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M. H. Al-Abbadi and M. Darus (2009) recently introduced a new generalized derivative operator
μn,m
λ1 ,λ2

, which generalizedmany well-known operators studied earlier by many different authors. In
this present paper, we shall investigate a new subclass of analytic functions in the open unit disk
U = {z ∈ C : |z| < 1} which is defined by new generalized derivative operator. Some results on
coefficient inequalities, growth and distortion theorems, closure theorems, and extreme points of
analytic functions belonging to the subclass are obtained.

1. Introduction and Definitions

Let A(x) denote the class of functions of the form

f(z) = z +
∞∑

k=x+1

akz
k, ak is complex number, (1.1)

and x ∈ N = {1, 2, 3, ...}, which are analytic in the open unit disc U = {z ∈ C : |z| < 1} on
the complex plane C; note that A(1) = A and A(x) ⊆ A(1). Suppose that S(x) denote the
subclass of A(x) consisting of functions that are univalent in U. Further, let S∗

α(x) and Cα(x)
be the classes of S(x) consisting of functions, respectively, starlike of order α and convex of
order α in U, for 0 ≤ α < 1. Let T(x) denote the subclass of S(x) consisting of functions of
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the form

f(z) = z −
∞∑

k=x+1

|ak| zk, x ∈ N = {1, 2, 3, . . .}, (1.2)

defined on the open unit diskU = {z ∈ C : |z| < 1}. A function f ∈ T(x) is called a function
with negative coefficient and the class T(1) was introduced and studied by Silverman [1].
In [1] Silverman investigated the subclasses of T(1) denoted by S∗

T(α) and CT(α) for 0 ≤
α < 1. That are, respectively, starlike of order α and convex of order α. Now (x)k denotes the
Pochhammer symbol (or the shifted factorial) defined by

(x)k =
Γ(x + k)
Γ(x)

=

⎧
⎨

⎩
1 for k = 0, x ∈ C \ {0},

x(x + 1)(x + 2) . . . (x + k − 1) for k ∈ N = {1, 2, . . .}, x ∈ C.
(1.3)

The authors in [2] have recently introduced a new generalized derivative operator
μn,m
λ1,λ2

as follows.

Definition 1.1. For f ∈ A = A(1), the generalized derivative operator μn,m
λ1,λ2

: A → A is
defined by

μn,m
λ1,λ2

f(z) = z +
∞∑

k=2

(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)akz

k, (z ∈ U), (1.4)

where n,m ∈ N0 = {0, 1, 2, . . .}, λ2 ≥ λ1 ≥ 0, and c(n, k) =
(

n+k−1
n

)
= (n + 1)k−1/(1)k−1.

(1) Special cases of this operator include the Ruscheweyh derivative operator in the
cases μn,1

λ1,0
≡ μn,m

0,0 ≡ μn,0
0,λ2

≡ Rn [3], the Salagean derivative operator μ0,m+1
1,0 ≡ Sn

[4], the generalized Ruscheweyh derivative operator μn,2
λ1,0

≡ Rn
λ
[5], the generalized

Salagean derivative operator introduced by Al-Oboudi μ0,m+1
λ1,0

≡ Sn
β [6], and the

generalized Al-Shaqsi and Darus derivative operator μλ,n+1
β,0 ≡ Dn

λ,β
where (n =

λ,m = n + 1, λ1 = β, and λ2 = 0) can be found in [7]. It is easily seen that
μ0,1
λ1,0

f(z) = μ0,m
0,0 f(z) = μ0,0

0,λ2
f(z) = μ1,1

λ1,1
f(z) = f(z), μ1,1

λ1,0
f(z) = μ1,m

0,0 f(z) =

μ1,0
0,λ2

f(z) = μ0,2
1,0f(z) = zf ′(z), and also μn−1,0

λ1,0
f(z) = μn−1,m

0,0 f(z) where n = 1, 2, 3, . . . .

By making use of the generalized derivative operator μn,m
λ1,λ2

, the authors introduce a
new subclass as follows.

Definition 1.2. For 0 ≤ α < 1, (n,m ∈ N0 = {0, 1, 2, . . .}) and λ2 ≥ λ1 ≥ 0, letHn,m
λ1,λ2

(x, α) be the
subclass of S(x) consisting of functions f satisfying

Re

⎛
⎜⎝

z
(
μn,m
λ1,λ2

f(z)
)′

μn,m
λ1,λ2

f(z)

⎞
⎟⎠ > α, (z ∈ U), (1.5)
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where

μn,m
λ1,λ2

f(z) = z +
∞∑

k=x+1

(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)akz

k, (1.6)

{x = 1, 2, 3, . . . , (z ∈ U)}, and μn,m
λ1,λ2

f(z)/= 0.
Further, we define the class THn,m

λ1,λ2
(x, α) by

THn,m
λ1,λ2

(x, α) = Hn,m
λ1,λ2

(x, α) ∩ T(x), {x = 1, 2, 3, . . .}, (1.7)

for 0 ≤ α < 1, (n,m ∈ N0 = {0, 1, 2, . . .}), and λ2 ≥ λ1 ≥ 0.

Also note that various subclasses of Hn,m
λ1,λ2

(x, α) and THn,m
λ1,λ2

(x, α) have been studied
by many authors by suitable choices of n,m, λ1, λ2, and x. For example,

TH0,0
0,λ2

(1, α) ≡ TH0,1
λ1,0

(1, α) ≡ TH0,m
0,0 (1, α) ≡ TH1,1

λ1,1
(1, α) ≡ S∗

T(α), (1.8)

starlike of order α with negative coefficients. And

TH1,0
0,λ2

(1, α) ≡ TH1,1
λ1,0

(1, α) ≡ TH1,m
0,0 (1, α) ≡ TH0,2

1,0(1, α) ≡ CT(α), (1.9)

class of convex function of order α with negative coefficients. Also

TH0,0
0,λ2

(x, α) ≡ TH0,1
λ1,0

(x, α) ≡ TH0,m
0,0 (x, α) ≡ TH1,1

λ1,1
(x, α) ≡ S∗

T(x, α),

TH1,0
0,λ2

(x, α) ≡ TH1,1
λ1,0

(x, α) ≡ TH1,m
0,0 (x, α) ≡ TH0,2

1,0(x, α) ≡ CT(x, α),

TH0,2
λ1,0

(x, α) ≡ P(x, λ1, α) (0 ≤ λ1 < 1),

TH1,2
λ1,0

(x, α) ≡ C(x, λ1, α) (0 ≤ λ1 < 1).

(1.10)

The classes S∗
T(x, α) and CT(x, α) were studied by Chatterjea [8] (see also Srivastava et al.

[9]), whereas the classes P(x, λ1, α) and C(x, λ1, α) were, respectively, studied by Altintaş
[10] and Kamali and Akbulut [11]. When λ1 = λ2 = 0 or m = 1, λ2 = 0, or m = 0, λ1 = 0 in the
class Hn,m

λ1,λ2
(x, α), we have the class Rn(α) introduced and studied by Ahuja [12]. Finally we

note that when m = 2, λ2 = 0 in the class Hn,m
λ1,λ2

(x, α) we have the class Kn
λ
(x, α) introduced

and studied by Al-Shaqsi and Darus [13].

2. Coefficient Inequalities

In this section, we provide a necessary and sufficient condition for a function f analytic in U
to be inHn,m

λ1,λ2
(x, α) and in THn,m

λ1,λ2
(x, α).
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Theorem 2.1. For 0 ≤ α < 1 and λ2 ≥ λ1 ≥ 0, let f ∈ S(x) be defined by (1.1). If

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ 1 − α, x = 1, 2, . . . , (2.1)

then f ∈ Hn,m
λ1,λ2

(x, α), where n ∈ N = {1, 2, . . .} and m ∈ N0 = {0, 1, 2, . . .}.

Proof. Assume that (2.1) holds true. Then we shall prove condition (1.5). It is sufficient to
show that

∣∣∣∣∣∣∣

z
(
μn,m
λ1,λ2

f(z)
)′

μn,m
λ1,λ2

f(z)
− 1

∣∣∣∣∣∣∣
≤ 1 − α, (z ∈ U). (2.2)

So, we have that

∣∣∣∣∣∣∣

z
(
μn,m
λ1,λ2

f(z)
)′

μn,m
λ1,λ2

f(z)
− 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

z
(
μn,m
λ1,λ2

f(z)
)′

− μn,m
λ1,λ2

f(z)

μn,m
λ1,λ2

f(z)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑∞
k=x+1

(
(k − 1)(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)akz

k

z +
∑∞

k=x+1

(
(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)akzk

∣∣∣∣∣∣∣

|z| < 1,

≤

∑∞
k=x+1

(
(k − 1)(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|

1 −
∑∞

k=x+1

(
(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|

,

(2.3)

and expression (2.3) is bounded by (1 − α).
Hence (2.2) holds if

∞∑

k=x+1

(k − 1)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak|

≤ (1 − α)

[
1 −

∞∑

k=x+1

(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak|

]
,

(2.4)

which is equivalent to

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ (1 − α), (2.5)



International Journal of Mathematics and Mathematical Sciences 5

by (2.1). Thus f ∈ Hn,m
λ1,λ2

(x, α). Note that the denominator in (2.3) is positive provided that
(2.1) holds.

Theorem 2.2. Let f be defined by (1.2) and 1−
∑∞

k=x+1(k(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m)c(n,
k)|ak| ≥ 0 (x = 1, 2, . . .). Then f ∈ THn,m

λ1,λ2
(x, α) if and only if (2.1) is satisfied.

Proof. We only prove the right-hand side, since the other side can be justified using similar
arguments in proof of Theorem 2.1. Since f ∈ THn,m

λ1,λ2
(x, α) by condition (1.5), we have that

Re

⎛
⎜⎝

z
(
μn,m
λ1,λ2

f(z)
)′

μn,m
λ1,λ2

f(z)

⎞
⎟⎠

= Re

⎧
⎨

⎩

z −
∑∞

k=x+1

(
k(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|zk

z −
∑∞

k=x+1

(
(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|zk

⎫
⎬

⎭ > α.

(2.6)

Choose values of z on real axis so that z(μn,m
λ1,λ2

f(z))′/μn,m
λ1,λ2

f(z) is real. Letting z → 1− through
real values, we have that

1 −
∑∞

k=x+1

(
k(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|zk

1 −
∑∞

k=x+1

(
(1 + λ1(k − 1))m−1/(1 + λ2(k − 1))m

)
c(n, k)|ak|zk

> α. (2.7)

Thus we obtain

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ 1 − α, (2.8)

which is (2.1). Hence the proof is complete.

The result is sharp with the extremal function f given by

f(z) = z − (1 − α)(1 + λ2x)
m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

zx+1, (x = 1, 2, . . .). (2.9)

Theorem 2.3. Let the function f given by (1.2) be in the class THn,m
λ1,λ2

(x, α). Then

|ak| ≤
(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
, (2.10)

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0, k ≥ x + 1, and x = 1, 2, 3, . . . . Equality holds for the function given
by (2.9).
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Proof. Since f ∈ THn,m
λ1,λ2

(x, α), then condition (2.1) gives

|ak| ≤
(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
, (2.11)

for each k = x + 1 where x = 1, 2, 3, . . . .
Clearly the function given by (2.9) satisfies (2.10), and therefore, f given by (2.9) is in

THn,m
λ1,λ2

(x, α) for this function; the result is clearly sharp.

3. Growth and Distortion Theorems

In this section, growth and distortion theorems will be considered and covering property for
function in the class will also be given.

Theorem 3.1. Let the function f given by (1.2) be in the class THn,m
λ1,λ2

(x, α). Then for 0 < |z| = r <
1,

r − (1 − α)(1 + λ2x)
m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

rx+1

≤
∣∣f(z)

∣∣ ≤ r +
(1 − α)(1 + λ2x)

m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

rx+1, x = 1, 2, . . . ,

(3.1)

where 0 ≤ α < 1, m ∈ N0 = {0, 1, 2 . . .}, and n ∈ N = {1, 2, . . .}.

Proof. We only prove the right-hand side inequality in (3.1), since the other inequality can be
justified using similar arguments. Since f ∈ THn,m

λ1,λ2
(x, α) by Theorem 2.2, we have that

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ (1 − α). (3.2)

Now

(x + 1 − α)(1 + λ1x)
m−1

(1 + λ2x)
m c(n, x + 1)

(
∞∑

k=x+1

|ak|
)

=
∞∑

k=x+1

(x + 1 − α)(1 + λ1x)
m−1

(1 + λ2x)
m c(n, x + 1)|ak|,

≤
∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak|,

≤ 1 − α, x = 1, 2, 3, . . . .

(3.3)
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And therefore,

∞∑

k=x+1

|ak| ≤
(1 − α)(1 + λ2x)

m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

, x = 1, 2, . . . . (3.4)

Since

f(z) = z −
∞∑

k=x+1

|ak|zk, x = 1, 2, . . . , (3.5)

then we have that

∣∣f(z)
∣∣ =

∣∣∣∣∣z −
∞∑

k=x+1

|ak|zk
∣∣∣∣∣. (3.6)

After that,

∣∣f(z)
∣∣ ≤ |z| + |z|x+1

∞∑

k=x+1

|ak||z|k−(x+1)

≤ r + rx+1
∞∑

k=x+1

|ak|.
(3.7)

By aid of inequality (3.4), it yields the right-hand side inequality of (3.1). Thus, this completes
the proof.

Theorem 3.2. Let the function f given by (1.2) be in the class THn,m
λ1,λ2

(x, α). Then for 0 < |z| = r <
1,

1 − (x + 1)(1 − α)(1 + λ2x)
m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

rx

≤
∣∣f ′(z)

∣∣ ≤ 1 +
(x + 1)(1 − α)(1 + λ2x)

m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

rx, x = 1, 2, . . . ,

(3.8)

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0, m ∈ N0 = {0, 1, 2, . . .}, and n ∈ N = {1, 2, . . .}.

Proof. Since f ∈ THn,m
λ1,λ2

(x, α), by Theorem 2.2, we have that

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ 1 − α, x = 1, 2, 3, . . . . (3.9)
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Now

(x + 1 − α)(1 + λ1x)
m−1

(1 + λ2x)
m c(n, x + 1)

(
∞∑

k=x+1

k|ak|
)

=
∞∑

k=x+1

(x + 1 − α)(1 + λ1x)
m−1

(1 + λ2x)
m c(n, x + 1)k|ak|

≤ (x + 1)
∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak|

≤ (x + 1)(1 − α), (k ≥ x + 1, x = 1, 2, 3, . . .).

(3.10)

Hence

∞∑

k=x+1

k|ak| ≤
(x + 1)(1 − α)(1 + λ2x)

m

(x + 1 − α)(1 + λ1x)
m−1c(n, x + 1)

, x = 1, 2, . . . . (3.11)

Since

f ′(z) = 1 −
∞∑

k=x+1

k|ak|zk−1, x = 1, 2, . . . , (3.12)

then we have that

1 − |z|x
∞∑

k=x+1

k|ak||z|k−(x+1) ≤
∣∣f ′(z)

∣∣ ≤ 1 + |z|x
∞∑

k=x+1

k|ak||z|k−(x+1), (3.13)

and therefore,

1 − rx
∞∑

k=x+1

k|ak| ≤
∣∣f ′(z)

∣∣ ≤ 1 + rx
∞∑

k=x+1

k|ak|, x = 1, 2, . . . . (3.14)

By using the inequality (3.11) in (3.14), we get Theorem 3.2. This completes the proof.

4. Extreme Points

The extreme points of the class THn,m
λ1,λ2

(x, α) are given by the following theorem.

Theorem 4.1. Let fx(z) = z and

fk(z) = z − (1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk, (4.1)

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0, (n,m ∈ N0), k = x + 1, x + 2, . . . , and x = 1, 2, 3, . . . .
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Then f ∈ THn,m
λ1,λ2

(x, α) if and only if it can be expressed in the form

f(z) =
∞∑

k=x

δkfk(z), (4.2)

where δk ≥ 0 and
∑∞

k=x δk = 1.

Proof. Suppose that f can be expressed as in (4.2). Our goal is to show that f ∈ THn,m
λ1,λ2

(x, α).
By (4.2), we have that

f(z) =
∞∑

k=x

δkfk(z)

= δxfx(z) +
∞∑

k=x+1

δkfk(z)

= δxfx(z) +
∞∑

k=x+1

δk

[
z − (1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk
]

=
∞∑

k=x

δkz −
∞∑

k=x+1

δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk

= z −
∞∑

k=x+1

δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk.

(4.3)

Now

f(z) = z −
∞∑

k=x+1

|ak|zk = z −
∞∑

k=x+1

δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk, (4.4)

so that

|ak| =
δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
. (4.5)

Now, we have that

∞∑

k=x+1

δk = 1 − δx ≤ 1, x = 1, 2, 3, . . . . (4.6)

Setting

∞∑

k=x+1

δk =
∞∑

k=x+1

δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)

(k − α)(1 + λ1(k − 1))m−1c(n, k)
(1 − α)(1 + λ2(k − 1))m

≤ 1, (4.7)
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we arrive to

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 − α)(1 + λ2(k − 1))m
c(n, k)|ak| ≤ 1. (4.8)

And therefore,

∞∑

k=x+1

(k − α)(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m
c(n, k)|ak| ≤ 1 − α, x = 1, 2, 3, . . . . (4.9)

It follows from Theorem 2.2 that f ∈ THn,m
λ1,λ2

(x, α).
Conversely, let us suppose that f ∈ THn,m

λ1,λ2
(x, α); our goal is, to get (4.2). From (4.2)

and using similar last arguments, it is easily seen that

f(z) = z −
∞∑

k=x+1

|ak|zk = z −
∞∑

k=x+1

δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk, (4.10)

which suffices to show that

|ak| =
δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
. (4.11)

Now, we have that f ∈ THn,m
λ1,λ2

(x, α), then by previous Theorem 2.3,

|ak| ≤
(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
. (4.12)

That is

(k − α)(1 + λ1(k − 1))m−1c(n, k)|ak|
(1 − α)(1 + λ2(k − 1))m

≤ 1. (4.13)

Since
∑∞

k=x δk = 1, we see δk ≤ 1, for each k = x, x + 1, x + 2, . . . , and x = 1, 2, 3, . . . .
We can set that

δk =
(k − α)(1 + λ1(k − 1))m−1c(n, k)|ak|

(1 − α)(1 + λ2(k − 1))m
. (4.14)

Thus, the desired result is that

|ak| =
δk(1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
. (4.15)

This completes the proof of the theorem.
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Corollary 4.2. The extreme points of THn,m
λ1,λ2

(x, α) are the functions

fx(z) = z,

fk(z) = z − (1 − α)(1 + λ2(k − 1))m

(k − α)(1 + λ1(k − 1))m−1c(n, k)
zk,

(4.16)

where 0 ≤ α < 1, (n,m ∈ N0 = {0, 1, 2, . . .}), λ2 ≥ λ1 ≥ 0, and k = x+1, x+2, . . . , (x = 1, 2, 3, . . .).
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