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Let R be a ring with center Z and I a nonzero ideal of R. An additive mapping F : R → R is
called a generalized derivation of R if there exists a derivation d : R → R such that F(xy) =
F(x)y + xd(y) for all x, y ∈ R. In the present paper, we prove that if F([x, y]) = ±[x, y] for all
x, y ∈ I or F(x ◦ y) = ±(x ◦ y) for all x, y ∈ I, then the semiprime ring R must contains a nonzero
central ideal, provided d(I)/= 0. In case R is prime ring, R must be commutative, provided d /= 0.
The cases (i) F([x, y]) ± [x, y] ∈ Z and (ii) F(x ◦ y) ± (x ◦ y) ∈ Z for all x, y ∈ I are also studied.

1. Introduction

Let R be an associative ring. The center of R is denoted by Z. For x, y ∈ R, the symbol [x, y]
will denote the commutator xy − yx and the symbol x ◦ y will denote the anticommutator
xy+yx. We will make extensive use of basic commutator identities [xy, z] = [x, z]y+x[y, z],
[x, yz] = [x, y]z + y[x, z]. An additive mapping d from R to R is called a derivation of R if
d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An additive mapping g from R to R is called
a generalized derivation of R if there exists a derivation d from R to R such that g(xy) =
g(x)y + xd(y) holds for all x, y ∈ R. Obviously, every derivation is a generalized derivation
of R. Thus, generalized derivation covers both the concept of derivation and left multiplier
mapping. A mapping F from R to R is called centralizing on S where S ⊆ R, if [F(x), x] ∈ Z
for all x ∈ S.

Over the last several years, a number of authors studied the commutativity in prime
and semiprime rings admitting derivations and generalized derivations. In [1], Daif and Bell
proved that if R is a semiprime ring with a nonzero ideal K and d is a derivation of R such
that d([x, y]) = ±[x, y] for all x, y ∈ K, then K is central ideal. In particular, if K = R, then R
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is commutative. Recently, Quadri et al. [2] generalized this result replacing derivation d with
a generalized derivation in a prime ring R. More precisely, they proved the following.

Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized derivation F
associated with a nonzero derivation d such that any one of the following holds: (i) F([x, y]) = [x, y]
for all x, y ∈ I, (ii) F([x, y]) = −[x, y] for all x, y ∈ I, (iii) F(x ◦ y) = (x ◦ y) for all x, y ∈ I; (iv)
F(x ◦ y) = −(x ◦ y) for all x, y ∈ I, then R is commutative.

In the present paper, we study all these cases in semiprime ring.

2. Main Results

We recall some known results on prime and semiprime rings.

Lemma 2.1 (see [3, Lemma 1.1.5]or [1, Lemma 2]). (a) If R is a semiprime ring, the center of a
nonzero one-sided ideal is contained in the center of R, in particular, any commutative one-sided ideal
is contained in the center of R.

(b) If R is a prime ring with a nonzero central ideal, then R must be commutative.

Lemma 2.2 (see [1, Lemma 1]). Let R be a semiprime ring and I a nonzero ideal of R. If z ∈ R and
z centralizes [I, I], then z centralizes I.

Lemma 2.3 (see [4, Theorem 3]). Let R be a semiprime ring and U a nonzero left ideal of R. If R
admits a derivation d which is nonzero onU and centralizing onU, then R contains a nonzero central
ideal.

Now we begin with the theorem.

Theorem 2.4. Let R be a semiprime ring, I a nonzero ideal of R and F a generalized derivation of R
associated with a derivation d of R such that d(I)/= 0. If F([x, y]) = ±[x, y] for all x, y ∈ I, then R
contains a nonzero central ideal.

Proof. By our assumption, we have that

F
([
x, y

])
= ±[x, y] (2.1)

for all x, y ∈ I. If F(I) = 0, then we find that [x, y] = 0 for all x, y ∈ I, that is, I is commutative.
Then, by Lemma 2.1, I ⊆ Z and thus we obtain our conclusion.

Next assume that F(I)/= 0. Putting y = yx in (2.1), we get that

F
([
x, y

]
x
)
= ±[x, y]x. (2.2)

Since F is a generalized derivation of R associated with a derivation d of R, (2.2) gives

F
([
x, y

])
x +

[
x, y

]
d(x) = ±[x, y]x. (2.3)

Using (2.1), it reduces to

[
x, y

]
d(x) = 0 (2.4)
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for all x, y ∈ I. Now putting y = d(x)y in (2.4), we get

0 =
[
x, d(x)y

]
d(x) = d(x)

[
x, y

]
d(x) + [x, d(x)]yd(x). (2.5)

Using (2.4), it gives

0 = [x, d(x)]yd(x) (2.6)

for all x, y ∈ I. Now we put y = yx in (2.6) and obtain that

0 = [x, d(x)]yxd(x) (2.7)

for all x, y ∈ I. Right multiplying (2.6) by x and then subtracting from (2.7), we get

0 = [x, d(x)]y[x, d(x)] (2.8)

for all x, y ∈ I. This implies for all x ∈ I that ([x, d(x)]I)2 = 0 and so [x, d(x)]I = 0, forcing
[x, d(x)] ∈ I ∩Ann(I) = 0. Then by Lemma 2.3, R contains a nonzero central ideal.

Corollary 2.5. Let R be a prime ring, I a nonzero ideal of R and F a generalized derivation of R. If
F([x, y]) = ±[x, y] for all x, y ∈ I, then R is commutative or F(x) = ±x for all x ∈ I.

Proof. Let d be the associated derivation of F. By Theorem 2.4, we conclude that either d(I) =
0 or R is commutative. Assume that R is not commutative. Then d(I) = 0. Since R is a prime
ring, d(I) = 0 implies d(R) = 0 and hence F(xy) = F(x)y for all x, y ∈ R. Set G(x) = F(x) ∓ x
for all x ∈ R. Then G(xy) = G(x)y for all x ∈ R. Now, our assumption F([x, y]) = ±[x, y]
gives F(x)y − F(y)x = ±(xy − yx), that is, G(x)y − G(y)x = 0 for all x, y ∈ I. Thus using
G(x)y = G(y)x, we have G(x)yz = G(y)xz = G(xz)y = G(x)zy, that is, G(x)[y, z] = 0 for
all x, y, z ∈ I. Thus 0 = G(I)[I, I] = G(IR)[I, I] = G(I)R[I, I]. Since R is prime, this implies
G(I) = 0 or I is commutative. By Lemma 2.1, I commutative implies that R is commutative,
a contradiction. Thus G(I) = 0 which gives G(x) = F(x) ∓ x = 0 for all x ∈ I.

Theorem 2.6. Let R be a semiprime ring, I a nonzero ideal of R and F a generalized derivation of R
associated with a derivation d of R such that d(I)/= 0. If F(x ◦ y) = ±(x ◦ y) for all x, y ∈ I, then R
contains a nonzero central ideal.

Proof. If F(I) = 0, then by our assumption we have that x ◦ y = 0, that is, xy + yx = 0 for
all x, y ∈ I. This implies that x(yz) = −(yz)x = −y(zx) = y(xz) = (yx)z = −(xy)z for all
x, y, z ∈ I and so 2I3 = 0, forcing 2I = 0. Therefore, for all x, y ∈ I, xy + yx = 0 gives xy = yx,
that is, I is commutative. Then by Lemma 2.1, I ⊆ Z and thus we obtain our conclusion.

Next assume that F(I)/= 0. Then for any x, y ∈ I, we have

F
(
xy + yx

)
= ±(xy + yx

)
. (2.9)
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Since F is a generalized derivation associated with a derivation d, above expression yields

F(x)y + xd
(
y
)
+ F

(
y
)
x + yd(x) = ±(xy + yx

)
. (2.10)

Putting y = yx in (2.10), we have

F(x)yx + x
(
d
(
y
)
x + yd(x)

)
+
(
F
(
y
)
x + yd(x)

)
x + yxd(x) = ±

(
xyx + yx2

)
. (2.11)

Right multiplying (2.10) by x and then subtracting from (2.11), we get

xyd(x) + yxd(x) = 0 (2.12)

for all x, y ∈ I. Replacing y with d(x)y in (2.12) and then again using (2.12) we find that

[x, d(x)]yd(x) = 0. (2.13)

Again replacing y with yx in (2.13) and then using (2.13) we obtain

[x, d(x)]y[x, d(x)] = 0 (2.14)

for all x, y ∈ I, which is the same identity as (2.8) in the proof of Theorem 2.4. Thus by the
same argument as in the proof of Theorem 2.4, we conclude that R contains a nonzero central
ideal.

Corollary 2.7. Let R be a prime ring, I a nonzero ideal of R and F a generalized derivation of R. If
F(x ◦ y) = ±(x ◦ y) for all x, y ∈ I, then R is commutative or F(x) = ±x for all x ∈ I.

Proof. Let d be the associated derivation of F. By Theorem 2.6, we conclude that either d(I) =
0 or R is commutative. If R is not commutative, then d(I) = 0. Since R is a prime ring, d(I) =
0 implies d(R) = 0 and hence F(xy) = F(x)y for all x, y ∈ R. Set G(x) = F(x) ∓ x for
all x ∈ R. Then G(xy) = G(x)y for all x ∈ R. Now, our assumption F(x ◦ y) = ±(x ◦ y)
gives F(x)y + F(y)x = ±(xy + yx), that is, G(x)y + G(y)x = 0 for all x, y ∈ I. Thus using
G(x)y = −G(y)x, we have G(x)yz = −G(y)xz = G(xz)y = G(x)zy, that is, G(x)[y, z] = 0 for
all x, y, z ∈ I. Thus 0 = G(I)[I, I] = G(IR)[I, I] = G(I)R[I, I]. Since R is prime, this implies
G(I) = 0 or I is commutative. By Lemma 2.1, I commutative implies that R is commutative,
a contradiction. Therefore, G(I) = 0 and hence G(x) = F(x) ∓ x = 0 for all x ∈ I.

Theorem 2.8. Let R be a semiprime ring with center Z/= {0}, I a nonzero ideal of R and F a
generalized derivation of R associated with a derivation d of R. If F([x, y]) ± [x, y] ∈ Z for all
x, y ∈ I, then Id(Z) ⊆ Z.

Proof. We have

F
([
x, y

]) ± [
x, y

] ∈ Z (2.15)
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for all x, y ∈ I. Since Z/= {0}, we may choose 0/= z ∈ Z. Then yz ∈ I for any y ∈ I. Now we
replace y with yz in (2.15) and then we get

F
([
x, y

]
z
) ± [

x, y
]
z = F

([
x, y

])
z +

[
x, y

]
d(z) ± [

x, y
]
z

=
{
F
([
x, y

]) ± [
x, y

]}
z +

[
x, y

]
d(z) ∈ Z.

(2.16)

By (2.15), we have [x, y]d(z) ∈ Z for all x, y ∈ I. Since d(z) ∈ Z, this gives that for any
r ∈ R, [r, [x, y]d(z)] = 0 which implies [rd(z), [x, y]] = 0 for all x, y ∈ I. By Lemma 2.2,
[rd(z), x] = 0 for all x ∈ I. Since d(z) ∈ Z, this gives [r, xd(z)] = 0 for all r ∈ R and for all
x ∈ I. Thus, xd(z) ∈ Z, that is, Id(Z) ⊆ Z.

Corollary 2.9. Let R be a prime ring with center Z/= {0}, I a nonzero ideal of R and F a generalized
derivation ofR associated with a derivation d. If d(Z)/= {0} and F([x, y])±[x, y] ∈ Z for all x, y ∈ I,
then R is commutative.

Proof. Since d(Z) ⊆ Z and Z contains no nonzero elements which are zero divisors, we have
from Theorem 2.8 that I ⊆ Z. Then by Lemma 2.1(b), we obtain our conclusion.

Theorem 2.10. Let R be a semiprime ring with center Z/= {0}, I a nonzero ideal of R and F a
generalized derivation of R associated with a derivation d of R. If F(x ◦ y) ± (x ◦ y) ∈ Z for all
x, y ∈ I, then Id(Z) ⊆ Z.

Proof. We have

F
(
x ◦ y) ± (

x ◦ y) ∈ Z (2.17)

for all x, y ∈ I. Since Z/= {0}, we choose 0/= z ∈ Z. Then yz ∈ I for any y ∈ I. Now we replace
y with yz in (2.17) and then we get

F
((
x ◦ y)z) ± (

x ◦ y)z = F
((
x ◦ y))z +

(
x ◦ y)d(z) ± (

x ◦ y)z
=
{
F
(
x ◦ y) ± (

x ◦ y)}z +
(
x ◦ y)d(z) ∈ Z.

(2.18)

By (2.17), we have (x◦y)d(z) ∈ Z that is (xy+yx)d(z) ∈ Z for all x, y ∈ I. Now putting y = yr
and x = rx, r ∈ R, respectively, we obtain that (xyr + yrx)d(z) ∈ Z and (rxy + yrx)d(z) ∈ Z.
Subtracting these two results yields [xyd(z), r] ∈ Z for all x, y ∈ I and for all r ∈ R. This
gives

[[
xyd(z), r

]
, s
]
= 0 (2.19)

for all x, y ∈ I and for all r, s ∈ R. We know the Jacobian identity [[x, y], z] + [[y, z], x] +
[[z, x], y] = 0 for any x, y, z ∈ R. Using this identity, it follows that

0 =
[[
xyd(z), r

]
, s
]
= −[[r, s], xyd(z)] − [[

s, xyd(z)
]
, r
]
. (2.20)
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By using (2.19), it reduces to

[
[r, s], xyd(z)

]
= 0 (2.21)

for all r, s ∈ R and for all x, y ∈ I. By Lemma 2.2, this implies that [xyd(z), r] = 0, that
is, [I2d(z), R] = 0. Thus [[I, I], Id(z)] = 0 and then again by Lemma 2.2, [I, Id(z)] = 0. This
yields 0 = [IR, Id(z)] = I[R, Id(z)]which implies Id(z) ⊆ Z, since [R, Id(z)] ⊆ I∩Ann(I) = 0.
Since z is any nonzero element in Z, we conclude that Id(Z) ⊆ Z.
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