contraction
principle guarantees that Po(I — A + yf) has a unique fixed point, say w € H, that is, w =
Po(I-A+yfw.

Next, we claim that

(2.35)

limsup(y f (w) - Aw, x, - w) < 0. (2.36)

n—oo
To show this inequality, we choose a subsequence {x,,} of {x,} such that

lim sup(y f () ~ Aw, x, - w) = lim (y f (w) - Aw, x,, - w). (2.37)

n—oo

Since, {xy,} is bounded, there exists a subsequence {xnij } of {x,,} which converges weakly to
w. Without loss of generality, we can assume that x,,, — w asi — co.

Next, we prove that w € Q. Define sequence of mappings {R, : H — H} and mapping
R:H — H by

Ryx = y,Wyx+ (1-y,)Dx, VneN,

(2.38)
Rx = lim R,x.

Thus, by Lemma 1.5(3) and (C3), we have

Rx =aWx+ (1-a)Dx, (2.39)
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where 0 < a = lim,_ ), < 1. Since, W and D are nonexpansive and by Lemma 1.5(3),
F(W) = (NZ, F(Si). Therefore, by Lemma 1.9, we get R is a nonexpansive and F(R) = F(W) N
F(D) = NZ, F(Si) n F(D). Since, Syx = 6,x + (1 - 6,)T,x, where 6, € [k,,1). Thus, by
Lemma 1.11, we obtain

F(R) = ﬁF(Si) NF(D) = ﬁ F(T;)nF(D) = Q. (2.40)
i=1 i=1

From (2.34), we have ||t,, — x,,|| — 0asi — oo. Thus, from (2.38), we get ||Rx,, — x,,|| — 0as
i — oo. It follows from x,, — w and by Lemma 1.10 that o € F(R), that is w € Q. Therefore,
from (2.37), we obtain

lim sup(y f (w) — Aw, x, - w) = im (y f(w) — Aw, x,, — w)
noe e (2.41)
~ ((rf - Ay, T-w) <0.

Next, we prove that x, — w asn — oo. Since w € Q, we have W,w = w, and the
same as in (2.16), we have

l[tn = wll < [l2¢n = 20]]. (2.42)
It follows by the contraction of f and the nonexpansivity of W, that

21 = w1 = ||y f (Waxn) + Butn + (1= Bu) I = anA)ty — w||’
= [[((1 = Ba)T = @A) (b = ) + Pt = w0) + an (y f (Wixs) = Aw) |
= [[((1 = Bu)T = anA) (b = 0) + B (60 = ) ||* + @l |l f (Wixa) - Avo|
+ 20, (X0 —w, y f (Wyxy) — Aw)
+ 2, (1= p)] — awA) (tn — ), Y f (Wax) — Aw)

2

< (1= P 1aB)lta = 0ll + fullxa — 0l + @2 [y f Wa) - Ao
+ 20y (X = w0, f(Wnn) = f(w)) + 20,0 (xn — w, ¥ f (w) — Aw)
+ 20, (1= o)y (tn — w0, f (Wnxy) = f(w))
+ 20, (1 = ) (tn — w0, 7 f (w) - Aw)
=20 (A(ty —w), y f (Waxn) — Aw)
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—\2

< (1= a8) llx = wIP + 2anuy 0 = wll|| f (Waacs) = f (@) |

+ 2“"(1 - ﬁn)Y”tn - w”“f(ann) - f(w)” + 671

—\ 2 5 5 5

< <1 - an6> ”xn - w” + ZanﬁnY6”xn - w” + 2“11(1 - ﬂn)YSHxn - w” + 911
—\ 2

= (1= @,8) llxu - wl + 2a,y8]1x, = ||’ + 6,

= (1-2(6 - y6)an ) I — wlP + 25 |~ w|* + 6,

< (1 - Tln)”xn - w”2 + 6;1/
(2.43)

where 77, := (6 - y6)a, € (0,1), 8, := cx%52||xn —w|?+6, and

O = a3 ||y f (Wixy) - A’w||2 + 20, B (X0 —w, v f (W) — Aw) .40
2.
+2a, (1= B) (tn — w, Y f(w) = Aw) = 205 ( A(ty — w), Y f (Waxn) — Aw).

By (2.34), (2.41), (C1) and (C3), we can found that 3,77, 77, = oo and limsup, _, (6, /7,) <0.
By Lemma 1.4, we obtain {x,} converges strongly to w. This proof is completed. O

Remarks 2.2. Theorem 2.1 improve and extend to the main results of Li and Wu [12] for
solving the generalized system of relaxed cocoercive quasivariational inclusions and fixed
points problems of an infinite family of strictly pseudocontractive mappings.

3. Applications

Theorem 3.1. Let H be a real Hilbert space, M : H — 2H be a maximal monotone mapping,
B: H — H be a relaxed (a,r)-cocoercive and &-Lipschitz continuous mappings, respectively, C :
H — H be a relaxed (&,7)-cocoercive and &-Lipschitz continuous mappings, respectively. Let A :
H — H beastrongly positive linear bounded self-adjoint operator mapping with coefficient & € (0,1]
such that ||A|| < 1and f : H — H be a contraction mapping with coefficient 6 € (0,1). Let
{T,, : H — HY} be a family of ky-strictly pseudocontractive mappings with a fixed point such that
k, € [0,1) for all n € N. Define Syx = 6,x + (1 — 6,)Tyx, where 6, € [ky, 1), for all n € N, and
let Wy, : H — H be a W-mapping generated by {S,} and {p,} such that {p,} C (0, u], for some
u € (0,1). Assume that Q := (;2y F(T,) N\F(D)#®and 0 < y < 6/6 whereD: H — H defined
by Dx = Japa, (I = A(B+C))Jma, (I = Xa(B + C))x). For x1 € H, suppose that {x,} be generated
iteratively by

Zn = Jnma, (X0 — Xa(B + C)xy),
Yn = Jma (z2n — M(B +C)zy), (3.1)
Xt = Ay (W) + Bt + (1= Bu)] = 0 ) (5 Wata + (1= 1)),
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for all n € N, where {a,},{fn},{yx} C (0,1), i € (0,€], € = min{2(r — ag?)/¢(¢ + g),Z(F -
a§ V/EE+E)), > alt 7> agz,for each i = 1,2, satisfying the following conditions:

(C1) limy — ey = 1imn—>oo|Yn+l - Yn| =0;
(C2) 0 < liminf, . f, <limsup,_, _p. <1
(C3) >y =o0and 0 < limy, o yn < 1.

Then the sequence {x, } converges strongly to w € Q where w = Po(I-A+y f)w is a unique solution
of the variational inequality

(A-yflw,y-w) >0, YyeQ, (3.2)

which is the optimality condition for the minimization problem

xeQ

min{%(Ax,x) —h(x)}, (3.3)

where h is a potential function for y f (i.e., h'(x) = y f(x) for x € H) and (w, [, (I = A2(B+C))w)
is a solution of problem (1.19).

Proof. It is concluded obviously, from Theorem 2.1 by putting M; = M, = M, By = B, = B
and C1 = C2 =C. ]

Theorem 3.2. Let H be a real Hilbert space, M : H — 2H be a maximal monotone mapping, B
H — H be a relaxed (a, r)-cocoercive and ¢-Lipschitz continuous mappings, respectively, C : H —
H be a relaxed (a, 7)-cocoercive and &-Lipschitz continuous mappings, respectively. Let A : H — H
be a strongly positive linear bounded self-adjoint operator mapping with coefficient 6 € (0,1] such that
|All <land f : H — H be a contraction mapping with coefficient 6 € (0,1). Let {T,, : H — H)
be a family of nonexpansive mappings. Define S,x = 6,x + (1 — 6,)Tx, where 6, € [0,1), for all
n €N, and let W, : H — H be a W-mapping generated by {S,,} and {p,} such that {p,} C (0, u],
for some p € (0,1). Assume that Q := ;o F(T,) NF(D)#@and 0 <y < 6/6whereD: H — H
defined by Dx = Japx, (I = M (B + C)) Jma,(I — XAa(B + C))x). For x1 € H, suppose that {x,} be
generated iteratively by

Zp = ]M,)Lz (xn - -)LZ(B + C)xn)/

Yn = Jma (2n =M (B+C)zy), (3.4)
X1 = @Y f(Waxn) + Buxn + (1= Bu) T = anA) (yaWaXn + (1= Yn)Yn),

for all n € N, where {a,}, {fn}, {yn} C (0,1), i € (0,€], € = min{2(r — ag?)/&(¢ +¢),2(F -
tx§ )/E@+8)), r>al2, 7> aéz,for each i = 1,2, satisfying the following conditions:

(Cl) limy, —, o0ty = hmnaoolYnJrl - Yn| =0;
(C2) 0 < liminf, , f, < limsup, B, <1;
(C3) Xvqyan =00and 0 < limy, oy, < 1.
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Then the sequence {x,} converges strongly to w € Q where w = Po(I-A+Yy f)w is a unique solution
of the variational inequality

(A-yflw,y-w) >0, YyeQ, (3.5)

which is the optimality condition for the minimization problem
min 1(Ax x) —h(x) (3.6)
ea |2 ’ ‘

where h is a potential function for y f (i.e., h'(x) =y f(x) for x € H) and (w, Jam,,(I - X2(B+C))w)
is a solution of problem (1.19).

Proof. It is concluded obviously, from Theorem 3.1 by putting k,, = 0 for all n € N. O

Theorem 3.3. Let H be a real Hilbert space, M; : H — 2H be a maximal monotone mapping,
Bi : H — H be a relaxed (a;, r;)-cocoercive and ¢&;-Lipschitz continuous mappings, respectively, for
eachi=1,2.Let A: H — H be a strongly positive linear bounded self-adjoint operator mapping
with coefficient 6 € (0,1] such that ||A|| < 1 and f + H — H be a contraction mapping with
coefficient & € (0,1). Let {T, : H — HY} be a family of k,-strictly pseudocontractive mappings
with a fixed point such that k, € [0,1) for all n € N. Define S,x = 6,x + (1 = 6,)T,x, where
On € [ku, 1), foralln e N, and let W, : H — H be a W-mapping generated by {S,} and {p, } such
that {p,} C (0, u], for some p € (0,1). Assume that Q := (;24 F(Ty) NF(D)#@and 0 < y < 6/6
where D : H — H defined by Dx = g, 0, (I = p1B1) Jay 0, (I — p2B2)x) such that A; = p;/2 for
eachi=1,2. For x; € H, suppose that {x,} be generated iteratively by

Zn = My, (%0 = p2Baxy),
Yn = I (20— p1Biza), (3.7)
Xni1 = @nY f(Waxn) + Pudn + (1= fu) T = anA) (W + (1= Yn) Yn),
for all n € N, where {ay},{Bn}, {ya) C (0,1), pi € (0,2(r; — aig?) /&1, i > aid?, for each i = 1,2,
satisfying the following conditions:
(C1) limy, ., paxy, = hmn—>oo|Yn+1 - Yn| =0;
(C2) 0 < liminf, ., f, <limsup, B, <1;
(C3) Yoy =00and 0 < limy, oy, < 1.

Then the sequence {x,} converges strongly to w € Q where w = Po(I-A+Yy f)w is a unique solution
of the variational inequality

(A-yflw,y-w) >0, YyeQ, (3.8)

which is the optimality condition for the minimization problem

rr;igr;{%(Ax,x) —h(x)}, (3.9)
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where h is a potential function for yf (i.e., h'(x) =y f(x) for x € H) and (w, Jam,, (I — p2B2)w) is
a solution of problem

0ex*— y* + A (2Bly* + Mlx*),
(3.10)
0e y* -x*+ /\2(2B2x* + sz*).

Proof. It is concluded obviously, from Theorem 2.1 by putting B; = C; for eachi =1,2. O

Theorem 3.4. Let H be a real Hilbert space, M : H — 2H be a maximal monotone mapping,
B : H — H bea relaxed (a,r)-cocoercive and &-Lipschitz continuous mappings, respectively. Let
A : H — H be a strongly positive linear bounded self-adjoint operator mapping with coefficient
6 € (0,1] such that ||A|| < 1and f : H — H be a contraction mapping with coefficient 6 € (0,1).
Let {T,, : H — H} be a family of k,-strictly pseudocontractive mappings with a fixed point such that
k., € [0,1) for all n € N. Define Syx = 6,x + (1 — 6,)Tx, where 6, € [ky, 1), for all n € N, and
let Wy, : H — H be a W-mapping generated by {S,} and {p,} such that {u,} C (0, u], for some
u € (0,1). Assume that Q := ;2 F(T,) N\F(D)#®and 0 < y < 6/6 where D : H — H defined
by Dx = Jay, (I — p1B) Jma, (I — p2B)x) such that \; = p;/2 for each i = 1,2. For x; € H, suppose
that {x,} be generated iteratively by

Zn = Jmp, (Xn — p2Bxy),
Yn = Jmn, (2o — p1Bzy), (3.11)
X1 = Y f Wixn) + Buxn + (1= Bu) I — anA) (yaWaxn + (1= Yu) Yn),
for all n € N, where {a,},{Bn} {yn} C (0,1), pi € (0,2(r — ag?)/&], r > ad?, for each i = 1,2,
satisfying the following conditions:
(C1) limy, -, gy = limy - oo|yns1 — Yul = 0;
(C2) 0 < liminf, , f, < limsup, B, <1;

(C3) Spiqan =00 and 0 < lim,, —, oy, < 1.

Then the sequence {x, } converges strongly to w € Q where w = Po(I-A+Yy f)w is a unique solution
of the variational inequality

(A-yflwy-w) 20, VyeQ (3.12)

which is the optimality condition for the minimization problem
min 1(Ax x) —h(x) (3.13)
xeQ | 2 ! ! '

where h is a potential function for y f (i.e., W' (x) = y f(x) for x € H) and (w, Jmy, (I — p2B)w) is a
solution of problem

0€x*—y" + i (2By* + Mx*),
(3.14)
0€y*—x"+1,(2Bx* + My").
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Proof. It is concluded obviously, from Theorem 3.3 by putting By = B, = B and M; = M,
= M. O

Theorem 3.5. Let H be a real Hilbert space, M : H — 2H be a maximal monotone mapping,
B : H — H be a relaxed (a,r)-cocoercive and &-Lipschitz continuous mappings, respectively. Let
A H — H be a strongly positive linear bounded self-adjoint operator mapping with coefficient
6 € (0,1] such that ||A|| < 1and f : H — H be a contraction mapping with coefficient 6 € (0,1).
Let {T, : H — H} be a family of nonexpansive mappings. Define Sp,x = 6,x + (1 — 6,) T, x, where
6, €1[0,1), foralln € N, and let W,, : H — H be a W-mapping generated by {S,} and {u,} such
that {p,} C (0, u], for some p € (0,1). Assume that Q := ;21 F(T,) NF(D)#@and 0 <y < 6/6
where D : H — H defined by Dx = [y, (I — p1B) Jm, (I — p2B)x) such that X; = p;/2 for each
i=1,2. For x1 € H, suppose that {x,} be generated iteratively by

Zn = Jm, (Xn — p2Bxy),
yn = ]M,)l] (Zn - PlBZn)/ (315)
X1 = Y f Wixn) + Buxn + (1= Bu) I — anA) (yaWaxn + (1= Yu) Yn),
for all n € N, where {a,},{Bn} {yn} C (0,1), pi € (0,2(r — aé?)/&], r > ad?, for each i = 1,2,
satisfying the following conditions:

(C1) limy, -, gy = limy, - 0| yne1 — Yul = 0;
(C2) 0 < liminf, , p, < limsup, , B <1;

(C3) >vqay =00and 0 < limy, o yn < 1.

Then the sequence {x,} converges strongly to w € Q where w = Po(I-A+Yy f)w is a unique solution
of the variational inequality

(A-yflw,y-w) >0, YyeQ, (3.16)

which is the optimality condition for the minimization problem

xeQ

min{%(Ax,x) —h(x)}, (3.17)

where h is a potential function for y f (i.e., W (x) = yf(x) for x € H) and (w, Jmy, (I — p2B)w) is a
solution of problem

0€x* -y + i (2By* + Mx*),
(3.18)
0€y*—x"+ 1 (2Bx* + My*).

Proof. It is concluded obviously, from Theorem 3.4 by putting k,, = 0 for all n € N. O
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