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A generalized Euler’s totient is defined as a Dirichlet convolution of a power function and
a product of the Souriau-Hsu-Möbius function with a completely multiplicative function. Two
combinatorial aspects of the generalized Euler’s totient, namely, its connections to other totients
and its relations with counting formulae, are investigated.

1. Introduction

Let A be the unique factorization domain of arithmetic functions [1, 2] equipped with
addition and (Dirichlet) convolution defined, respectively, by

(
f + g

)
(n) = f(n) + g(n),

(
f ∗ g)(n) =

∑

ij=n

f(i)g
(
j
)
. (1.1)

The convolution identity I ∈ A is defined by

I(n) =

⎧
⎨

⎩

1, if n = 1,

0, if n > 1.
(1.2)

For f ∈ A, write f−1 for its convolution inverse whenever it exists. A nonzero arithmetic
function f is said to be multiplicative if f(mn) = f(m)f(n) whenever gcd(m,n) = 1, and is
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called completely multiplicative if this equality holds for all m,n ∈ N. For α ∈ C, the Souriau-
Hsu-Möbius (SHM) function ([3, 4], [5, page 107]) is defined by

μα(n) =
∏

p|n

(
α

νp(n)

)
(−1)νp(n), (1.3)

where n =
∏
pνp(n) denotes the unique prime factorization of n ∈ N, νp(n) being the largest

exponent of the prime p that divides n. This function generalizes the usual Möbius function,
μ, because μ1 = μ. Note that

μ0 = I, μ−1 = u the arithmetic unit function defined by u(n) = 1 (n ∈ N), (1.4)

and for α, β ∈ C, we have

μα+β = μα ∗ μβ. (1.5)

It is easily checked that μα is multiplicative; there are exactly two SHM functions that are
completely multiplicative, namely, μ0 = I and μ−1 = u, and there is exactly one SHM function
whose convolution inverse is completely multiplicative, namely, μ1 = u−1. For a general
reference on the Möbius function and its generalizations, see Chapter 2 of the encyclopedic
work [5].

The classical Euler’s totient φ(n) is defined as the number of positive integers a ≤ n
such that gcd(a, n) = 1. It is well known (page 7 of [1]) that

φ(n) =
∑

d|n
dμ
(n
d

)
= n
∏

p|n

(
1 − 1

p

)
. (1.6)

For a general reference about Eulier’s totient, its many facets and generalizations, see [5,
Chapter 3]. Euler’s totient has been given a good deal of generalizations. Of interest to us
here is the one due to Wang and Hsu [6], defined for k, r ∈ N and completely multiplicative
f ∈ A by

φ
(k)
τ (n) =

∑

d|n

(n
d

)k
f(d)μr(d), (1.7)

where τ = μrf . In [6] it is shown that φ(k)
τ possesses properties extending those of the classical

Euler totient, such as the following.

(P1) φ(k)
τ (n) = nk

∏
p|n(1 − f(p)/pk)

r when n is r-powerful, that is, νp(n) ≥ r for each
prime factor p of n.

(P2) Let −→a := (a1, . . . , ak) ∈ Z
k (Theorem 2.3 of [6]). Then, for prime p, there

uniquely exists an r × k matrix Bp(
−→a) over Zp := {0, 1, . . . , p − 1} such that −→a ≡

(1, p, . . . , pr−1)Bp(
−→a) (mod pr). LetAp be a subset of Z

k
p . Then, there uniquely exists

a completelymultiplicative f ∈ Awith f(p) being defined by the number of vectors
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in Ap. For
−→a ∈ Z

k
n, we write (−→a, n)A = 1, if no row of Bp(

−→a) is in Ap for every prime
divisor p of n. Then for n being r-powerful, φ(k)

τ (n) counts the number of k-vectors−→a := (a1, . . . , ak) ∈ Z
k
n such that (−→a, n)A = 1.

We take off from the work of Wang and Hsu, by defining our generalized Euler totient (or GET
for short) as

φ
f
s,α(n) :=

(
ζs ∗ μαf

)
(n) =

∑

d|n

(n
d

)s
f(d)μα(d), (1.8)

where α ∈ C, s ∈ R, ζs(n) = ns, ζ0 = u, and f is a completely multiplicative function.
Comparing with the terminology of Wang-Hsu, we see that φf

k,r
= φ

(k)
τ (τ = μrf). For brevity

write

φs,α := φus,α, φα := φ1,α. (1.9)

There have appeared quite a number of results related to our GET, such as those in [4, 6–9],
and the most complete collection to date can be found in [5, Chapter 3]. In the present paper,
we consider two aspects of the GET. In the next section, its relations with other totients are
investigated. Here we deal mostly with those results closely connected to our GET; for further
and more complete collection up to 2004, we refer to the encyclopedic work in [5, Chapter
3]. In the last section, after proving a general inversion formula, various counting formulae
related to the GET are derived.

Before listing a few properties of our GET generalizing the classical Euler’s totient, we
recall some auxiliary notions. The log-derivation, [10], is the operator D : A → A defined by

(
Df
)
(n) = f(n) logn (n ∈ N). (1.10)

For f ∈ A, f(1) > 0, the Rearick logarithmic operator of f (or logarithm of f ; [11–13]), denoted
by Log f ∈ A, is defined via

(
Log f

)
(1) = log f(1),

(
Log f

)
(n) =

1
logn

∑

d|n
f(d)f−1

(n
d

)
logd =

1
logn

(
Df ∗ f−1

)
(n) (n > 1),

(1.11)

where D denotes the log-derivation. For h ∈ A, the Rearick exponential Exp h is defined as
the unique element f ∈ A, f(1) > 0 such that h = Log f . For f ∈ A, f(1) > 0 and α ∈ R, the
αth power function is defined as

fα = Exp
(
αLog f

)
. (1.12)

It is not difficult to check that this agrees with the usual power function, should α be integral.
From [11], we know that if f is multiplicative and α ∈ R \ {0}, then fα is also multiplicative;
the fact which automatically implies its converse.



4 International Journal of Mathematics and Mathematical Sciences

Proposition 1.1. Let s ∈ R, α ∈ C, and f be a completely multiplicative function.

(A) We have the product representation

φ
f
s,α(n) = ns

∏

p|n

νp(n)∑

i=0
(−1)i

(
α
i

)(
f(p)
ps

)i
(n ∈ N). (1.13)

(B) If α ∈ R, then ζs = φ
f
s,α ∗ fα.

(C) If r ∈ N, then φfs,α(r) = det[Aij]r×r , where

Aij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if j | i, 1 ≤ j ≤ r − 1,

0, if j � i, 1 ≤ j ≤ r − 1,
∑

d|i
φ
f
s,α(d), if j = r.

(1.14)

Proof. Part (A) follows immediately from φ
f
s,α being multiplicative. Part (B) follows from the

fact that μαf = f−α [14]. To prove Part (C), let B(r) = [Bij]r×r ,where

Bij =

⎧
⎨

⎩

1 if j | i,
0 if j � i.

(1.15)

Then

⎡

⎢⎢⎢
⎣

B11 B12 · · · B1r

B21 B22 · · · B2r
...
Br1 B22 · · · Brr

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

φ
f
s,α(1)

φ
f
s,α(2)
...

φ
f
s,α(r)

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 0 · · · 0
1 1 · · · 0
...
1 1 · · · 1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

φ
f
s,α(1)

φ
f
s,α(2)
...

φ
f
s,α(r)

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∑

d|1
φ
f
s,α(d)

∑

d|2
φ
f
s,α(d)

...∑

d|r
φ
f
s,α(d)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (1.16)

Considering (1.16) as a system of simultaneous equations in the unknowns φ
f
s,α(1),

φ
f
s,α(2), . . . , φ

f
s,α(r) and appealing to Cramer’s rule, the result follows.

Part (C) generalizes a well-known identity on page 86 of [2], which is the case where
f = u, s = α = 1, stating that

φ(r) = det
[
aij
]
r×r , (1.17)
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where

aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if j | i, 1 ≤ j ≤ r − 1,

0, if j � i, 1 ≤ j ≤ r − 1,

i, if j = r.

(1.18)

2. Connections with Other Totients

Case I (f = u). When the parameters s and α take integer values, the GET does indeed
represent a number of well-known arithmetic functions, namely,

φ1,1 = ζ ∗ μ = φ (the classical Euler totient),

φ0,−1 = u ∗ u = σ0 = τ (the number of divisors function),

φs,−1 = ζs ∗ u = σs
(
the sum of the sth power of divisors function

)
.

(2.1)

When s ∈ N and α = 1, this particular totient φs,1 = ζs ∗ μ is equivalent to quite a few classical
totients.

(i.1) The Jordan totient Js(n) which counts the number of s-tuples (x1, . . . , xs) such that
1 ≤ x1, . . . , xs ≤ n and gcd(x1, . . . , xs, n) = 1 ([1, page 13], [5, pages 186-187, page
275], [2, page 91]). Clearly, J1 = φ. From [5, pages 186-187], closely resembles the
Jordan totient is the function

J ′s(n) = #
{
(x1, . . . , xs) : 1 ≤ x1 ≤ x2 ≤ · · · ≤ xs ≤ n, gcd(x1, . . . , xs, n) = 1

}
. (2.2)

While Js(n) =
∑

d|n μ(d)(n/d)
s, one has, on the other hand, J ′s(n) =∑

d|n μ(n/d)
(
d+s+1
s

)
, showing that J ′s is not of the form of our GET. Even more

general is the Shonhiwa’s totient, Jms [5, pages 187, 276], defined as the number
of s-tuple (x1, . . . , xs) such that 1 ≤ x1, . . . , xs ≤ n and gcd(x1, . . . , xs,m) = 1, whose
representation is Jms (n) =

∑
d|m μ(d)[n/d]

s.

(i.2) The von Sterneck function, [1, pages 14-15] and [5, pages 275-276],

Hs(n) :=
∑

lcm(e1,...,es)=n

φ(e1) · · ·φ(es), (2.3)

where the sum is over all ordered s-tuples (e1, . . . , es) ∈ Z
s such that 1 ≤ ei ≤ n (i =

1, . . . , s) and lcm(e1, . . . , es) = n.

(i.3) Eckford Cohen’s totient Es(n)which counts the number of elements of a s-reduced
residue system (modn). For integers a, b not both 0, let

(a, b)s denote the largest sth-power common divisor of a and b. (2.4)
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If (a, b)s = 1, we say that a and b are relatively s-prime. We refer to the subset
of a complete residue system M (mod ns) consisting of all elements of M that are
relatively s-prime to ns as a s-reduced residue system (mod n), [2, pages 98-99] and
[5, pages 275-276].

(i.4) φs,1(n) = Φs(ns), where Φ(n) is the Klee’s totient, [15], which counts the number of
integers h ∈ {1, 2, . . . , n} for which gcd(h, n) is sth-power-free, that is, contains no
sth-power divisors other than 1. The Klee’s totient has a product representation of
the form, [5, page 278], Φs(n) = n

∏
ps|n(1 − 1/ps).

(i.5) Haukkanen’s totient, [5, page 276], φkm,1(n) =
∑

d|n d
kmμ(d), which counts the

number ofm-tuples (x1, . . . , xm)mod nk such that (gcd (x1, x2, . . . , xm), nk)k = 1.

On the other hand, based on the combinatorial interpretation (P2) of φs,α above, our
GET includes several special totients [6] such as taking α = 1 and

(i) Bp(
−→a) = Zp when p ≤ k, or Bp(

−→a) = Zk when p > k, we obtain Schemmel’s totient,
Sk(n), which counts the number of sets of k consecutive integers each less than
n and relatively prime to n. The function Sk(n) has a product representation of
the form Sk(n) = n

∏
p|n(1 − k/p), [5, page 276]. The case k = 2 was also called

Schemmel totient function and was shown by Lehmer to have application in the
enumeration of certain magic squares, [5, page 184]. There are many other totients
closely connected to Schemmel’s totient. As examples, we describe two more,
taken from [5, Chapter 3], namely, Lucas’s and Nageswara Rao’s totients. For fixed
integers e1, . . . , ek, Lucas’s totient counts the number of integers h ∈ {0, 1, . . . , n − 1}
such that h − e1, . . . , h − en are relatively prime to n and its product representation
is n
∏

p|n(1 − λ/p), where λ is the number of distinct residues of e1, . . . , ek mod p.
Nageswara Rao’s totient counts the number of sets of k consecutive integers each
less than ns which are s-prime to ns;

(ii) let F = {f1(x), . . . , fk(x)} be a set of polynomials with integer coefficients
and Bp(

−→a) = {(a1, . . . , ak); fi(ai) ≡ 0 (modp), i = 1, . . . , k}, we obtain
Steven’s totient which denotes the number of k-vectors (a1, . . . , ak) (mod n) such
that gcd (f1(a1), . . . , fk(ak), n) = 1). Following [5, pages 279-280], the product
representation of Stevens’s totient takes the form nk

∏r
j=1(1−N1j · · ·Nkj/p

k
j ),where

n =
∏r

j=1p
aj
j , Nij is the number of incongruent solutions of fi(x) ≡ 0 (mod pj). The

Stevens’s totient is multiplicative, and contains, as special cases

(1) the Jordan totient Jk(n) (by taking f1(x) = · · · = fk(x) = x);
(2) the Schemmel totient St(n) (by taking k = 1, f1(x) = x(x + 1) · · · (x + t − 1));
(3) Cashwell-Everett’s totient (by taking f1(x) = · · · = f
(x) = nx, f
+1(x) = · · · =

fk(x) = x), which counts the number of k-tuples (a1, . . . , ak) with 
 ≤ ak ≤
k such that gcd(a
+1, . . . , ak, n) = 1. Its product representation is nk

∏
p|n(1 −

pj/pk).

In passing, let us mention that, our GET is closely connected to the generalized
Ramanujan sum through

φ1,α(r) = c(α)(n, r) whenever r | n ([9, page 4
]
,
[
5, pages 277-278

])
. (2.5)
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Case II (f /=u). The GET also includes a number of known totients in this case.

(ii.1) The Garcia-Ligh totient [16, 17], defined for fixed s, d ∈ N, by

φ(s, d, n) := φId1,1(n), (2.6)

where Id(n) := I(gcd(d, n)) is easily shown to be completely multiplicative. This
totient φId1,1(n) counts the number of elements in the set {s, s + d, . . . , s + (n − 1)d}
that are relatively prime to nwith φ(1, 1, n) ≡ φ(n).

(ii.2) The Garcia-Ligh totient is a special case of the following totient taken from Exercise
1.21 on pages 34-35 of [1]. Let g(x) ∈ Z[x]. The number of integers x ∈ {1, 2, . . . , n}
and gcd(f(x), n) = 1 is, using our terminology above,

φ
vg
1,1(n) =

(
ζ1 ∗ vgμ

)
(n) =

∑

d|n
dvg
(n
d

)
μ
(n
d

)
, (2.7)

where vg is the completely multiplicative function defined over prime p by vg(p) =
gp, the number of solutions of the congruence g(x) ≡ 0 (mod p).

(ii.3) Martin G. Beumer’s function (Section IV.2 on pages 72–74 of [2]) defined for k ∈ N,
by

φu0,1−k = ζ0 ∗
(
μ1−ku

)
= u ∗

(
uk−1
)
= uk, (2.8)

where we have used a result of Haukkanen [14], that if f is a completely
multiplicative function and α ∈ R, then fα = μ − αf .

(ii.4) The Dedekind ψ-function ([2, Problem 10, page 80], [5, page 284]) defined by
ψ(n) = n

∏
p|n(1 + 1/p) is clearly equivalent to

φ
f

1,1 = ζ1 ∗ μ1f, (2.9)

where f is the completely multiplicative function defined for prime p by f(p) = −1.
(ii.5) H. L. Adler’s totient ([2, Section V.6, page 102], [5, page 279]) is defined, for fixed

N ∈ N, as

φεN1,1(r) =
(
ζ1 ∗ μ1εN

)
(r) = r

∏

p|r

(

1 − εN
(
p
)

p

)

, (2.10)

where εN is the completely multiplicative function defined, for prime p, by

εN
(
p
)
=

⎧
⎨

⎩

1, if p |N,

2, if p � N.
(2.11)
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The totient value φεN1,1(r) is the number of ordered pairs (x, y) ∈ N
2 for which x+y =

N+r, gcd(x, r) = gcd(y, r) = 1 and 1 ≤ x ≤ r. Note that whenN = 0, this is merely
Euler’s totient.

(ii.6) D. L. Goldsmith’s totient (the main theorem on page 183 of [18]) is defined, for
m ∈ N, by

ψ(m) = #S(m) = #
{
x; 0 ≤ x < m,gcd(Q(x), m) = 1

}
, (2.12)

where Q(x) ∈ Z[x]. From the meaning of ψ(m), it is clear that ψ(m) is a
multiplicative function (Problem 5, page 31 in [19]). Thus,

φ
f

1,1(m) =
(
ζ1 ∗ μ1f

)
(m) = ψ(m) =

∏

p|m

(
pνp(m) − βppνp(m)−1

)
, (2.13)

where βp is the number of integers x ∈ {0, 1, . . . , p−1} such thatQ(x) is divisible by
the prime p and f is the completely multiplicative function defined for prime p by
f(p) = βp. It is possible to enlarge the values of α in the Goldsmith’s totient such as
taking α = 2 to get

φ
g

1,2(m) =
(
ζ1 ∗ μ2g

)
(m) =

∏

p|m

(
pνp(m) − βppνp(m)−1

)
, (2.14)

where g is the completely multiplicative function defined for prime p by g(p) =

p +
√
p2 − pβp.

Let f, g ∈ A. For k ∈ N, define the k-convolution of f and g by

(
f∗kg

)
(n) :=

∑

dka=n

f(d)g(a). (2.15)

It is easily checked that the k-convolution is neither commutative nor associative. Yet it
preserves multiplicativity, that is, if f and g are multiplicative functions, then the f∗kg is
also multiplicative (Problem 1.26, page 37 of [1]). The kth convolute (page 53 of [1]) of f ∈ A
is defined by

f [k](n) :=

⎧
⎨

⎩

f
(
n1/k
)
, if n is a kth power,

0, otherwise.
(2.16)

The k-convolution is connected to the usual (Dirichlet) convolution via

f∗kg = f [k] ∗ g. (2.17)

We list here some examples of arithmetic functions which enjoy k-convolution relations.
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(1) Klee’s totient, Φk(n), which counts the number of integers h ∈ {1, 2, . . . , n} for
which gcd(h, n) is kth-power-free, satisfies (Problem 1.29 on pages 38-39 of [1]),

Φk(n) =
(
μ1∗kζ1

)
(n) =

∑

dk |n
μ1(d)

n

dk
. (2.18)

(2) The number of divisors function φ0,−1 = σ0 := τ is related to the arithmetic function
θk(n) which counts the number of k-free divisors of n by (Problem 1.27, page 37 of
[1])

τ(n) =
∑

dk |n
θk

(
n

dk

)
= (u∗kθ)(n). (2.19)

(3) The Liouville’s function is defined by

λ(1) = 1; λ(n) = (−1)r1+···+rt if n = pr11 · · · prtt . (2.20)

It is known (Problem 1.47 on page 45 of [1]) that λ is completely multiplicative and
satisfies

λ(n) =
(
u ∗2 μ1

)
(n) =

∑

d2|n
μ1

(
n

d2

)
. (2.21)

(4) For κ ∈ R, t ∈ N, the Gegenbauer’s function (page 55 of [1]) is defined as

ρκ,t(n) =
∑

d|n
n|d is a tth power

dκ = (u ∗t ζκ)(n) =
(
u[t] ∗ ζκ

)
(n).

(2.22)

The notion of convolute enables us to give swift proofs of a number of identities such as the
following ones which are generalizations of Problem 1.59 on page 48, Problem 1.78 on page
51, Problem 1.89 on page 55, and Problem 1.90 on page 56 of [1].

Proposition 2.1. Let s, h, κ ∈ R, and k, t ∈ N. Then,

(i)
∑

d|n λ(d)φs,−1(n/d) =
∑

d2|n(n/d
2)s,

(ii)
∑

d2|n φs,1(n/d
2) =
∑

d|n d
sλ(n/d),

(iii)
∑

d|n d
hρκ,t(n/d) =

∑
d|n d

κρh,t(n),

(iv)
∑

d|n d
κφh,1(d)ρκ,t(n/d) = ρh+κ,t(n),

(v)
∑

d|n ρh,t(d)ρκ,t(n/d) = n
κ
∑

dt|n τ(d)φh−κ,−1(n/d
t)/dκt.
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Proof. We first note the identity λ ∗ u = u[2] which follows from the facts that λ ∗ u is
multiplicative and

(λ ∗ u)
(
pk
)
=

k∑

i=0

λ
(
pi
)
=

⎧
⎨

⎩

1, if k is even,

0, otherwise.
(2.23)

Assertion (i) follows quickly from u ∗2 ζs = u[2] ∗ ζs = (λ ∗ u) ∗ ζs = λ ∗ φs,−1.
Assertion (ii) follows from u ∗2 φs,1 = u[2] ∗ φs,1 = (λ ∗ u) ∗ (ζs ∗ μ) = λ ∗ ζs.
Assertion (iii) follows from ζh ∗ ρκ,t = ζh ∗ u[t] ∗ ζκ = ρh,t ∗ ζκ.
Assertion (iv) follows from

ζκφh,1 ∗ ρκ,t = ζκ
(
ζh ∗ μ

) ∗
(
u[t] ∗ ζκ

)
=
(
ζκ+h ∗ u[t]

)
∗ (ζκμ ∗ ζκ

)

= ρκ+h,t ∗ ζκ
(
μ ∗ u) = ρκ+h,t ∗ I.

(2.24)

To prove (v), we need the identity u[t] ∗ u[t] = τ [t]. Now Assertion (v) follows from

ρh,t ∗ ρκ,t =
(
u[t] ∗ ζh

)
∗
(
u[t] ∗ ζκ

)
=
(
u[t] ∗ u[t]

)
∗ (ζh−κ ∗ u)ζκ

= τ [t] ∗ (φh−κ,−1ζκ
)
= τ ∗t

(
φh−κ,−1ζκ

)
.

(2.25)

3. Inversion and Counting Formulae

In [20], see also Problem 1.25, pages 36-37 of [1], Suryanarayana proved the following
inversion formula:

g(n) =
∑

dka=n

f(a) ⇐⇒ f(n) =
∑

dka=n

μ(d)g(a). (3.1)

Our objective now is to extend this inversion formula using our GET.

Theorem 3.1 (modified generalizedMöbius inversion formula). Let k, n ∈ N and f, g ∈ A. For
α ∈ C, one has

g(n) =
∑

dka=n

f(a) ⇐⇒
(
f ∗ μ[k]

α−1
)
(n) =

∑

dka=n

μα(d)g(a). (3.2)



International Journal of Mathematics and Mathematical Sciences 11

Proof. Recall that the summation over dka = n, with fixed k ∈ N, means that n is written as
n = dka when a runs through all divisors of n for which n can be so written with d ∈ N. The
result follows at once from

∑

dka=n

μα(d)g(a) =
∑

dka=n

μα(d)
∑

skt=a

f(t) =
∑

dkskt=n

μα(d)f(t) =
∑

t|n
f(t)
∑

dk |n/t
μα(d)

=
∑

t|n
f(t)

∑

d| k
√
n/t

μα(d) =
∑

t|n
f(t)μα−1

(
k

√
n

t

)

=
∑

t|n
f(t)μ[k]

α−1
(n
t

)

=
(
f ∗ μ[k]

α−1
)
(n).

(3.3)

Theorem 1 of [20] is a special case of Theorem 3.1 when α = 1. As is well known,
the Möbius inversion formula has extensive applications which is also the case of our new
inversion formula. Applying Suryanarayana’s inversion formula to three examples in the last
section, we obtain

∑

dk |n
Φk

(
n

dk

)
= n, θk(n) =

∑

dk |n
μ(d)τ

(
n

dk

)
, μ(n) =

∑

d2|n
μ(d)λ

(
n

d2

)
. (3.4)

As an application to counting formulae, taking α = 1, g = ζ1 in Theorem 3.1, we get the
following special case of Theorem 2 in [21].

Corollary 3.2. Let r, n ∈ N and Klee’s function Tr(n) be the number of integers k such that 1 ≤ k ≤ n
and gcd(k, n) is not divisible by the rth power of any prime. Then,

n =
∑

dr |n
Tr
( n
dr

)
⇐⇒ Tr(n) =

∑

dr|n
μ(d)

n

dr
. (3.5)

Following [5, page 136], a generalization of Klee’s function Tr introduced by D.
Suryanarayana is the function Tr(x, n) =

∑
d|n μr(d)[x/d]; note that Tr(n, n) = Tr(n).

To illustrate another application, consider a function of the form

∑

st=k

μ(s)mt, (3.6)

which has been a subject of many investigations such as those in [22–25]. This function leads
to a formula for the number of primitive elements over a finite field. Let a,N ∈ N and let all
distinct prime factors ofN be p1 · · · pk. Define

F(a,N) =
∑

d|N
μ(d)aN/d = aN −

∑

i

aN/pi +
∑

i<j

aN/pipj + · · · + (−1)kaN/p1···pk . (3.7)

It is known ([24, pages 84–86], [5, pages 191–193]) that

F(a,N) ≡ 0 (modN), (3.8)
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a result which generalizes Fermat’s little theoremwhenN is prime. This congruence has been
much extended in [22, 25]. Dickson [24, pages 84–86] shows a connection with Euler’s totient
via the identity

F(a,N) =
∑

d,a,N

φ(d), (3.9)

where the summation
∑

d,a,N runs through proper divisors d of aN − 1; by a proper divisor of
aN − 1 we mean a divisor of aN − 1 that does not divide am − 1 if 0 < m < N.

We aim now to extend these results even further to our GET. For a, k,N ∈ N and α ∈ C,
define

Fk,α(a,N) :=
∑

dkm=N

μ(d)h(k)α,a(m), (3.10)

where

h
(k)
α,a(m) =

∑

dkt=am−1
φα(t). (3.11)

Theorem 3.3. Let α ∈ C and a, k,N ∈ N with a > 1. Then,

Fk,α(a,N) =
∑

dk,a,N

φα(t). (3.12)

Proof. Let

fk,α(m) =
∑

dk,a,m

φα(t), H(N) =
∑

nkm=N

fk,α(m). (3.13)

By Theorem 3.1, we have

fk,α(N) =
∑

dk,a,N

φα(t) =
∑

nkm=N

μ(n)H(m). (3.14)
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On the other hand, from the definitions ofH and f , we get

H(N) =
∑

nkm=N

⎛

⎝
∑

dk,a,m

φα(t)

⎞

⎠

=
∑

dkt=aj1−1
dk�am1−1
m1<j1

φα(t) +
∑

dkt=aj2−1
dk�am2−1
m2<j2

φα(t) + · · · +
∑

dkt=ajs−1
dk�ams−1
ms<js

φα(t) +
∑

dkt=aN−1
dk�am−1
m<N

φα(t)

when N = nkji, where 0 < j1 < · · · < js < N are all divisors of N such that N

can be so written with n ∈ N and i ∈ {1, 2, . . . , s}

=
∑

dkt=aN−1
φα(t) = h

(k)
α,a(N).

(3.15)

Consequently,

Fk,α(a,N) = fk,α(N) =
∑

dk,a,N

φα(t). (3.16)

Specializing k = 1, α = 1 in Theorem 3.3, we recover the result of Dickson mentioned
above, namely,

∑

d,a,N

φ(d) = F1,1(a,N) =
∑

d|N
μ(d)h(1)1,a

(
N

d

)
=
∑

d|N
μ(d)(ζ ∗ I)

(
aN/d − 1

)
=
∑

d|N
μ(d)aN/d.

(3.17)

If we take a = pn, a prime power, in (3.7), then it is well known [26, page 93] that the number
of monic irreducible polynomials of orderm over GF(pn) is

1
m

∑

d|m
μ(d)pnm/d =

1
m

⎛

⎝pmn −
∑

i

pnm/pi +
∑

i<j

pnm/pipj + · · · + (−1)kpnm/p1···pk
⎞

⎠ (3.18)

and F(pn,m) =
∑

d|m μ(d)p
nm/d is the number of primitive elements of GF(pnm)/GP(pn).

Taking k = 1, α = 0 in Theorem 3.3 yields another beautiful formula

F1,0(a,N) =
∑

d|N
μ(d)
(
ζ ∗ μ−1

)(
aN/d − 1

)
=
∑

d|N
μ(d)σ

(
aN/d − 1

)
. (3.19)

Combining the results of Theorems 3.1 and 3.3 yields another relation between μα
and φα.
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Corollary 3.4. Let α ∈ C and a, k,N ∈ N with a > 1. Then,

h
(k)
α,a(N) =

∑

dkm=N

fk,α(m) ⇐⇒
(
fk,α ∗ μ[k]

α−1
)
(N) =

∑

dkm=N

μα(d)h
(k)
α,a(m), (3.20)

where

h
(k)
α,a(m) =

∑

dkt=am−1
φα(t), fk,α(m) =

∑

dk,a,m

φα(t). (3.21)
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[17] L. Tóth, “A note a generalization of Euler’s φ function,” The Fibonacci Quarterly, vol. 25, pp. 241–244,
1982.



International Journal of Mathematics and Mathematical Sciences 15

[18] D. L. Goldsmith, “A remark about Euler’s function,” The American Mathematical Monthly, vol. 76, no.
2, pp. 182–184, 1969.

[19] W. J. LeVeque, Topics in Number Theory. Vols. 1 and 2, Addison-Wesley, Reading, Mass, USA, 1956.
[20] D. Suryanarayana, “New inversion properties of μ and μ∗,” Elemente der Mathematik, vol. 26, pp. 136–

138, 1971.
[21] P. J. McCarthy, “On a certain family of arithmetic functions,” The American Mathematical Monthly, vol.

65, pp. 586–590, 1958.
[22] L. Carlitz, “Note on an arithmetic function,” The American Mathematical Monthly, vol. 59, pp. 386–387,

1952.
[23] L. E. Dickson, “A generalization of Fermat’s Theorem,” inCollectedMathematical Papers, vol. 2, Chelsea

Publishing, New York, NY, USA, 1975.
[24] L. E. Dickson, “Generalizations of Fermat’s Theorem,” in History of the Theory of Numbers, vol. 1,

Chelsea Publishing, New York, NY, USA, 1999.
[25] P. J. McCarthy, “On an arithmetic function,”Monatshefte für Mathematik, vol. 63, pp. 228–230, 1959.
[26] R. Lidl and H. Niederreiter, Finite Fields, vol. 20 of Encyclopedia of Mathematics and Its Applications,

Addison-Wesley, Reading, Mass, USA, 1983.


