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The equation Lu = f , where L = A + B, with A being a K-positive definite operator and B
being a linear operator, is solved in a Banach space. Our scheme provides a generalization to
the so-called method of moments studied in a Hilbert space by Petryshyn (1962), as well as
Lax and Milgram (1954). Furthermore, an application of the inverse function theorem provides
simultaneously a general solution to this equation in some neighborhood of a point xo, where L is
Fréchet differentiable and an iterative scheme which converges strongly to the unique solution of
this equation.

1. Introduction

Let Ho be a dense subspace of a Hilbert space, H. An operator T with domain D(T) ⊇ Ho is
said to be continuouslyHo-invertible if the range of T , R(T)with T considered as an operator
restricted to Ho is dense in H and T has a bounded inverse on R(T). Let H be a complex
and separable Hilbert space, and let A be a linear unbounded operator defined on a dense
domain D(A) in H with the property that there exist a continuously D(A)-invertible closed
linear operator K with D(A) ⊆ D(K) and a constant α > 0 such that

〈Au,Ku〉 ≥ α‖Ku‖2, u ∈ D(A). (1.1)

Then A is called K-positive definite (see, e.g., [1]). If K = I (the identity operator on H),
then (1.1) reduces to 〈Au, u〉 ≥ α‖u‖2, and in this case A is called positive definite. Positive
definite operators have been studied by various authors (see, e.g., [1–4]). It is clear that the
class of K-pd operators contains, among others, the class of positive definite operators and
also contains the class of invertible operators (when K = A) as its subclass.
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The class of K-positive definite operators was first studied by Petryshyn, who proved,
interalia, the following theorem (see [1]).

Theorem 1.1. If A is a K-pd operator and D(A) = D(K), then there exists a constant α > 0 such
that, for all u ∈ D(K),

‖Au‖ ≤ α‖Ku‖. (1.2)

Furthermore, the operator A is closed, R(A) = H, and the equation Au = f , f ∈ H, has a unique
solution.

Chidume and Aneke extended the notion of a K-pd operator to certain Banach
spaces (see [5]). Later, in 2001, we also extended the class of K-pd operators to include
the Fréchet differentiable operators. A new notion—the asymptotically K-pd operators—
was also introduced and studied in certain Banach spaces. We proved, among others, the
following theorem.

Theorem 1.2 (see [6]). Suppose that X is a real uniformly smooth Banach space. Suppose that A
is an asymptotically K-positive definite operator defined in a neighborhood U(xo) of a real uniformly
smooth Banach space, X. Define the sequence {xn} by xo ∈ U(xo), xn+1 = xn + rn, n ≥ 0, rn =
K−1y−K−1Axn, y ∈ R(A). Then {xn} converges strongly to the unique solution ofAx = y ∈ U(xo).

In this paper, we consider the composed equation

(A + B)u = f, (1.3)

where A is K-pd and B is some linear operator in a Banach space E. Our interest is on
the existence and uniqueness of solution to the above equation in a Banach space. We also
consider an iterative scheme that converges to the unique solution of this equation in an
arbitrary Banach space. Our method generalizes the so called method of moments, studied in
Hilbert spaces by Petryshyn [1] and a host of other authors.

2. Preliminaries

Let E be a real normed linear space with dual E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is strictly
convex then J is single valued and if E is uniformly smooth (equivalently if E∗ is uniformly
convex) then J is uniformly continuous on bounded subsets of E. We will denote the single-
valued duality mapping by j.
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Lemma 2.1. Let E be a real Banach space, and let J be the normalized duality map on E. Then for any
given x, y ∈ E, the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J
(
x + y

)
. (2.2)

3. Main Result

Let E be an arbitrary Banach space and A a K-positive definite operator defined in a dense
domain D(A) ⊆ E. Let B be a linear unbounded operator such that D(B) ⊇ D(A). We prove
that the equation

Lu = f, (3.1)

where L = A + B, has a unique solution and construct an iterative scheme that converges to
the unique solution of this equation. Let

Lu = (A + B)u = f. (3.2)

Multiplying both sides of (3.2) by A−1, we have

u + Tu = g, (3.3)

where T = A−1B, g = A−1f . Since A is continuously invertible, the operator T = A−1B is
completely continuous. Hence T is locally lipschitzian and accretive. It follows that (3.3) has
a unique solution (see [7]).

If A = B, then L = A + B = 2A. In this case 〈Lu,Ku〉 = 2〈Au,Ku〉 ≥ 2α‖Ku‖2 =
β‖Ku‖2. Thus L is K-positive definite and so the equation Lu = f has a unique solution
(see [5]). Examples of such A are all positive operators when K = I and are all invertible
operators when K = A. If A/=B, then let E = l2, for instance, and define A : l2 → l2 by
Ax = (ax1, ax2, ax3, . . .) for x = (x1, x2, x3, . . .) ∈ l2 and a > 0. Let K = I, the identity operator,
then 〈Ax, x〉 = a

∑∞
i=1 x

2
i = a‖x‖2 > (1/2)a‖x‖2. Thus A is K-positive definite. Let B be any

linear operator; in particular, let B : l2 → l2 be defined by Bx = (0, x1, x2, x3, . . .). Then by
(3.2) and (3.3), the equation Lu = f , where L = A + B, has a unique solution.

Next we derive the solution to (3.2) from the inverse function theorem and construct
an iterative scheme which converges to the unique solution of this equation.

Theorem 3.1 (the inverse function theorem). Suppose thatE, Y are Banach spaces and L : E → Y
is such that L has uniformly continuous Fréchet derivatives in a neighborhood of some point uo of
E. Then if L′(uo) is a linear homeomorphism of E onto Y , then L is a local homeomorphism of a
neighborhood U(uo) of uo to a neighborhood L(uo).

Proof. For a sketch of proof of this theorem, see [6].
By mimicking the proof of Theorem 3.1 of [6], we get that, if ‖g − Luo‖ is sufficiently

small, Lu = g has a unique solution u = uo + ρ∗, where ρ∗ is the limit of the sequence ρo = 0,
ρn+1 = Qρn, where Q is a contraction mapping of a sphere S(0, ε) in E into itself, for some ε
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sufficiently small. It follows that the sequence un = uo + ρn converges to uo + ρ∗, the unique
solution of Lu = g inU(uo). Now

un = uo + ρn = uo +Qρn−1

= uo +
[
L′(uo)

]−1[
g − L(uo) − R

(
uo, ρn−1

]
from Taylor′s theorem

= uo +
[
L′(uo)

]−1[
g + L′(uo)ρn−1 − L

(
uo + ρn−1

)]

= uo + ρn−1 +
[
L′(uo)

]−1[
g − L(un−1)

]

= un−1 +
[
L′(uo)

]−1[
g − Lun−1

]
.

(3.4)

Hence

un+1 = un +
[
L′(uo)

]−1[
g − Lun

]
. (3.5)

Special Cases

(1) If B = I, then (3.5) becomes

un+1 = un +
[
A′(uo)

]−1[
g −Aun + un

]
. (3.6)

(2) If B = 0, then we have Corollary 3.2 of [6].

For the case B = 0, we prove the following theorem for an asymptotically K-positive definite
operator. Recall (see [6], page 606) the definition of an asymptotically K-pd operator. For
simplicity and ease of reference, we repeat the definition.

Definition 3.2. Let E be a Banach space, and let A be a linear unbounded operator defined on
a dense domainD(A) ⊂ E. The operatorA is called asymptotically K-positive definite if there
exist a continuouslyD(A)-invertible closed linear operatorKwithD(K) ⊇ D(A) ⊇ R(A) and
a constant c > 0 such that, for j(Ku) ∈ J(Ku),

〈
Kn−1Au, j(Knu)

〉
≥ ckn‖Knu‖2, u ∈ D(A), (3.7)

where {kn} is a real sequence such that kn ≥ 1, limn→∞kn = 1.

We now prove the following theorem for an asymptotically K-positive definite
operator equation in an arbitrary Banach space, E.

Theorem 3.3. Let E be a real Banach space. Suppose that A is an asymptotically K-positive definite
operator defined in a neighborhood U(xo) of a real Banach space, E. Define the sequence xn by xo ∈
D(A), xn+1 = xn + rn, n ≥ 0, rn = K−1f − K−1Arn, f ∈ R(A). Then xn converges strongly to the
unique solution of Ax = f .
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Proof. By the linearity of K we have

Krn+1 = Krn −Arn. (3.8)

Using Lemma 2.1 and Definition 3.2, we obtain

‖Knrn+1‖2 =
∥∥∥Knrn −Kn−1Arn

∥∥∥
2

≤ ‖Knrn‖2 − 2
〈
Kn−1Arn, j

(
Knrn −Kn−1Arn

)〉

≤ ‖Knrn‖2 − 2ckn‖Knrn+1‖2.

(3.9)

It follows that

(1 + 2ckn)‖Knrn+1‖2 ≤ ‖Knrn‖2 (3.10)

or

‖Knrn+1‖2 ≤ (1 + 2ckn)
−1‖Knrn‖2. (3.11)

The last inequality shows that the sequence Krn is monotonically decreasing and hence
converges to a real number δ ≥ 0. Hence limn→∞‖Knrn‖ = 0. Since K is continuously
invertible, then rn → 0, and since A has a bounded inverse, we have that xn → A−1f ,
the unique solution of Ax = f , f ∈ E.

Our next result is a generalization of Theorem 3.6 of Chidume and Aneke [6] to an
arbitrary real Banach space.

Lemma 3.4 (Alber-Guerre [8]). Let {λk} and {γk} be sequences of nonnegative numbers, and let
{αk} be a sequence of positive numbers satisfying the condition

∑∞
1 {αk} = ∞ and γn/αn → 0, as

n → ∞. Let the recursive inequality

λn+1 ≤ λn − αnφ(λn) + γn, n = 1, 2, . . . (3.12)

be given where φ(λ) is a continuous and nondecreasing function from R+ → R+ such that it is
positive on R+ − {0}, φ(0) = 0, limt→∞φ(t) = ∞. Then λn → 0, as n → ∞.

Theorem 3.5. Suppose that E is a real Banach space and A is an asymptotically K-positive definite
operator defined in a neighbourhood U(x0) of a real Banach space, E. Suppose that A is Frećhet
differentiable. Define the sequence {xn} by x0 ∈ U(x0), xn+1 = xn + rn, n ≥ 0, rn = K−1y −K−1Axn,
y ∈ R(A), and xn+1 − xn → 0, as n → ∞. Then {xn} converges strongly to the unique solution of
the equation Ax = y ∈ U(x0).
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Proof. By the linearity of K we have Krn+1 = Krn −Arn. Using Lemma 2.1 and the definition
of an asymptotically K-positive definite operator, we obtain

‖Knrn+1‖2 ≤
∥∥∥Knrn −Kn−1Arn

∥∥∥
2

≤ ‖Knrn‖2 − 2
〈
Kn−1Arn, j(Knrn+1)

〉

≤ ‖Knrn‖2 − 2
〈
Kn−1Arn, j(Knrn)

〉
− 2

〈
Kn−1Arn, j

(
Knrn+1 − j(Knrn)

〉

≤ ‖Knrn‖2 − 2ckn‖Knrn‖2 − 2
〈
Kn−1Arn, j(Knrn+1) − j(Knrn)

〉

≤ ‖Knrn‖2 − 2ckn‖Knrn‖2 + 2
∥∥∥Kn−1Arn

∥∥∥
∥∥j(Knrn+1) − j(Knrn)

∥∥.

(3.13)

Now,

Knrn+1 −Knrn = Kn(rn+1 − rn) = KnK−1A(xn+1 − xn). (3.14)

Since xn+1 −xn → 0 and j is uniformly continuous, it follows that ‖j(Knrn+1)− j(Knrn)‖ → 0
as n → ∞. SinceA is Fréchet differentiable, then ‖Kn−1Arn‖ is necessarily bounded inU(x0),
whence

‖Knrn+1‖2 ≤ ‖Knrn‖2 − 2ckn‖Knrn‖2 + o(r). (3.15)

We invoke Alber-Guerre lemma, Lemma 3.4, with φ(t) = t and λn = ‖Knrn‖2. Thus ‖Knrn‖ →
0 as n → ∞. Since K has a bounded inverse; then rn → 0 as n → ∞, that is, Axn → y.
Hence xn → A−1y, the unique solution of Ax = y inU(x0).
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