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Motivated by the extension of classical Gauss’s summation theorem for the series ,F; given in
the literature, the authors aim at presenting the extensions of various other classical summation
theorems such as those of Kummer, Gauss’s second, and Bailey for the series ,F;, Watson, Dixon
and Whipple for the series 3F>, and a few other hypergeometric identities for the series 3F, and 4F3.

As applications, certain very interesting summations due to Ramanujan have been generalized.
The results derived in this paper are simple, interesting, easily established, and may be useful.

1. Introduction

In 1812, Gauss [1] systematically discussed the series

& (a), ), z" 3 a-b a(a+1)bb+1) ,
nZ:O (), m—1+1.cz+ 1-2¢c(c+1) T (1)
where (1), denotes the Pochhammer symbol defined (for A € C) by
1 (n=0)
)y, = (1.2)

AA+1)---(A+n-1) (neN:={1,23...}).
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It is noted that the series (1.1) and its natural generalization ,F,; in (1.6) are of great
importance to mathematicians and physicists. This series (1.1) has been known as the Gauss
series or the ordinary hypergeometric series and may be regarded as a generalization of the
elementary geometric series. In fact (1.1) reduces to the geometric series in two cases, when
a=cand b =1also when b = c and a = 1. The series (1.1) is represented by the notation
2F1[a,b;c; z] or

a, b
2F1 ; Z, (13)

which is usually referred to as Gauss hypergeometric function. In (1.1), the three elements a,
b, and c are described as the parameters of the series, and z is called the variable of the series.
All four of these quantities may be real or complex with an exception that c is neither zero nor
a negative integer. Also, in (1.1), it is easy to see that if any one of the numerator parameters
a or b or both is a negative integer, then the series reduces to a polynomials, that is, the series
terminates.

The series (1.1) is absolutely convergent within the unit circle when |z| < 1 provided
that c#0,-1,-2,.... Also when |z| = 1, the series is absolutely convergent if R(c —a - b) > 0,
conditionally convergent if -1 < R(c — a - b) <0, z#1 and divergent if R(c —a - b) < -1.

Further, if in (1.1), we replace z by z/b and let b — oo, then ((b),z"/b") — z", and
we arrive to the following Kummer’s series

< (a), z" a a(a+1) ,
i Tk Sl e
nZ:O(c)nn! T T T e(er 1)

(1.4)

This series is absolutely convergent for all values of a, ¢, and z, real or complex,
excluding ¢ = 0,-1,-2, ... and is represented by the notation 1Fi(a;c; z) or

a,

1F1 av (15)

which is called a confluent hypergeometric function.

Gauss hypergeometric function »F; and its confluent case 1F; form the core special
functions and include, as their special cases, most of the commonly used functions. Thus ,F;
includes, as its special cases, Legendre function, the incomplete beta function, the complete
elliptic functions of first and second kinds, and most of the classical orthogonal polynomials.
On the other hand, the confluent hypergeometric function includes, as its special cases, Bessel
functions, parabolic cylindrical functions, and Coulomb wave function.

Also, the Whittaker functions are slightly modified forms of confluent hypergeometric
functions. On account of their usefulness, the functions F; and ;F; have already been
explored to considerable extent by a number of eminent mathematicians, for example, C. F.
Gauss, E. E. Kummer, S. Pincherle, H. Mellin, E. W. Barnes, L. J. Slater, Y. L. Luke, A. Erdélyi,
and H. Exton.
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A natural generalization of »F; is the generalized hypergeometric series ,F,; defined

by

& (1), (ap), z

;zl =) —/—m————.
q 25 ) (by),, 7!
by - by

(1.6)

The series (1.6) is convergent for all |z| < oo if p < g and for |z| < 1if p = g+ 1 while it
is divergent for all z, z#0if p > g + 1. When |z| = 1 with p = g + 1, the series (1.6) converges
absolutely if

q p
R Zb] - Za]- > 0, (17)
j=1 j=1
conditionally convergent if

1< m(}q:bj - ia]-> <0, z#1 (1.8)

j=1 j=1

and divergent if

j=1

j=1

It should be remarked here that whenever hypergeometric and generalized hyper-
geometric functions can be summed to be expressed in terms of Gamma functions, the
results are very important from a theoretical and an applicable point of view. Only a few
summation theorems are available in the literature and it is well known that the classical
summation theorems such as of Gauss, Gauss’s second, Kummer, and Bailey for the series
»F1, and Watson, Dixon, and Whipple for the series 3F, play an important role in the
theory of generalized hypergeometric series. It has been pointed out by Berndt [2], that very
interesting summations due to Ramanujan can be obtained quite simply by employing the
above mentioned classical summation theorems. Also, in a well-known paper by Bailey [3],
a large number of very interesting results involving products of generalized hypergeometric
series have been developed. In [4] a generalization of Kummer’s second theorem was given
from which the well-known Preece identity and a well-known quadratic transformation due
to Kummer were derived.
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2. Known Classical Summation Theorems

As already mentioned that the classical summation theorems such as those of Gauss,
Kummer, Gauss’s second, and Bailey for the series ,F; and Watson, Dixon, and Whipple for
the series 3F, play an important role in the theory of hypergeometric series. These theorems
are included in this section so that the paper may be self-contained.

In this section, we will mention classical summation theorems for the series ,F; and
3F. These are the following.

Gauss theorem [5]:

a, b
_TI'(c)f(c-a-b)
2 ; 1) = m (21)
c
provided R(c—a-b) > 0.
Kummer theorem [5]:
a, b
) _T(1+a-b)T(1+(1/2)a)
2Fy P = T(1+(1/2)a-b)L(1+a) 22)
l1+a-b
Gauss'’s second theorem [5]:
a, b
- C1| L ra/2ra/2)a+ (1/2)b+ (1/2) 23
e "2 T T(/2)a+ A/2)I(A/2)b+ (1/2))° '
—(a+b+1)
2
Bailey theorem [5]:
a, 1-a
F 11 _ T'(1/2)e)T((1/2)c+ (1/2)) (2.4)
2 P3| T T(/2)c+ 1/2)a)(1/2)c - (1/2)a+ (1/2)) '
c
Watson theorem [5]:
a, b, C
3F> i1
%(a +b+1), 2 (2.5)

_ T(1/2)T(c+ (1/2)T((1/2)a+ (1/2)b+ (1/2)T(c - (1/2)a - (1/2)b + (1/2))
" T((1/2)a+ (1/2)T((1/2)b + (1/2))T(c - (1/2)a + (1/2))T(c - (1/2)b + (1/2))

provided R(2c —a-b) > -1.
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Dixon theorem [5]:

a, b, c
3F ;1
l1+a-b, l+a-c (2.6)

T+ (1/2)a)fQ+a-b)[(1+a-c)I(1+(1/2)a-b-c)
T TA+a)l(1+(1/2)a-b)I(1+(1/2)a-c)T(1+a-b-c)

provided R(a - 2b-2c) > -2.
Whipple theorem [5]:

sb> ;1
e, f
i 2T ()T (f)
22¢-10((1/2)a + (1/2)e)T ((1/2)a+ (1/2) f)T((1/2)b + (1/2)e)T((1/2)b+ (1/2) f)
(2.7)
provided R(c) >0and R(e+ f-a-b-c)>0witha+b=1lande+ f =2c+1.
Other hypergeometric identities [5]:
—a, 1+ %a, b
F 1| T +a-bIr(d/2)a+(1/2)) 2.8)
32 . " T T+ aT(1/2)a-b+ (1/2))’ ‘
—a, l1+a-b
L2
[ a, 1+ %a, b, c
4F3 ;1
_%a,1+a—b,1+a—c (29)

T +a-b)IA+a-o)l((1/2)a+ (1/2))T((1/2)a-b-c+ (1/2))
TTA+al(+a—b-ol((1/2)a-b+1/2)((1/2)a-c+(1/2)

provided R(a -2b-2c) > -1.

It is not out of place to mention here that Ramanujan independently discovered a
great number of the primary classical summation theorems in the theory of hypergeometric
series. In particular, he rediscovered well-known summation theorems of Gauss, Kummer,
Dougall, Dixon, Saalschiitz, and Thomae as well as special cases of the well-known Whipple’s
transformation. Unfortunately, Ramanujan left us little knowledge as to know how he made
his beautiful discoveries about hypergeometric series.
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3. Ramanujan’s Summations

The classical summation theorems mentioned in Section 2 have wide applications in the
theory of generalized hypergeometric series and other connected areas. It has been pointed
out by Berndt [2] that a large number of very interesting summations due to Ramanujan can
be obtained quite simply by employing the above mentioned theorems.

We now mention here certain very interesting summations by Ramanujan [2].

(i) For R(x) >1/2,

_(x—1)+(x—1)(x—2)_ X

(x+1)  (x+D)(x+2) = 2x-1’ (1)
1\> /1-3\* /1:3:5\° T
1_<§> +<ﬂ> _<2-4-6> T A (3.2)
(ii) For RR(x) > 0,
(x-1) (x-1)(x-2) 22712 (x 4 1)
x+D)  x+D)x+2) T T Tox+1) (3.3)
1/1\> 1/1-3\* 1/1-3-5\2 Nz
1+§<§> +§<ﬂ> +§<m> +~--:m. (3.4)
(iii) For R(x) > 0,
1(x-1) 1(x-1)(x-2) 28T (x+1)
T3+D) 5xil(x+2) | axPx+1) (3:5)
(iv) For R(x) > 1/4,
(x-1)> [(x=1)(x-2)]? _2x THax+1)I(dx +1)
et lemery] T 1T raerny (36)
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(v) For R(x) > 1,

(x-1) (x-D(x-2)

183G P2 =0
1+1<1>2+1<g)2+ “__7[—2

5\2 9\2-4 AT4(3/4)
1.|.l<1>.|.l<£>.},.—L/2

52\2) " 92\2-4 8v2I2(3/4)

1+ 1 2+<g>2+...—L
<2> 2.4 CT4(3/4)
(vi) For R(x) <2/3,

x\3 [/x(x+1)\° _ 6sin(orx/2) sin(arx)I((1/2)x + 1)
1+< ) +< > s w2x2T((3/2)x +1)(1 +2cosrx)

1! 2!

(vii) For R(x) > 1/2,

(x-1) +5(x—l)(x—2) e

D P 2)

(viii) For R(x) > 1/2,

(x-1)(x-2) x

(x+1)(x+2)

2 2

(x-1]?
3[(x+1) +5

We now come to the derivations of these summation in brief.
It is easy to see that the series (3.1) corresponds to

T 2x-1

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

which is a special case of Gauss’s summation theorem (2.1) fora=1,b=1-xandc=1+x.
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The series (3.2) corresponds to

2F; 2 -1 (3.13)

—_

which is a special case of Kummer’s summation theorem (2.2) for a = b = 1/2. Similarly the
series (3.3) corresponds to
1, 1-x
2F1 ; -1 (314)

1+x

which is a special case of Kummer’s summation theorem (2.2) fora=1,b=1-x.
The series (3.4) corresponds to

2F 1 (3.15)

which is a special case of Gauss’s second summation theorem (2.3) for a = b = 1/2 or Bailey’s
summation theorem (2.4) fora =1/2and ¢ = 1.

Also, it can easily be seen that the series (3.5) to (3.9) correspond to each of the
following series:

1 ) 3
1/ E/ 1-x [ 1, l—x, 1-x 1/ E/ 1-x
3F ; 11, 3F ; 1, 3b ;1,
2 [ 1+x, 1+x -
ok 1+x ] X 1+x
M1 1 h 1 1 1
27 27 27 47 4
3F2 4 1 7 3F2 4 1 7
5 55
g 4 § 1 4" 4
11 SO
27272
3F2 1], sk ; 1,
1, 1 _1, 1

(3.16)

which are special cases of classical Dixon’s theorem (2.6) for (i) a=1,b=1/2,c =1 - x, (ii)
a=1,b=c=1-x,(Gii)a=1,b=3/2,c=1-x,(iv)a=b=1/2,c=1/4,(v) a=1/2,
b=c=1/4,(vija=b=c=1/2,and (vii) a = b = ¢ = x, respectively.
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The series (3.10) which corresponds to

3F2 ; -1 (317)

1
E, 1+x
is a special case of (2.8) for a =1, b =1 — x, and the series (3.11) which corresponds to

3
1, 5, 1—x, 1-x
JF i1 (3.18)

1
5 1+x, 1+x

is a special case of (2.9) fora=1,b=c=1-x.

Thus by evaluating the hypergeometric series by respective summation theorems, we
easily obtain the right hand side of the Ramanujan’s summations.

Recently good progress has been done in the direction of generalizing the above-
mentioned classical summation theorems (2.2)—(2.7) (see [6]). In fact, in a series of three
papers by Lavoie et al. [7-9], a large number of very interesting contiguous results of the
above mentioned classical summation theorems (2.2)-(2.7) are given. In these papers, the
authors have obtained explicit expressions of

a, b
2F1 ; -1, (3.19)
l+a-b+i
a, b
1
2F1 : 5l (3.20)
E(a +b+i+1)
a 1l—-a+i
»F1 o1 (3.21)
"2
c
each fori=0,+1,+2,43,44,45, and
a, b, ¢
5F, ;1 (3.22)

%(a+b+i+l), 2c+j
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fori,j=0,+1,+2

a, b, c
3F2 ,'1 (323)
l+a-b+i, 1+a-c+i+j

fori=-3,-2,-1,0,1,2;j=0,1,2,3, and

a b, c
) ;1 (3.24)
e, f

fora+b=1+i+j,e+f=2c+1+ifori,j=0,+1,+2,43.
Notice that, if we denote (3.23) by f; ;, the natural symmetry

fijla,b,c) = fiyj-j(a,c,b) (3.25)

makes it possible to extend the result to j = -1,-2,-3.

It is very interesting to mention here that, in order to complete the results (3.23) of 7x7
matrix, very recently Choi [10] obtained the remaining ten results.

For i = 0, the results (3.19), (3.20), and (3.21) reduce to (2.2), (2.3), and (2.4),
respectively, and for i = j = 0, the results (3.22), (3.23), and (3.24) reduce to (2.5), (2.6),
and (2.7), respectively.

On the other hand the following very interesting result for the series 3F, (written here
in a slightly different form) is given in the literature (e.g., see [11])

a, b, d+1
3F2 ;1
c+1, d

I'c+HI'(c—a-b) ab] (3.26)

:F(c—a+1)F(c—b+1) (c—a—b)+7

provided R(c — a - b) > 0 and Pi(d) > 0.

For d = ¢, we get Gauss’s summation theorem (2.1). Thus (3.26) may be regarded as
the extension of Gauss’s summation theorem (2.1).

Miller [12] very recently rederived the result (3.26) and obtained a reduction formula
for the Kampé de Fériet function. For comment of Miller’s paper [12], see a recent paper by
Kim and Rathie [13].

The aim of this research paper is to establish the extensions of the above mentioned
classical summation theorem (2.2) to (2.9). In the end, as an application, certain very
interesting summations, which generalize summations due to Ramanujan have been
obtained.

The results are derived with the help of contiguous results of the above mentioned
classical summation theorems obtained in a series of three research papers by Lavoie et al.
[7-9].

The results derived in this paper are simple, interesting, easily established, and may
be useful.
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4. Results Required

The following summation formulas which are special cases of the results (2.2) to (2.7)
obtained earlier by Lavoie et al. [7-9] will be required in our present investigations.

(i) Contiguous Kummer’s theorem [9]:

2+a-b

_T(/2TQ2+a-b)

24(1-b)
1 1
8 T((1/2)a+ (1/2))I((1/2)a-b+1) T((1/2)a)l((1/2)a-b+ (3/2))]’
(4.1)
a, b
2k ; -1
3+a-b
_I(1/2)T(3+a-b)
~ 24(1-b)(2-D)
(1+a->b) 2
8 L((1/2)a+ (1/2)I((1/2)a-b+2) T((1/2)a)[((1/2)a-b+ (3/2))]
(ii) Contiguous Gauss’s Second theorem [9]:
a, b
1
»Fy ; E
! b
E(a +b+3)
(4.2)

_I@/2)r((1/2)a+ (1/2)b+(3/2))I((1/2)a - (1/2)b-(1/2))
- I'((1/2)a-(1/2)b+ (3/2))

§ (1/2)(a+b-1) B 2
T((1/2)a+ (1/2)T((1/2)b+ (1/2))  T((1/2)a)T((1/2)a)|
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(iii) Contiguous Bailey’s theorem [9]:

a, 3—-a
2 F1 1
"2
c
(4.3)
_I(1/2)I ()l (1 -a) y (c=2)
B 2¢-3T(3 - a) I((1/2)c-(1/2)a+ 1/2)I'((1/2)c+ (1/2)a-1)
2
T((1/2)c - (1/2)a)T((1/2)c + (1/2)a - 3/2) |
(iv) Contiguous Watson’s theorem [7]:
a b, ¢
1) i1
1
E(a+b+1), 2c+1
B 2302 (c + (1/2)T((1/2)a + (1/2)b + (1/2)(c — (1/2)a— (1/2)b + (1/2))
B I'(1/2)T(a)T(b)
“ I'((1/2)a)l'((1/2)b) _T((1/2)a+ (1/2)I((1/2)b + (1/2))
Ic-(1/2)a+1/2)T(c-1/2)b+(1/2)) T(c-(1/2)a+ DI '(c-(1/2)b+1)
(4.4)
provided that R(2c —a - b) > -1.
a, b, ¢
sb> i1
1
E(a +b+3), 2¢
29T (e + (1/2))T((1/2)a+ (1/2)b + (3/2))T(c — (1/2)a - (1/2)b - (1/2)) (4.5)
a (a-b-1)(a-b+1I'(1/2)T(a)T(b) ’
y ac—a) +b(2c-b)-2c+1 T'((1/2)a)T((1/2)b)
8 T'(c—=(1/2)a+ (1/2))['(c-(1/2)b+ (1/2))

T((1/2)a+ (1/2))T((1/2)b + (1/2))
T(c- (1/2)a)l(c - (1/2)b)
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provided that R(2c —a—b) > 1.

a, b, ¢
3F>2 i1
1
E(a+b+3), 2c-1
29T (e~ (1/2))T((1/2)a + (1/2)b+ (3/2))T(c - (1/2)a— (1/2)b - (1/2))
B (a-b-1)(a-b+1)I(1/2)T(a)l'(b)
y (a+b-1)I((1/2)a)L((1/2)b)
I'(c-(1/2)a-(1/2))I(c - (1/2)b~-(1/2))
(4c—a-b-3)((1/2)a+ (1/2))[((1/2)b + (1/2))
- T(c- (1/2)a)(c - (1/2)b)

(4.6)

provided that R(2c —a—-b) > 1.

(v) Contiguous Dixon'’s theorem [8]:

a, b, c
F ] - 27212+ a-b)T2+a—c)
32 T W-D(c-DI(a-2c+2)T(a-b-c+2)

2+a-b, 2+a-c
(4.7)

I'((1/2)a-c+ B/2)'((1/2)a-b-c+2)
g [ T((1/2)a+ (1/2)T((1/2)a—b+ 1)
T((1/2)a-c+1I((1/2)a-b-c+(5/2))
T((1/2)a)T((1/2)a-b+ (3/2))

provided that %(a —2b - 2¢) > —4.

a, b, c
F - 27241 +a-c)I2+a-b)
32 "7l T w-1DT(a-2b+2)[(a-b-c+2)

2+a-b, 1+a-c
(4.8)

. [F((l/Z)a —b+1)I((1/2)a-b-c+(3/2))
I((1/2)a)T((1/2)a-c+(1/2))
L((1/2)a-b+ (3/2)T((1/2)a-b—-c+2)
 T((1/2)a+ (1/2)T((1/2)a-c+1)
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provided that R(a —2b - 2¢) > -3.

a, b, c
3l ;1
2+a-c¢, 3+a-b

B 272212+ a-c)[(3+a-b)
T -1)®-2)(c-DI(@a-2b+3)(a-b-c+3) (4.9)
. [(a —2c-b+3)((1/2)a-b+2)T((1/2)a-b-c+ (5/2))
T((1/2)a)T((1/2)a-c + (3/2))
(a-b+1I((1/2)a-b+ (3/2)[((1/2)a-b-c+3)
- T((1/2)a+ (1/2)[((1/2)a-c+1)

provided that R(a —2b - 2¢) > -3.

(vi) Contiguous Whipple’s theorem [9]:

a 1-a, ¢
F. 1] = F'e)2c+2-e)l(e—c-1)
v ' C 22T (e—a)[(e-c)[2c—e—a+2)

e, 2c+2-e¢

T((1/2)e - (1/2)a+ (1/2))T(c - (1/2)e - (1/2)a + 1)
8 [F((I/Z)e +(1/2)a- (1/2)T(c - (1/2)e + (1/2)a+ 1)
T((1/2)e - (1/2)a)T(c ~ (1/2)e - (1/2)a + (3/2))

"T((1/2)e + (1/2)a)l(c - (1/2)e + (1/2)a + (1/2))
(4.10)

provided that %i(c) > 0.

- 220 2(c—1)(a-1)(a-2)[(e-a)[(e-c)T(2c—e—-a+2)

a 3-a, ¢
JF, 1 Ie)Y'2c-e+2)I'(e-c-1)
e, 2c+2-e

(2c - e)T((1/2)e - (1/2)a+ (1/2))T(c - (1/2)e - (1/2)a + 1)
T((1/2)e + (1/2)a - (3/2))T(c - (1/2)e + (1/2)a)
_(e=2)I((1/2)e = (1/2)a)I(c - (1/2)e = (1/2)a + (3/2))

T((1/2)e + (1/2)a-1)T(c - (1/2)e + (1/2)a - (1/2))
(4.11)

provided that 9i(c) > 0.
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5. Main Summation Formulas

In this section, the following extensions of the classical summation theorems will be
established. In all these theorems we have R(d) > 0.

(i) Extension of Kummer’s theorem:

a, b, d+1
3 -1
2+a-b, d
_T(1/2)T2+a-b) (1+a-b)/d)-1 (1-(a/d))
a 24(1-Db) F((1/2)a)F((1/2)a—b+(3/2))+F((1/2)a+(1/2))F((1/2)a—b+1) '
(5.1)
(ii) Extension of Gauss’s second theorem:
a, b, d+1
1
) T 5
1(a +b+3), d
2 (5.2)
_T(@/2)I((1/2)a+ (1/2)b+ (3/2))I'((1/2)a - (1/2)b - (1/2))
- I'((1/2)a-(1/2)b+ (3/2))
X{ [(1/2)(a+b+1) - (ab/d)] . [((a+b+1)/d)—2]}
T((1/2)a+ (1/2)T((1/2)b+(1/2))  T((1/2)a)T((1/2)b) J
(iii) Extension of Bailey’s theorem:
a 1l-a, d+1
3F> ; 1
2
c+1, d
(5.3)
_T@/2)T(c+1) (2/4d)
- 2 {T((1/2)6+(1/2)a)T((1/2)C—(1/2)a+(1/2))

N (1-(c/d)) }
T((1/2)c-(1/2)a+ DI ((1/2)c + (1/2)a+ (1/2)) |
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(iv) Extension of Watson’s theorem:
First Extension:

a, b, ¢ d+1
4F3 .
E(a+b+1), 2c+1, d

22T (¢ + (1/2))T((1/2)a + (1/2)b + (1/2)T(c - (1/2)a - (1/2)b + (1/2))
- T(1/2)I(a)I (b) (54)

{ I'((1/2)a)I'((1/2)b)
T(c— (1/2)a+ (1/2)T(c - (1/2)b + (1/2))
(2c —d)/d)T((1/2)a + (1/2)T((1/2)b + (1/2)) }
T((1/2)c - (1/2)a+ DI (c— (1/2)b+ 1)

provided R(2c —a-b) > -1.
Second Extension:

a, b, ¢, d+1
4F3 i1

1
E(a+b+3), 2¢, d
3 24520 (e + (1/2)T((1/2)a+ (1/2)b+ (3/2))T(c — (1/2)a - (1/2)b - (1/2))
B (a-b-1)(a-b+1)I'(1/2)I'(a)T(b)
I'((1/2)a+ (1/2))I'((1/2)b+ (1/2)) }

y {a I'((1/2)a)l((1/2)b) 8
I'(c—(1/2)a+ (1/2))[(c-(1/2)b+ (1/2)) I'(c-(1/2)a)T(c—-(1/2)b)
(5.5)
provided R(2c —a - b) > 1, a and f are given by
ab
aza(2€—a)+b(2c—b)—2c+1—E(4C—a—b—1),
1 (5.6)
ﬁ:S[ﬁ(a+b+l)—1 .
(v) Extension of Dixon’s theorem:
a, b, ¢, d+1
4F3 ;1
2+a-b, 1+a-c, d
(5.7)

o« Fl+a-o)l'2+a-b)I'((3/2)+ (1/2)a-b-c)I'(1/2)
C(b-1)2aT((1/2)a)T((1/2)a-c+ (1/2))TR+a-b-c)[((1/2)a-b+ (3/2))
p 2711 /2)T(1+a-c)[(1+a-b)T(1+(1/2)a-b-c)

i G-1)T((1/2)a+ 1/2)T(1+(1/2)a-b)T(A+ (1/2)a-c)T(1+a-b-c¢)
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provided JR(a —2b —2c) > -2, a and f are given by

zle—%(l+a—b),

5.8
l+a-b (5:8)

:1+a—b—c

p [g(1+a—b—20)—2<%a—b—c+1>].

(vi) Extension of Whipple’s theorem:

a, 1-a, ¢ d+1
4F3 ;1
e+l, 2c—e+1, d

_ 2MT(e+ )I(e—-c)(2c—e+1)
" Te-a+1)I(e-c+1)I'(2c-e—-a+1) (5.9)

y 1_2(:—(3 I'((1/2)e-(1/2)a+D)I'(c-(1/2)e— (1/2)a+ (1/2))
{( d ) I'((1/2)e+ (1/2)a)T(c-(1/2)e+ (1/2)a+ (1/2))

e _\[((1/2)e-(1/2)a+ (1/2)(c - (1/2e - (1/Da+1)
+<3_> I((1/2)e+ (1/2)a+ (1/2))I'(c - (1/2)e + (1/2)a) }

provided R(c) > 0.
(vii) Extension of (2.8):

a, b, 1+d
3 ;-1
l+a-b, d (5.10)

_(1_a\[+a-bra+(1/2)a) a\I(1+a-bI((1/2)a+(1/2)
- ( - ﬁ)m TaT(+(1/2)a-b) <ﬁ> T1+a)l((1/2)a-b+(1/2)

(viii) Extension of (2.9):

a, b, c, d+1
4F3 21
l+a-b, 1+a-c, d

~ a\ TA+@1/2)a)T(1+a-b)I1+a-c)[(1+(1/2)a-b-c) (5.11)

- ( - ﬁ) Tl+a)f(1+a-b-c)T(1+(1/2)a-b)T(1+(1/2)a-c)
a\T((1/2)+(1/2)a)[(1+a-b)[(1+a-c)T((1/2) + (1/2)a-b-c)

(ﬂ) TA+a)l(1+a-b-o)T((1/2) +(1/2)a-b)T((1/2) + (1/2)a - c)

provided R(a -2b-2c) > -1.
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5.1. Derivations

In order to derive (5.1), it is just a simple exercise to prove the following relation:

a, b, d+1
3F ;-1

2+a-b, d
(5.12)

a, b a+1, b+1
= 5F Y L ;-1
= 2I'1 7 d(2+a—b)2 1 7 .
2+a-b 3+a-b

Now, it is easy to see that the first and second ,F; on the right-hand side of (5.12)
can be evaluated with the help of contiguous Kummer’s theorems (4.1), and after a little
simplification, we arrive at the desired result (5.1).

In the exactly same manner, the results (5.2) to (5.11) can be established with the help
of the following relations:

a, b, d+1
1
3F . "5
E(a+b+3), d
a, b a+1, b+1
b 2| T aareen 2|
E(a+b+3) E(a+b+5)
a 1l-a, d+1
3 ;1
2
c+1, d
a l-a a+l, 2-a
_ 1 a(l-a) 1
= 2h1 5| Yo b ik
c+1 c+2
a, b, ¢ d+1
4F3 . i1
E(a+b+1), 2c+1, d
a, b, ¢ a+1, b+1, c+1
_F 1, 2abc F 21
- a2 dQ2c+1)(a+b+1) 2 ’

1
E(a+b+1), 2c+1 §(a+ b+3), 2c+2
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a, b, ¢, d+1
4F3 . i1
E(a+b+3), 2¢, d

a, b, ¢ a+1, b+1, c+1
_ ;1 ab ;1
=3k 1 +d(a+b+3)3F2 1 !
E(a+b+3), 2c §(a+b+5)’ 2c+1

a, b, c, d+1
4F3 ;1
2+a-b, 1+a-c, d

a, b, c a+1, b+1, c+1
— F . 1 + abC F . 1
T ’ d(2+a-b)(1+a—c) >'? K
24+a-b, 1+a-c 3+a-b, 2+a-c

a, 1-a, ¢ d+1
4F3 ;1
e+1l, 2c—-e+1, d

a, 1-a, ¢ a+l, 2-a, c+1

ac(l-a)

= ; 1]+ ; 10,
3k2 dler1)(2c —e+1) 12

e+l, 2c—e+1 ] e+2, 2c—e+2

a, b, d+1 T
3 ;-1
l+a-b, d ]
a, b a+1, b+1
— F - _ ab F . _1
= 2r1 7 d(1+a—b)2 1 7 7
l1+a-b 2+a-b
a, b, c, d+1
4F3 i1
l+a-b, 1+a-c, d
a, b, c a+1l, b+1, c+1
abc
= 3F; ;1 3F> ;1

T d(1+a—b)(1+a-c)
1+a-b, 1+a-c 2+a-b, 2+a-c

(5.13)

and using the results (4.2); (2.4), (4.3); (2.5), (4.4); (4.5), (4.6); (4.8), (4.9); (4.10), (4.11); (2.2),
(4.1), and (2.6), (4.7), respectively.
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5.2, Special Cases

(1) In (5.1), if we take d = 1 + a — b, we get Kummer’s theorem (2.2).

(2) In (5.2), if we take d = (1/2)(a + b + 1), we get Gauss’s second theorem (2.3).

(3) In (5.3), if we take d = ¢, we get Bailey’s theorem (2.4).

(4) In (5.4), if we take d = 2¢, we get Watson’s theorem (2.5).

(5) In (5.5), if we take d = (1/2)(a + b + 1), we again get Watson's theorem (2.5).

(6) In (5.7), if we take d = 1 + a — b, we get Dixon’s theorem (2.6).

(7) In (5.9), if we take d = e, we get Whipple’s theorem (2.7).

(8) In (5.10), if we take d = (1/2)a, we get (2.8).

(9) In (5.11), if we take d = (1/2)a, we get (2.9).

6. Generalizations of Summations Due to Ramanujan

In this section, the following summations, which generalize Ramanujan’s summations (3.1)
to (3.11), will be established.
In all the summations, we have d > 0.

(i) For R(x) >1/2:

B B

(6.1)
@) G DG (-2eg]
6.2
(ii) For R(x) > 0:
- (552) () (Gae9) () - .

1-—

-2 (D raarar (- @) e

I %(%ﬂ%) ' zl_z<£>z<%> — f[dr2<3/4> (1- 3%] (64
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(iii) For RR(x) > 0:

-5(52) () 5 (G ()
<+x > (x+1) +.71'<2 1> I'(x)I'(x+2)

2x(2x + 1) Cd) Qx+ DI2(x+ (1/2))

W =
I\)

(6.5)

(iv) For R(x) > 1/4:

(x—1)2 <d+1>+ (x —1)%(x = 2)? <d+2>+

TarDE+2)\ 4 (x+1)(x+2)*(x+3)\ d
[1+x 22T (x+2)T(x +(3/2)) v/ (x + DI ()T (2x +1)
‘( d _1> VT (2x +1) 8 TeOR2(x+(1/2) [d(3 X =D —dx+
(6.6)
(v) For R(x) > 1:
(x-1)/d+1 (x-1)(x=2) /d+2
1_3(x+2)< d >+5(x+2)(x+3)< d >+
1 T(x+2)I'(x+3) 1 1+x
T 4x I2(x+(1/2)) < - d >
1 d+1\ 1/1-3\%/d+2
0 () (5
3 /1 ar? 1
= (@) amerm (1)
(6.7)

1+ %(d;;ll)(%) Ty (5(;13;2))(2 4> +
- v ) marem (o)
1 (3) (3)+ (51) (57)

_L_§(1_1>m
S T4(3/4) 2 d) x%
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(vi) For R(x) <2/3:

n/d+1\ 1 nn+1*\ /d+2\ 1
(% )ﬁ+< 34 >< T)at
_(1-@1/a) I'(1/2)T((3/2) - (2n/2)) 6.8)
© (n-1) 2'T(n/2)T((1/2) - (n/2))T((3/2) - (n/2))T (2 - n) ’

271 [(n/d)(1 -2n) - (2-3n)]T(1/2)T(1 - (3n/2))
(n-1?% T2(1-(n/2))I[((n/2)+(1/2))L(1 -n)

(vii) For R(x) > 1/2:

(x=1)/d+1\ (x-1)(x-2)/d+2 x 1\ T(+x)x
-t () e ()~ () ey ©9

(viii) For R(x) > 1/2:
- (x—1)2<d+1> .\ (x—1)2(x—2)2<d+2) .

(x+1)*\ d (x+1)*(x+2)*\ d
(6.10)
3 <1 B i) VT2 (1 + x)L(2x - (1/2)) N LFZ(l +x)['(2x - 1)
- 2d 2T (2x)T2(x + (1/2)) 2d  T2(x)F(2x)
6.1. Derivations
The series (6.1) corresponds to
1, 1-x, 1+d
3F2 ; 1 (611)
2+x, d

which is a special case of extended Gauss’s summation theorem (3.26) fora=1,b =1-x and
c=1+x.
The series (6.2) corresponds to

1 1
5 5 d+1

3F> .- (6.12)
2, d

which is a special case of extended Kummer’s summation theorem (5.1) fora = b = 1/2.
Similarly the series (6.3) corresponds to

1
E, 1—x, d+1
3F? . -1 (6.13)
2+x, d

which is a special case of extended Kummer’s theorem (5.1) fora=1and b =1 -x.
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The series (6.4) corresponds to

3> o1 (6.14)

which is a special case of extended Gauss’s second summation theorem (5.2) fora=5b=1/2
or extended Bailey’s summation theorem (5.3) fora=1/2,c=1.
Also, it can be easily seen that the series (6.5) to (6.8) which correspond to

1

1, E, 1—x, 1+d

4F3 11 7
3
E, 2+x, d
1, 1-x, 1+x, 1+d

4F3 /1 7
1+x, 2+x, d

3
1, 5 1-x, 1+d
4F3 /1 7

|
—_
+
&
QU

4

N| —
~
N| —
~
~
—_
+
QU

\Fs 1 (6.15)

-, 1+d
4F3 11 7

~

r
e L S N6
~
L

r

=~
NI—= =1

L

~

, 1+d
4F3 - 11

n, n n l+d

are special cases of extended Dixon’s theorem (5.7).
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The series (6.9) corresponds to

3F2 ; -1 (616)

which is a special case of (5.10) for a =1 and b = 1 — x. And the series (6.10) corresponds to

1, 1-x, 1-x, 1+d
4F3 ;1 (6.17)

1+x, 1+x, d

which is a special case of (5.11) fora=1,b=1-x=c.

7. Concluding Remarks

(1) Various other applications of these results are under investigations and will be
published later.

(2) Further generalizations of the extended summation theorem (5.1) to (5.9) in the
forms

a, b, d+1
3F2 /_1 7

2+a-b+i, d
a, b, d+1

(7.1)

N —
N

3F> ;
1 .
E(a+b+3+1), d
a, l-a+i, d+1

3b 21

c+1, d
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each fori=0,+1,+2,+3,44,45, and

a, b, ¢ d+1
4F3 1,
1
—(a+b+i+1), 2c+j, d
2 (7.2)
a, b, c, d+1
4F;3 ; 11,
2+a-b+i, l+a-c+i+j, d
each fori,j = 0,+1,£2,43, and
a b, ¢, 1+d
aF3 ; 11, (7.3)
e, f, d

wherea+b=1+i+j,e+ f =2c+jforij=0,4+1,+2, +3 are also under investigations and
will be published later.
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