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We deal with the following fractional generalization of the Laplace equation for rectangular
domains (x,y) € (xo,Xo) % (y0,Y0) C R, x R, which is associated with the Riemann-Liouville

fractional derivatives AP u(x, y) = \u(x, y), A% = D1** +Dy0+ﬂ ,where A € C, (a,f) € [0,1]x[0,1].
Reducing the left-hand side of this equation to the sum of fractional integrals by x and y,
we then use the operational technique for the conventional right-sided Laplace transformation
and its extension to generalized functions to describe a complete family of eigenfunctions and
fundamental solutions of the operator A% in classes of functions represented by the left-sided
fractional integral of a summable function or just admitting a summable fractional derivative. A
symbolic operational form of the solutions in terms of the Mittag-Leffler functions is exhibited.
The case of the separation of variables is also considered. An analog of the fractional logarithmic

solution is presented. Classical particular cases of solutions are demonstrated.

1. Introduction

Let D, fand I, f be the Riemann-Liouville fractional derivative and integral of order y > 0
defined by [1, 2]

()= (5 ) gy [, e wr=0m=bl

y f@®)
(1)@= 55 L L ax>0 (12)

where [ ] means the integer part of y. Consider a class of the linear nonhomogeneous
differential equations:

(Dhu) (x,y) + (Dyfu) (x,y) - du(x,y) = f(x,y), (13)
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where L € C, (a,p) € [0,1] x [0,1], f(x,v),0<x0 <x<Xp<00,0<ys Ly<Yyp<ooisa
prescribed function, and u(x, ) is to be determined. Denoting by

A%P .= plta . pI*P (1.4)

X0+ Yo+’

equation (1.3) can be written in the form (A% — AE)u = f, where E is the identity operator.
When ¢ = p = 1, we come out with the classical Poisson equation. Therefore we call
fractional partial differential equation (1.3) the fractional two-parameter Poisson equation (FPE).
Its homogeneous analog is naturally called the fractional Laplace equation (FLE) or fractional
two-parameter Laplacian.

In this paper we present a general operational approach [3] to describe eigenfunctions
and fundamental solutions of the fractional two-parameter Laplacian based on the
conventional right-sided Laplace transform [4]

F(s) = f(hedt, Tf >0, Res>ag (1.5)
Ty

of absolutely integrable functions f € L ((Tf, o0); e®'dt) with respect to the measure e™®'dt
and its distributional analog

F(s) = (f(t),e™) (1.6)

in Zemanian'’s space .£'(ay) defined below. Operational solutions will be written in terms of
the generalized Mittag-Leffler function E,, ,(z), [1, 2, 5] which is defined in terms of the power
series:

o) Zn
E,.(z)= ) ——, 0, veR, zeC. .
uv(2) nzzor(lm ) u>0,v z (1.7)

In particular, the function E,,(z) is entire of the order p = 1/u and type o = 1. The
exponential function and trigonometric and hyperbolic functions are expressed through (1.7)
as follows:

Ei1(z) = €%, Esq <—22> =cos z, E;1(z) = cosh z,
(1.8)
zEz» (—z2> =sinz, zEs» <zz> = sinh z.

We will consider in the sequel the existence and uniqueness of general solutions of the
fractional Laplacian and its particular cases. Possible applications and an investigation of the
fractional two-parameter Poisson equation (1.3) are still out of the framework of this paper
and will be done in forthcoming articles of the author.
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2. Eigenfunctions and Fundamental Solutions of the Fractional
Laplace Equation

We begin with the following.

Definition 2.1 (see [1]). By AC"([a,b]), n € N, one denotes the class of functions f(x), which are
continuously differentiable on the segment [a,b] up to the order n — 1 and ™V (x) is absolutely
continuous on [a, b].

It is known [1] that the class AC"([a,b]) contains only functions represented in the
form

F@) = o [ =g :Z_:ck<x ~a)f, @1)

where @(t) € Li(a, b) and ci are arbitrary constants. It is not difficult to find that ¢ (t) = f M (1),
cx = f®(a)/k!, Moreover, if f(x) € AC"([a,b]), then fractional derivative (1.1) exists almost
everywhere and can be represented by the formula

n-1 k) a) ~ 1 x f(n)(t)
Y _ \k —
<Da+f> E T Y) — L _(x-a)"+ ) L G dt, n=[y]+1. (22)

k=0

Definition 2.2 (see [1]). By I\, (Ly) denotes the class of functions f represented by the left-sided
fractional integral (1.2) of a summable function, that is, f = IL ¢, ¢ € Li(a,b).

A description of this class is given by the following.

Theorem 2.3 (see 1). A function f(x) € I' (L), y > 0 if and only if(IZ;Vf)(x) € AC"([a,b]),
n=[y]+1and (Ih; f)(k (a)=0,k=0,1,...,n—-1.

Definition 2.4 (see [1]). One will say that a function f € Li(a,b) has a summable fractional
derivative (DY, f)(x) if (I, f)(x) € AC"([a,b]), n = [y] + 1.

If (DL, f)(x) = (d/dx)"(I,," f)(x) exists in the ordinary sense, that is, (I, f)(x) is
differentiable in each point up to the order n, then f(x) evidently admits the derivative
(DL, f)(x) in the sense of Definition 2.4.

So, if f(x) € I, (Ly), then (I!, DY, f)(x) = f(x). Otherwise if f just admits a summable
fractional derivative, then the composition of fractional operators (1.1) and (1.2) can be
written in the form (see [1])

n-1 (x _ a))’*k*l < ey

(1Phf) @ = 10 - S5 )@, m=plen @)
-0

Nevertheless we note that (D), I}, f)(x) = f(x) for any summable function f.



4 International Journal of Mathematics and Mathematical Sciences

Consider now the eigenfunction problem for the fractional Laplace equation in the
rectangular domain (x,y) € (xo, Xo) x (Yo, Yo)

(D) (x,y) + (Dytu) (x,y) = hu(x, ), (2.4)

where A € C, (a,B) € (0,1] x (0, 1] in the following three cases:

(i) u(x,y) belongs to classes IL**(Ly), I;:f(Ll) by x € [x0,Xo] and y € [yo,Yol,
respectively;

(ii) u(x,y) admits a summable fractional derivative (D}C;’f )(x,y) by x € [x9, Xo] and

belongs to I y0+ (L1) by v € [yo, Yo] or vice versa;

(iii) u(x,y) admits summable fractional derivative (D,lcgfu)(x, Y), (D;:fu) (x,y) by x €
[x0, Xo] and v € [yo, Yo], respectively.

Theorem 2.5. [n case (i) trivial solution of (2.4) is the only solution.

Proof. Indeed, taking the operator I}*# from both sides of (2.4) and using the identity
(IF*DM ) (x, y) = u(x,y) it becomes

Xo+ Xo+
u(x,y) + (LeiDy ) (x,y) = ML) (x,y) = 0. (2.5)

Hence, applying the operator Iy0+ to both sides of (2.5), we use the fact that due Fubini’s

theorem this operator commutes with I;**. Then we obtain

(L) Gory) + (Tfu) (o) = A(Be L fu) (x,y) = 0. 2.6)

Hence from conditions of the theorem we observe that fractional integrals of the equation
(2.6) are Laplace-transformable functions. Therefore we may act on (2.6) by the conventional
right-sided Laplace transform (1.5), let say, by y with Tf = y,. Taking into account its
convolution and operational properties [3] after straightforward calculations we arrive at
the following second kind homogeneous integral equation of the Volterra type:

(Sl+ﬂ _

U(x,s) + ———= Ti+a)

Y) f (x - t)*U(t, s)dt = 0, (2.7)

where A € C,s € C,Res > ag > 0, s'*F = |s|!*Fel®, 0 = args € (- /2,o/2) and

Yo
U(x,s) = f e Stu(x, t)dt. (2.8)
Yo

Appealing to [5, Chapter 3] we find that (2.7) has the only trivial solution in the space
of summable functions and U(x,s) € Li(xy, Xo) because U(x,s) € I}C:f(Ll) for each s.
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Cancelling the Laplace transform and using its uniqueness property for summable functions

we get u(x,y) = 0. Theorem 2.5 is proved.
In case (ii), (2.6) should be substituted by the following equalities (see (2.3)):

(L) (x,y) + (Lnfu) (o y) - MLt (,y)

at (29)
= S (1) () + S (1) ),
or
(1) (e ) + (L) (v, ) = (T n ) ()
- (2.10)
) G- /1
= () )+ T (T ) (o),
where we denoted by
foly) = (Iiu) (0, ), (2.11)
fi(y) = (D5,.u) (x0,y), (2.12)
ho(x) = (I;O_fu) (x,0), (2.13)
hi(x) = (D§0+u> (x, o) (2.14)

Cauchy’s fractional initial conditions. Treating, for instance, (2.9) we take the Laplace
transform from its both sides and arrive at the following integral equation:

1+p _ x
U(x,s) + % Lo (x —t)*U(t,s)dt = F(x,s), x € (x0,Xo0), A€C, (2.15)
where
F(x,s) = %H}( )+ %Pl( ), (2.16)
Yo
Fi(s) = I e fi(Hdt, i=0,1. (2.17)
Yo

It is known [5] that a unique solution of (2.15) in the class of summable functions is

U(x,s) = F(x,s) - (s“ﬂ - A) fx (x - t)“E1+a,1+a(—(sl+ﬁ - A) (x - t)““)F(t, s)dt, (2.18)
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which involves as the kernel the generalized Mittag-Leffler function (1.7). Next, substituting
(2.16) into (2.15), using (1.7), (2.17), index laws for fractional operators [1], and the estimates

(=) [ =0 Erpaa(-(17 - 1) G- 0 Pt )

n+l
o <|s|1+ﬂ+|)t|>
< |FO(S)|nZ:0F((Tl +1)(1 +a))T(a)

< <|S|1+ﬁ * |)L|>n+1 * n(l+a)+a aq
B O S AT TE ., < 219)

< (Isf" + A1) (Xo = x0)*

X
J‘ (x _ t)n(1+a)+u(t _ xo)ufldt
X0

x |:E1+u,2a+1 (st + 1AT) (X0 = x0)"*%) f " e o

Yo

Yo
+(Xo — x0) Et4a2(a+1) <<|S|1+ﬂ + |)L|> (Xo - x0)1+a> I e ™| f1(t) |dt],

Yo

we write solution (2.18) of the Volterra type equation (2.15) in terms of the Mittag-Leffler
functions:

U(x,5) = (x = %0)" " Ervaa (= (" = 1) (x = x0) ") Fo s)
(2.20)
+ (= %0) Ervapea (~ (8" = 1) (x = x0) ") Fa(s).

In order to cancel the Laplace transformation by s in (2.20) we will appeal to its distributional
form (1.6) in Zemanian's space £'(0) (see [4]), which is dual of the countable-union space of
test functions £(0) defined by

£(0) = Oﬂ (2.21)
v=1

where {a,};2; is a sequence of real numbers a, > 0, which converges monotonically to 0+ as
v — oo and each £,, is a testing-function space of smooth functions ¢(y),y € (yo, o) and
for each nonnegative integer k it satisfies

prv(p) = sup e™?

y&(vo,)

According to [4, Chapter III] we assign £,, a topology generated by the multinorm (2.22).
Consequently, £, is a countably multinormed space and the kernel of the Laplace transform
e ! is a member of £,, if and only if Re s > a,,. Taking the space £(0) we have an advantage
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that the space of smooth functions with compact support D is dense in .£(0) and the members
of the dual £'(0) are distributions. Moreover, any f € £(0) is a right-sided Laplace-
transformable generalized function via the formula (1.6) with the right half-plane Re s > 0 as
a region of definition. Meanwhile, any analytic function F(s) on the half-plane Res > a > 0,
which satisfies the estimate

|F(s)| < e TReSP(|s]), Res>a, (2.23)

where P(z) is a polynomial, may be identified as the Laplace transform (1.6) of a right-sided
Laplace-transformable generalized function which is concentrated on T < t < co. Finally, the
uniqueness and inversion properties are true and the inversion formula has the form

o+ir
f(t) = limf F(s)e®'ds, (2.24)
r—=o% ) s-ir

in the sense of convergence in @' for any o > 0.

So in order to find eigenfunctions and general fundamental solutions of the fractional
Laplace equation (2.4) we will invert the Laplace transform in (2.20) by using formula (2.24).
Of course, we understand that the conventional right-sided Laplace transform (1.5) is a
particular case of (1.6) being applied to a regular generalized function f € L ((Tf, o0); e”®!dt),
ap > 0.

Further, we have

o+ir d 1+p)]+1 po+ir
lim " Fi(s)eYds = lim < > f stAAI-1E (5)eY ds
r=% ) o-ir e dy o-ir (2.25)

< n(1+ﬂ)fl> (y), i=0,1, neN,,

where { } is a fractional part of the number, the convergence is in ®', and we assume that

(I;O_["(Hﬂ 2 fi)ly) € ACI1+p)]+1 [0, Yo] for any n € Nj. Therefore, canceling the Laplace
transformation in (2.20) and taking into account (2.16) after straightforward calculations we
get the expression for a family of eigenfunctions of (2.4):

n(l+a)+a-1

uy(x,y) i

n=0

(x Xo)

x 19, ((1,11 +1);1+an(l+a)+a)r(x- xo)1+a> < pr+h )(y)

+ i OO gyrtivara g, ((Ln+1); (1 +a, (4 1)1+ @)); Ax - x0)'*)

( DjP f1>(y)

(2.26)
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where 1¥;((a1,b1); (c1,d1); z) is the generalized Wright function [2]:
& T(aym+by) z™

W1 ((a1,by); (c1,dr);2) = D, = Haym + by) =7 (2.27)

o T(em+dy) m!’

and the convergence of series in (2.26) is in @'. Letting in (2.26) A = 0 we immediately come
out with a classical fundamental solution of (2.4):

n(l+a)+a-1

R n (X = x0) D+
uf(x/y) = nZ:O(_l) r(n(10+ a)+a) ( Yo f0> (y)

(2.28)

n(l+a)+a

n_ (X —x0) D
+nz(_ ) F((n+1)(1+a))< f) ®):

Taking into account definition (1.7) of the Mittag-Leffler function, solution (2.28) may be
written in the operational form

Llf (x/ y) = (x - xO)a71E1+a,a <_(x - xO)lJraD;:ﬂ)fO (y)

(2.29)
+(x = x0)"Et4a14a <—(x - xo)lmD;:ﬂ)fl (y).
Analogously, in the case of (2.10) we show that
< (1) n(1+p)+p-
o) = 3 =) P
n=0 :
X 1%, <(1,n +1); (L4 fn(1+ ) +B)iA(y - o) ") (D& *ho ) (x)
i — )" P (L 1); (14 B, (4 (14 B))i My - o) ™)
x (DZ[E“”‘)hl)(x),
(2.30)
(%, ) = (v = %0)" " Evapp(=(y = 90) " DY o)
(2.31)

+ (v = 90) Evprop (- (v = 90) D) ()

are also correspondingly eigenfunctions and a fundamental solution of (2.4).
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On the other hand we may write solutions (2.29) and (2.31) in the form of the
generalized Neumann series. Namely, we find

us(x,y) = Z( "1 (- x0)* (DG 1) (v)
(2.32)

1 - n yn(l+a) n(1+ﬂ)
+1"(1+a)nzzo(_1) Ly = x0)* (D) £1) ),

taking in mind the analyticity of series in (2.32) by x in the interval 0 < € < |x — x| < Rand
by v € (yo, Yo). In the same manner, we represent (2.31) by the expression

Un (x’ y) r(ﬂ) Z( n ;lo(Hﬂ (y - yo)ﬁ_1< xol-m)h >(x)
(2.33)

r(l p)z(_ ) In(1+ﬂ)(y_yo)ﬁ<Dz§1+u)h1>(x)

with arbitrary hy, h; assuming analyticity of the corresponding series by y in the interval 0 <
€< |y—-yo| < Rand by x € (xg, Xo). Now taklng into account zero values D“"‘ (x=x0)"1 =0,
D}C:jj‘(x x0)* =0, DyOJr (y - yo)ﬂ L=, DyOJr (y — yo)" = 0 it is not difficult to verify that (2.32)
and (2.33) are classical fundamental solutions of the fractional Laplacian A*fy = 0 subject to
conditions (2.11), (2.12), (2.13), and (2.14) respectively. Thus we have proved O

Theorem 2.6. In case (ii) functions (2.26) and (2.30) represent eigenfunctions of the fractional
Laplacian (2.4) and expressions (2.28) and (2.31) are unique classical fundamental solutions subject
to conditions (2.11), (2.12), (2.13), and (2.14) respectively. These solutions can be written in the
corresponding form of generalized Neumann series (2.32) and (2.33) under additional conditions of
analyticity.

Finally, in case (iii) an analog of (2.9) and (2.10) is
(Theu) (e ) + (L) () = (T, fu) (2, y)
_ (x — x0)™" <1+ﬂ >( )+ (x —x0)" <1+ﬂ >( )
=TT \wrfo P+ ay 1) (¥ (2.34)

Y-9)"" /1 =)’ /1
+ r(;) (1;0+h)(x)+ i ;) (1;0+h1)(x).

Consequently, in the right-hand side of Volterra’s equation (2.15) we get an additional term

1+4 _ x
U(x, s) + (77 - 1) f (x - t)*U(t, s)dt = F(x, s) + e %° (1;;3(5h0 + h1)> (x),  (2.35)

rt+a) ),
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which will give a source for generalized eigenfunctions and fundamental solutions of the
fractional Laplacian (2.4). In fact, owing to the estimates

(s“ﬂ - A) J‘x (x —)"Eita+a (- <Sl+ﬁ - /\> (x— t)“"‘)l—"(t, s)dt

X0

< <|s|1+ﬂ * Ml " n(l+a)+a u—ld
< 'FO(s”an((m D1+ a)T@) I (x - (£ =x0)™"dit

(st + )™

" |F1(S)|Z AT((n+ 1)1+ a)[(1 + )
o Jsl(IsI™P +140) "

SHI(n+1)(1+a)l(1+a)

S (ST
=T(n+1)(1+a)l(1+a)

X
f (x _ t)n(1+u)+a (t _ xo)lxdt
X0

X t
f (x—t)”‘“‘*)*”f (t —0)*|ho(v)|dv dt

x t
f (x — )rFaa f (t — )|l (v)|do dt
X0 X0

Yo
< (Is™ + A1) (Xo - x0)* [EM,M (11 + 101) (Xo - x0)'*%) LO e fo(t) |t
+ (X0 = x0) E1+a,2(a+1) <<|5|1+ﬂ + |A|> (Xo - xo)““)
Xo

Yo X0

Yo
x I:f —aotlf1 t) |dt +|s| |h0(t)|dt +I |hy (t)|dt]] < oo,

(2.36)

we write solution of the Volterra type equation (2.35) in terms of the Mittag-Leffler functions
and generalized Neumann series:

U(x,s) = (x - x0)* " Ersan (— (s“ﬂ - )L) (x - xo)““)Fo(s)

+ (x - xo)aElJra,lJra <_ (Sl+ﬂ - )L> (x - x0)1+a>F1 (S) (237)
e yosZ( D" (877 = 0) " (L5 (sho + 1)) (x).
Cancelling the Laplace transformation we take in mind the relations

o+ir
lim §"14h) gs(=w0) g g

— .
r=% ) o-ir

d \ [M+p)+1 poir t—{n(1+ﬂ)l ,
1 - 6(t—1yp), e Ye¥d
jim (75) L_ir<r<l—{n<l+ﬂ>}>*( e > T

4 \ [P+ t;{"(“ﬂ)} n(1+ﬂ)
@) (s ot ) - @790,
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where 6 is Dirac’s delta-function and * denotes the convolution product. Therefore, after
straightforward calculations we get the expression for a family of eigenfunctions of (2.4):

u(x,y) = Z

x 19, ((1,71 +1);(1+a,n(l+a)+a);(x- x0)1+“> ( "(Hﬂ)fo) (y)

n(l+a)+a-1

(x Xo)

+ io (—nl!)” (x = x0)" (O g, <(1,n +1);(1+a,(n+1)(1+a));M(x - x0)1+zx>

» <D;él+ﬂ)f1> (y) n J:C hy (t)i (—r:ll')n

x (x — ) <(1,n +1); 1+ a, (n+ 1)1 +a)); A(x - t)““)
n(l+ * < (-1)" n(l+a)+a
X (Dyél ﬁ)5> (y)dt+ LU ho(t)nzzo%(x — g+

x 19 (L +1); (L@ (n+1)(1+a); (x5

x (D '8') (y)at,
(2.39)
where the convergence of series in (2.39) is in @'. Letting in (2.39) A = 0 we derive a

generalized fundamental solution of (2.4):

o ; (x —x )n(1+a)+a—l n(1+ﬂ)
u(xy) = §<‘1> v @) 7 (0" fo) )

n(l+a)+a

(x — x0) D)
+Z( " Fars (v a (P £)®)

(2.40)
_ t)(n+1)(1+a)—1

o (x D
+L0 hl(t)nzzo(_l F((n+1)(1+a))< 5) (y)dt

)(n+1)(1+a)—1

* & n(x—t D)
+L0h°(t)nz_0(_l F((n+1)(1+a))< &) (v)dt,

which may be written in the operational form

u(x,y) = (= %0 Ervaa(~(x = 20) ™ Dy") fo ()

+ (x — x0)"Et+aj+a <—(X - xo)lmD;ﬂ)fl (v)

x 2.41
- f (= ) Ervqea (—(x =)Dy )6 (y) (1) dt 24D

+ f (x = )*Etsa 14 <—(x - t)““D;jﬁ) &' (y)ho(t)dt.
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Analogously, functions

0 (x,y) = z( (y = o) "

x 1w (1,4 1); (14 B,n(1+ B) + B); Ay = y0) ") (DE o) ()

_,f,)" (v =y0)" PPy (L m+1); 1+ B, (4 (1 + )i Ay - o))

M5

i
(=}

><< n(1+a )(x)+ hl(t)z( -1)"

Yo n!

x (= 8)""PP o (@ +1); (14 B, (4 DA+ ) My - 1))

X(D"“*“ >(x)dt+j ho(t)z np)p

x 1w (L +1); (14 B, (n+ 1)(1+B)); Ay - 1))

x (D"““‘ )(x)dt
(2.42)

u(x,y) = (¥ = y0)" " Evapp (= (v = %0) D) ho()

+ (1= 90) Erprp (- = o) DL ) )

(2.43)

y
(v =) Evprp(—(y ) "PDL7)6(x) f1 ()t
Yo

y
(v =1 Evprep(~(y )P DL) 6 (x) fo(t)at
Yo

are also correspondingly eigenfunctions and generalized fundamental solutions of (2.4).

Theorem 2.7. In case (iii) functions (2.39) and (2.42) represent eigenfunctions and expressions
(2.40), (2.41), and (2.43) are generalized fundamental solutions of the fractional Laplacian (2.4).

Example 2.8. As a particular case, it is not difficult to obtain from (2.28), (2.31) the classical
fundamental solution u(x,y) = (1/2) log((x — x0)% + (y - yo)z) of the Laplace equation Au =
0 (a = p =1). Indeed, putting f1(y) = hi(x) =0, fo(y) = log(y — yo), ho(x) = log(x — x¢) we
assume, correspondingly, (x —xo)/(y —yo) <1, (x = x0)/(y — yo) > 1in (2.28), (2.31), and for
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instance, solution u(x, y) becomes

1 2n n
u (o) = Z@%(log(y—yo))b )
OO(_1)n+1 x-x0\*"
=log(y - yo) + 27—, (y—yo>

_ ~ e (-1)" /x—x\ 2D (2.44)
=log(y y0)+;_02(n+1)<y—y0>

1 X — X )2
=1 - + =1 1+
0g(y —¥o) +5 Og< <y 0 >
= llog<(x - x0)*+ (y - y0)2>.
2
Analogously we treat solution (2.31).

3. Separation of Variables: Analytic Solutions

The method of separation of variables allows us to simplify eigenfunctions and fundamental
solutions of the fractional Laplacian. Indeed, putting u(x,y) = u(x)u2(y), substituting in
(2.34), and taking into account initial conditions (2.11), (2.12), (2.13), and (2.14) it becomes

() (10w ) () + 11 (30) (I P12 ) () = A (T ) o) (137 ) ()
= al%( ;:fm) (y) + a2 1—+a)) (I;;fm) (v) (3.1)

- —J0 1+a
th (yr(],/ﬁ)) (D) () + o (Fy(l fﬂ)) (L) (o),

where a;, b; € C,i = 1,2 are arbitrary constants. If (I}Jf}ul) (x) (I;:qu) (y) #£0, (x,v) € (x0, Xo) x
(o0, Yo) we divide (3.1) by this product and separate variables, getting two Abel’s type second
kind integral equations to define u;, i = 1,2, namely,

a-1 a
l4a _(x=x0) (x — xp)
1 (x) +#<Ixo+ )(x) = T(a) a, TAra)

. ; (3.2)

Y-y)" . W-w)

A by b ’

uz(y) ( +#)< yo+”2><]/) F(ﬂ) + 2F(1+ﬁ)

where A, y € C are constants. We note that the equality (I}C;fm) (x) (Iy;f u)(y) = 0 for at least

one point (¢, 77) agrees with (3.1) and (3.2). So we solve the latter equations similarly to (2.18),
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arriving at the following family of eigenfunctions u, ,(x, y) = u1(x)u2(y), where

u1(x) = a1 (x — x0)* ' Ettan (/i(x - xo)“”‘)
+ a(x — x0)"Etsa14a (ﬂ(x xo)““)
w(y) = b1 (v = )" Erpp (A= 1) (y = 10)' )

+b2(y = o) Eveprop((A - 1) (v - w0) ).

(3.3)

On the other hand, we may write these solutions in terms of the generalized Neumann series.
Precisely, denoting by

(x = x0)*" . (x — x0)"
T(a) TA+a)’

Ua(x):al
(3.4)
) ()
K (R (FTK

and recalling index properties for the fractional integral (1.2) we get representations of (3.3) in
the respective resolvent form for fractional integral operators I }C;’“ : L1(xo, Xo) — L1(xo, Xo),

I;:ﬁ : L1(yo0, Yo) — Li1(yo, Yo):
) = S oap = (B 1) oo =R (157,
u (y) = ZI”mﬂ)v (A-p)" = (E (- y)I;;ﬁ>_1vﬂ (3.5)
= R(A W 1+ﬂ>vp,

where E as usual is the identity operator. It is easily seen that series (3.5) are analytic with
respect to x € (xo, Xo) and y € (yo, Yo). Further, since (see (1.2))

< Xo- x0)*""

i VA 3.6
)Ll(xo,xo) = r(l + [X) ||f”L1(x0,X0)’ ( )

L, f

we have

)l Sl e« () e

n=0
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Therefore the resolvent functions R(z; I }C;""), R(z I ;: p ) are analytic in the open discs:

T(1+a) r+p)
lzl < 7 BE<—— 5 (3.8)
(XO - xO) (YQ - yo)
respectively. Thus we write a family of eigenfunctions for (2.4) in the resolvent form
a 1
uy(x,y) = R(y,‘ Iy >’0a R()L - u; Iy§ﬁ>vﬁ. (3.9)

Indeed, substituting (3.9) into (2.4) taking into account the values D}Cgfva = D;:fvﬁ = 0 after
a simple change of the summation index into the series we easily satisfy (2.4). But we will
extend our family of eigenfunctions considering

w(xy) =R(wI)f RA-w1")g, rec, (3.10)

with arbitrary f(x), g(y) such that L™ £ € AC2([xo, Xo]), I;l(](1+ﬂ)+l_ﬁg € AC%*([yo, Yo)),
and the corresponding resolvent function (3.5) are analytic by x and y. So substituting (3.10)
into (2.4) and ignoring trivial cases Dy} f = D;:f g = 0 which drive immediately to (3.10)
with f = v,, ¢ = vp (see (2.3)), after separation of variables we obtain fractional differential

equations to define f, g:

Dief = R (1 15%) f,
(3.11)

1 1
Dytg=-cR(A- 1,7 )g,

where ¢ is an arbitrary constant. Hence acting by inverse operators E—pI}** and E—(A—p)I ;:ﬂ
on (3.11) with the use of (2.3) we get, correspondingly,

Dyif = (p+c)f(x) + poe,

1+p

Dyig=A-p-c)g(y) + (A-p)vp.

(3.12)

The latter equations are solved, for instance, in [1, 2] and we obtain the following solutions
(ci,d;,i = 1,2 are constants):
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£(@) = e = %0) Ervaa (1 + €) (x = x0)*%)
+c2(x - xO)uE1+a,1+u<(,u +c)(x - x0)1+a>
+ pay (x = x0)**Etra a1 ((# +c)(x - x0)1+a>
+ par (x = x0) > Evvap(as) ((H +c)(x - x0)1+”‘>,
g(w) = di(y - y0)" " Evpp((A= =) (y-0)"™")
+da(y = y0) Eveprp (A== ¢) (y = 0)' ™)
+ (A= )b (Y = ¥0) P Erepapr (A== ) (v =) ™)

+ (A= b2y = y0)* Evpagpe (A== ¢) (y = 90) ™).

(3.13)

Consequently, (2.4) has families of eigenfunctions (3.9) and (3.10) with f and g given by
(3.13). The case A = 0 naturally gives classical fundamental solutions ug,(x,y) = u1(x)uz(y)
with uy, up, for instance, in the form (3.3).

Remark 3.1. Letting « = f = 1 in (3.3) and using (1.8) we obtain familiar trigonometric
eigenfunctions of the Laplace equation Au = Au.

Returning again to functions f;(y), hi(x), i = 0,1 from Section 2 we suppose the
following power-logarithmic analytic expansions in the neighbourhood of points o, xo,
0<n<ly—yol <ra=1[Yo—yol, 0 <p1 < [x —x0| < p2 = [Xo — X0/, namely,

fiy) = ailog(y —yo) + (v — )" Dan(y - yo)*, i=12, pi>-1,
k=0
(3.14)

hi(x) = bjlog(x — x0) + (x — xo)”"Zb,-k(y - yo)k, i=1,2, vi>-1.
k=0

Hence owing to [1] and straightforward calculations we get for each n € Ny
(1
(D 1) (v)

n(1+p) i—n(1
= a;Dy P log (v - yo) + (y — o) P

. in ([ mp) —ui>>§0<-1>kaikr<k # i DT (n(1+B) = =) (5 - 90)",

Jr
<Dz(51+a)hi> (x)
= 5D log(x - xg) + (x — xg) "1+
X (_;)n sin(or({na} - Vi))i(—l)kbikr(k +vi+ DI(n(1+a) —vi—k)(x - xo)k,

k=0
(3.15)
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where i = 0, 1. Substituting the latter expressions into (2.32), (2.33) we get

0 n(l+a)+a-1

_ n (X — Xo) (x = xp)ar | yn(1+p) _
uf(x,y) - nz:(:)(_l) I'n(l+a)+a) 4ot n(l+a)+ a]Dy" log(y yo)

F e 20)™ (¥ - y0)" = 3 (1) anesin(r({np) - o))

k,n=0

F(n(l +ﬂ)—y0—k)1"(k+/40+1) (x—x0)1+“ " k
* I'n(l+a)+a) <(y—}/0)1+ﬂ> (v = wo) (3.16)
) (= )" & 3% D aesin(r((np) - )
k,n=0
» I(n(1+p) - —-k)T(k+p1+1) [ (x - x0)*™ n( ~ )k
T((n+1)(1+a) -y )
© _ n(1+p)+p-1 _ b
o) = S gy [ P e
# (= 90) = x0)" . 3] (1) buesinGr((na) - o))
k,n=0
T +a) - v~ T(k+w +1) (y—yo>“”>" o 3.17
I(n(1+p)+p) < (x — x0) ™ (x = x0) (3.17)

# (= 90) (= x0)" - 3% () byesinGr((na) - )

k,n=0

L(n(1+a) ~v KTk +v1+1) ( (= y0)"" n(x—x )
I'((n+1)(1+p)) (x - x0)"** v

where double series in (3.16), (3.17) are absolutely and uniformly convergent on the compact
O<r<ly—vyol < =Yo—yol, 0 < p1 <|x—x0] < p2 =|Xo — x| owing to conditions

- ry < o0,
= T(n+ 1)1 +a)) ,P

$ lanT(n(1+) —pu B[k opu +1) <p> k

(3.18)

w AN
byl (n(1 +a) = v — K)IC(k + v, + 1) <r2+ > <

o+ (1 +p)) =
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We will call the ordinary series in (3.16), (3.17) fractional logarithmic solutions. Taking into
account, for instance, the representation (see (1.1))

n(1+p)
D log (v - o)

4 \ [+ _tnpy [ “(n
_ <@> [(y—yo)1 " fo (1-p 10g((y—yo)t)dt]

()1 ) F("(“ﬁ))[ _10g(y—yo)]
e b e e

+(["(1 +B)] + D)ICA T (n(1+p) -m)
r'({np}) = m([n(1+p)] +1-m)! !
(3.19)

where d,, = J’; (1-t)"1"P) log t dt, we may substitute it in (3.16) to write the ordinary series in a
different form and to guarantee its absolute convergence in the region (x—xo)"**/ (y—yo)"*f <
1. Finally we note that in the similar manner we treat the ordinary series in (3.17).
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