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1. Introduction

Interest in the study of spacelike hypersurfaces in Lorentzian manifolds has increased very
much in recent years, from both the physical and mathematical points of view. For example,
it was pointed out by J. Marsden and F. Tipler in [1] and S. Stumbles in [2] that spacelike
hypersurfaces with constant mean curvature in arbitrary spacetimes play an important part
in the relativity theory. They are convenient as initial hypersurfaces for the Cauchy problem
in arbitrary spacetime and for studying the propagation of gravitational radiation. From a
mathematical point of view, that interest is also motivated by the fact that these hypersurfaces
exhibit nice Bernstein-type properties. Actually, E. Calabi in [3], for n ≤ 4, and Cheng and Yau
in [4], for arbitrary n, showed that the only complete immersed spacelike hypersurfaces of
the (n + 1)-dimensional Lorentz-Minkowski space L

n+1 with zero mean curvature are the
spacelike hyperplanes.

Related with the compact case, Alı́as and Malacarne in [5] showed that the only
compact spacelike hypersurfaces having constant higher-order mean curvature and spherical
boundary in L

n+1 are the hyperplanar balls with zero higher-order mean curvature, and the
hyperbolic caps with nonzero constant higher-order mean curvature (cf. [6] for the case
of constant mean curvature and [7] for the case of constant scalar curvature; see also [8]
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for the case of 2-dimensional surfaces in L
3). Also considering the compact case, R. López

obtained a sharp estimate for the height of compact spacelike surfaces Σ2 immersed into the
3-dimensional Lorentz-Minkowski space L

3 with constant mean curvature (cf. [9], Theorem
1). For the case of constant higher-order mean curvature, by applying the techniques used by
D. Hoffman et al. in [10], the first author obtained another sharp height estimate for compact
spacelike hypersurfaces immersed in the (n + 1)-dimensional Lorentz-Minkowski space L

n+1

(cf. [11], Theorem 4.2).
Also recently, the first author obtained some geometric estimates concerning to a

spacelike hypersurface immersed with some constant higher-order mean curvature in de
Sitter space (cf. [12]), also, in a Lorentzian product space with Colares (cf. [13]) and in a
conformally stationary Lorentz manifold with A. Caminha (cf. [14]). We note that, in each
one of these papers, the authors have used their geometric estimates to study the existence of
certain types of spacelike hypersurfaces in such spacetimes.

In [15] the first author and A. Caminha have studied complete vertical graphs of
constant mean curvature in the hyperbolic and steady state spaces. Under appropriate
restrictions on the values of the mean curvature and the growth of the height function,
they obtained necessary conditions for the existence of such a graph. In the 2-dimensional
case they applied their analytical framework to prove Bernstein-type results in each of these
ambient spaces.

We note that Albujer and Alı́as have also recently considered in [16] complete
spacelike hypersurfaces with constant mean curvature in the steady state space. They proved
that if the hypersurface is bounded away from the infinity of the ambient space, then the
mean curvature must be H = 1. In the 2-dimensional case they concluded that the only
complete spacelike surfaces with constant mean curvature which are bounded away from
the infinity are the totally umbilical flat surfaces. Moreover, considering the generalized
Robertson-Walker spacetime model of the steady state space, they extended their results to a
wider family of spacetimes.

In this paper we deal with a compact spacelike hypersurface Σn immersed with
constant mean curvature H in the antide Sitter space H

n+1
1 , which is a particular model of

Robertson-Walker spacetime given by H
n+1
1 = −(−π/2, π/2)×cos tH

n, where H
n denotes the

n-dimensional hyperbolic space (cf. Section 3). In this setting, by supposing its boundary ∂Σ
contained into some slice of H

n+1
1 , we obtain an estimate for its vertical height function h. We

prove the following result (cf. Theorem 3.2):
Let ψ : Σn → H

n+1
1 be a compact spacelike hypersurface whose boundary ∂Σ is contained in

some slice H
n
t0
= {t0} × H

n. Suppose that the mean curvatureH > 1 is constant.

(i) If −π/2 < t0 ≤ 0 and Σn is contained into the chronological past with respect to H
n
t0
,

then the height h of Σn satisfies

t0 ≥ h ≥ t0 − 1
H − 1

(C cos t0 − cosh). (1.1)

(ii) If 0 ≤ t0 < π/2 and Σn is contained into the chronological future with respect to H
n
t0
,

then the height h of Σn satisfies

t0 ≤ h ≤ t0 + 1
H − 1

(C cos t0 − cosh). (1.2)

Here C = max∂Σ(cosh θ) and θ is the hyperbolic angle between the Gauss mapN of Σ and ∂t.
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Suitable formulae for the Laplacians of the height function and a support-like function
naturally attached to a spacelike hypersurface Σn immersed in H

n+1
1 constitute the analytical

tools that we use to get our estimate (cf. Lemma 2.1).
It is important to point out that our estimate depends only on the value of the mean

curvature and on the geometry of the boundary of the hypersurface. On the other hand, we
recall that an integral curve of the unit time-like vector field ∂t is called a comoving observer
and, when p is a point of a spacelike hypersurface Σn immersed into a Robertson-Walker
spacetime −R×fMn, ∂t(p) is called an instantaneous comoving observer. In this setting, among
the instantaneous observers at p, ∂t(p) and N(p) appear naturally. From the orthogonal
decomposition N(p) = −〈N,∂t〉p∂t(p) + (πM)∗N(p) where πM denotes the canonical
projection from −R×fMn onto the Riemannian fiberMn, we have that cosh θ(p) corresponds
to the energy e(p) that ∂t(p)measures for the normal observerN(p). Furthermore, the speed
|υ(p)| of the Newtonian velocity υ(p) := (1/e(p))(πM)∗N(p) that ∂t(p) measures for N(p)
satisfies the equation |υ(p)|2 = tanhθ(p). So, a physical consequence of the boundedness of
the hyperbolic angle θ between the Gauss mapN of the spacelike hypersurface Σn and ∂t is
that the speed of the Newtonian velocity that the instantaneous comoving observer measures
for the normal observer does not approach the speed of light 1 on Σn (see [17], Sections 2.1
and 3.1, and [18]; see also [19], Chapter 12).

As an application of our height estimate, we obtain an characterization of hyperbolic
domains of H

n+1
1 (cf. Corollary 4.3). Furthermore, we establish nonexistence results in

connection with such types of hypersurfaces (cf. Corollaries 4.4 and 4.5). For example, we
prove the following.

There is no compact spacelike hypersurface ψ : Σn → H
n+1
1 with constant mean curvature

H ≥ 2 and tangent to the slice H
n
0 along its boundary.

Finally, we observe that an interesting feature of the four-dimensional antide Sitter
space H

4
1 is that, as a cosmological model, this spacetime is a maximally symmetric universe

with constant negative curvature, which is conformally related to half of the Einstein static
universe. Consequently, H

4
1 represents a (locally) unique solution to Einstein’s equation in

the absence of any ordinary matter or gravitational radiation. In this setting, this spacetime
may be thought of as a ground state of general relativity (cf. [20], Chapter 8; see also [21],
Chapter 6, and [22], Chapter 14).

2. Preliminaries

In what follows, if M
n+1

is a connected semi-Riemannian manifold with metric g = 〈 , 〉,
we let D(M) denote the ring of smooth functions φ : M

n+1 → R and X(M) the algebra of

smooth vector fields onM
n+1

. We also write ∇ for the Levi-Civita connection ofM
n+1

.
Let Mn be a connected, n-dimensional (n ≥ 2) oriented Riemannian manifold, I a 1-

dimensional manifold (either a circle or an open interval of R), and f : I → R a positive

smooth function. In the product differentiable manifoldM
n+1

= I ×Mn, let πI and πM denote
the projections onto the factors I andMn, respectively.

A particular class of Lorentzian manifolds (spacetimes) is the one obtained by

furnishingM
n+1

with the metric

〈v,w〉p = −〈(πI)∗v, (πI)∗w〉 + (
f ◦ πI

)(
p
)2〈(πM)∗v, (πM)∗w〉 (2.1)
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for all p ∈ M
n+1

and all v,w ∈ TpM. Such a space is called (following the terminology
introduced in [23]) a Generalized Robertson-Walker (GRW) spacetime, and in what follows

we shall write M
n+1

= −I×fMn to denote it. In particular, when Mn has constant sectional
curvature, then −I×fMn is classically called a Robertson-Walker (RW) spacetime (cf. [19]). It
is not difficult to see that a GRW spacetime −I×fMn has constant sectional curvature κ if, and
only if, the Riemannian fiberMn has constant sectional curvature κ (i.e., −I×fMn is in fact a
RW spacetime) and the warping function f satisfies the following differential equations:

f
′′

f
= κ =

(
f ′)2 + κ
f2

(2.2)

(see, for instance, [24], Corollary 9.107).

We recall that a tangent vector field K on a spacetime M
n+1

is said to be conformal if

the Lie derivative with respect to K of the metric 〈, 〉 ofMn+1
satisfies

LK〈, 〉 = 2φ〈, 〉 (2.3)

for a certain smooth function φ ∈ D(M
n+1

). SinceLK(X) = [K,X] for allX ∈ X(M), it follows
from the tensorial character of LK that K ∈ X(M) is conformal if and only if

〈
∇XK, Y

〉
+
〈
X,∇YK

〉
= 2φ〈X,Y〉 (2.4)

for all X,Y ∈ X(M). In particular, K is a Killing vector field relatively to the metric 〈, 〉 if and
only if φ ≡ 0.

We observe that whenM
n+1

= −I×fMn is a GRW spacetime, the vector field

K = f∂t =
(
f ◦ πI

)
∂t (2.5)

is conformal and closed (in the sense that its dual 1−form is closed), with conformal factor
φ = f ′, where the prime denotes differentiation with respect to t ∈ I (cf. [25]).

A smooth immersion ψ : Σn → M
n+1

of an n-dimensional connected manifold Σn is
said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian metric on Σn,
which, as usual, is also denoted for 〈, 〉. In that case, since

∂t =
(
∂

∂t

)

(t,x)
, (t, x) ∈ −I×fMn (2.6)

is a unitary time-like vector field globally defined on the ambient GRW spacetime, then
there exists a unique time-like unitary normal field N globally defined on the spacelike
hypersurface Σn which is in the same time-orientation as ∂t, so that

〈N,∂t〉 ≤ −1 < 0 on Σn. (2.7)
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We will refer to that normal field N as the future-pointing Gauss map of the spacelike
hypersurface Σn. Its opposite will be referred as the past-pointing Gauss map of Σn.

In this setting, let A : X(Σ) → X(Σ) stand for the shape operator (or Weingarten
endomorphism) of Σn with respect to either the future or the past-pointing Gauss mapN. It
is well known that A defines a self-adjoint linear operator on each tangent space TpΣ, and its
eigenvalues κ1(p), . . . , κn(p) are the principal curvatures of Σn at p. Associated to the shape
operator A there are n algebraic invariants given by

Sr
(
p
)
= σr

(
κ1
(
p
)
, . . . , κn

(
p
))
, 1 ≤ r ≤ n, (2.8)

where σr : R
n → R is the elementary symmetric function in R

n given by

σr(x1, . . . , xn) =
∑

i1<···<ir
xi1 · · ·xir . (2.9)

Observe that the characteristic polynomial of A can be written in terms of the S′
rs as

det(tI −A) =
n∑

r=0
(−1)rSrtn−r , (2.10)

where S0 = 1 by definition. The r-mean curvatureHr of the spacelike hypersurface Σn is then
defined by

(
n

r

)

Hr = (−1)rSr(κ1, . . . , κn) = Sr(−κ1, . . . ,−κn). (2.11)

In particular, when r = 1,

H1 = − 1
n

n∑

i=1

κi = − 1
n
tr(A) = H (2.12)

is the mean curvature of Σn, which is the main extrinsic curvature of the hypersurface. The
choice of the sign (−1)r in our definition of Hr is motivated by the fact that in that case the
mean curvature vector is given by

−→
H = HN. Therefore,H(p) > 0 at a point p ∈ Σn if and only

if
−→
H(p) is in the same time-orientation asN(p) (in the sense that 〈−→H,N〉p < 0).

When r = 2, H2 defines a geometric quantity which is related to the (intrinsic) scalar

curvatureR of the hypersurface. For instance, when the ambient spacetimeM
n+1

has constant
sectional curvature κ, it follows from the Gauss equation that

R = n(n − 1)(κ −H2). (2.13)
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Moreover, in the case of a 2-dimensional surface, denoting by KΣ the Gaussian curvature of

the spacelike surface ψ : Σ2 → M
3
, we have that

KΣ = κ −H2. (2.14)

As before, letM
n+1

= −I×fMn be a GRW. For a fixed t0 ∈ I, we say thatMn
t0
= {t0}×Mn

is a slice ofM
n+1

. It was proved by L.J. Alı́as et al. in [23] that each sliceMn
t0
is an umbilical

spacelike hypersurface with constant r-mean curvature, equal to (f ′(t0)/f(t0))
r with respect

to ∂t (see also Example 5.6 in [26]). Whenever we talk about the mean curvature of the slices
of a GRW, we shall assume that it is computed with respect to ∂t. Also, if the (vertical) height
function h : Σn → I of Σn, given by h = πI ◦ψ, is such that h ≤ t0 (h ≥ t0) for some t0 ∈ I, then
we say that Σn is a spacelike hypersurface contained into the chronological past (chronological
future)with respect to the sliceMn

t0
.

To close this section, we present the analytical framework that we will use to obtain
our estimates. The formulae collected in the following lemma are particular cases of ones
obtained by L.J. Alı́as and A.G. Colares (cf. [27], Lemma 4.1 and Corollary 8.4).

Lemma 2.1. Let ψ : Σn → −I×fMn be a spacelike hypersurface immersed into a GRW spacetime,
with Gauss mapN and denote for h = πI ◦ ψ the height function of Σn. Then

Δh = −(ln f)′(h)
(
n + |∇h|2

)
− nH〈N,∂t〉. (2.15)

Moreover, by supposing M
n+1

an RW spacetime with Riemannian fiber Mn of constant sectional
curvature κ,

Δ
(
f(h)〈N,∂t〉

)
= nf(h)〈∇H,∂t〉 + nHf ′(h)

+ nf(h)〈N,∂t〉
(
nH2 − (n − 1)H2

)

+ (n − 1)f(h)〈N,∂t〉
(

κ

f2(h)
− (

ln f
)′′
(h)

)
|∇h|2.

(2.16)

Remark 2.2. For alternative proofs of the previous lemma, we suggest [11, 15, 18, 28].

3. Height Estimate for Spacelike Hypersurfaces in H
n+1
1

In what follows we consider a particular model of RW spacetime, the antide Sitter space,
namely

H
n+1
1 = −

(
−π
2
,
π

2

)
×cos tH

n, (3.1)

where H
n denotes the n-dimensional hyperbolic space (see [29], Chapter 5).
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Remark 3.1. The spacetime H
n+1
1 can also be regarded as the hyperquadric

H
n+1
1 =

{
p ∈ R

n+2
2 ;

〈
p, p

〉
= −1

}
, (3.2)

in the indefinite index two flat space R
n+2
2 . For any timelike unit vector a ∈ R

n+2
2 , we have that

the closed and conformal vector field K given by

K
(
p
)
= a +

〈
a, p

〉
p, p ∈ H

n+1
1 , (3.3)

is timelike on the open set consisting of the points p ∈ H
n+1
1 such that 〈a, p〉2 < 1. This open

set has two connect components and the distribution on H
n+1
1 orthogonal to K provides a

foliationF(K) in this spacetime by means of the umbilical spacelike hypersurfaces 〈p, a〉 = τ ,
−1 < τ < 1, which are isometric to two copies of hyperbolic spaces H

n with constant sectional
curvature −1/(1 + τ2). Consequently, each of these two components can be described as the
Lorentzian warped product −(−π/2, π/2)×cos tH

n (see [25], Example 3 and Proposition 1).

Now, we present our main result.

Theorem 3.2. (Height Estimate) Let ψ : Σn → H
n+1
1 be a compact spacelike hypersurface whose

boundary ∂Σ is contained in some slice H
n
t0
= {t0} × H

n. Suppose that the mean curvature H > 1 is
constant.

(i) If −π/2 < t0 ≤ 0 and Σn is contained into the chronological past with respect to H
n
t0
, then

the height h of Σn satisfies

t0 ≥ h ≥ t0 − 1
H − 1

(C cos t0 − cosh). (3.4)

(ii) If 0 ≤ t0 <
π

2
and Σn is contained into the chronological future with respect to H

n
t0
, then

the height h of Σn satisfies

t0 ≤ h ≤ t0 + 1
H − 1

(C cos t0 − cosh). (3.5)

Here C = max∂Σ(cosh θ) and θ is the hyperbolic angle between the Gauss mapN of Σ and ∂t.

Proof. Suppose initially that −π/2 < t0 ≤ 0 and Σn is contained into the chronological past
with respect to H

n
t0
. From Lemma 2.1, we have

Δh = tan h
(
n + |∇h|2

)
− nH〈N,∂t〉. (3.6)

Then, since h ≤ t0 ≤ 0, as a consequence of the maximum principle we must have Δh(p) ≥ 0
for some point p ∈ Σn. Consequently, taking into account that we are supposing H > 1, we
conclude that the Gauss mapN of Σn is future-pointing, that is,

〈N,∂t〉 ≤ −1 (3.7)
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on Σn. Now, in order to get our estimate, we define on Σn the function

ϕ = c(h − t0) − cosh〈N,∂t〉, (3.8)

where c is a negative constant to be determined. By computing the Laplacian of ϕ with the
aid of Lemma 2.1, we get

Δϕ = C tan h
(
n + |∇h|2

)
− c nH〈N,∂t〉 + nH sinh

− cosh〈N,∂t〉
(
n2H2 − n(n − 1)H2

)
,

(3.9)

where we have used the fact that the Riemannian fiber of H
n+1
1 has constant sectional

curvature κ = −1. Moreover, again as a consequence of the maximum principle, if Δϕ ≥ 0,
then

ϕ ≤ ϕ |∂Σ = (−〈N,∂t〉 |∂Σ) cos t0 = (cosh θ |∂Σ) cos t0
≤ max

∂Σ
(cosh θ) cos t0 = C cos t0

(3.10)

on Σn, and

0 ≥ t0 ≥ h ≥ t0 + 1
c
(C cos t0 − cosh). (3.11)

We claim that it is possible to choose c such thatΔϕ ≥ 0. In fact, for all constant c < 0, it yields

C tan h
(
n + |∇h|2

)
≥ 0. (3.12)

Putting this together with the Cauchy-Schwarz inequality H2 − H2 ≥ 0 into the above
expression of Δϕ, we obtain

Δϕ ≥ nH(−〈N,∂t〉(H cosh + c) − 1). (3.13)

Thus, since the Gauss mapN of Σn is future-pointing, by taking

c = 1 −H (3.14)



International Journal of Mathematics and Mathematical Sciences 9

we get that Δϕ ≥ 0. Therefore,

t0 ≥ h ≥ t0 − 1
H − 1

(C cos t0 − cosh). (3.15)

Now, suppose that 0 ≤ t0 < π/2 and that Σ is contained into the chronological future
with respect to H

n
t0
. In this case (again as a consequence of the maximum principle applied to

the height function h), we have that Gauss mapN of Σn is past-pointing, that is,

〈N,∂t〉 ≥ 1 (3.16)

on Σn. Thus, we define on Σ the function

ϕ = c(h − t0) + cosh〈N,∂t〉, (3.17)

where c is a positive constant to be determined. From this point, by taking

c = H − 1 (3.18)

and working in a similar way as in the previous case we conclude that

t0 ≤ h ≤ t0 + 1
H − 1

(C cos t0 − cosh). (3.19)

Remark 3.3. Related to our previous theorem, it is important to observe the following facts.
(a)We note that, while in the Riemannian case (from the Cauchy-Schwarz inequality)

the support function 〈N,∂t〉 of Σn is always bounded, in the Lorentzian setting this
boundedness occurs in a natural manner onlywhen the spacelike hypersurfaceΣn is compact.
Consequently, in this last case, it is plausible that for an estimate of the vertical height hmust
appear a term that depends on the geometry of the spacelike hypersurface. For example, the
estimate of López for the height of a compact spacelike surface Σ2 immersed with constant
mean curvature into the 3-dimensional Lorentz-Minkowski space L

3 and whose boundary
∂Σ is included in a plane Π depends on the value of the mean curvature and on the area of
the region of Σ2 above the planeΠ (cf. [9], Theorem 1). On the other hand, from Theorem 3.2,
we see that our estimate depends on the value of the mean curvature and on the geometry of
the boundary ∂Σ.

(b)Geometrically, observing that |〈N,∂t〉| = cosh θ, we see that the boundedness of the
hyperbolic angle θ means that (at each point p ∈ Σn) the normal direction N(p) remains far
from the light cone corresponding to ∂t(p). So, a physical consequence of this fact is that the
speed of the Newtonian velocity that the instantaneous comoving observer ∂t(p) measures
for the normal observer N(p) does not approach the speed of light on Σn (see [17], Sections
2.1 and 3.1, and [18]; see also [19], Chapter 12).
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4. Hyperbolic Domains of H
n+1
1

When a compact spacelike hypersurface ψ : Σn → H
n+1
1 is entirely contained into some slice

H
n
t0
= {t0} × H

n, it is called a hyperbolic domain of H
n+1
1 . As applications of Theorem 3.2, we

obtain the following results.

Proposition 4.1. Let ψ : Σn → H
n+1
1 be a compact spacelike hypersurface whose boundary ∂Σ is

contained in some slice H
n
t0
. Suppose that Σn is not a hyperbolic domain, i.e. mean curvatureH > 1 is

constant, and that one of the following conditions is satisfied.

(i) −π/2 < t0 ≤ 0 and Σn is contained into the chronological past with respect to H
n
t0
.

(ii) 0 ≤ t0 < π/2 and Σn is contained into the chronological future with respect to H
n
t0
.

Then

H ≤ 1 +
C cos t0 − cosh∗

|h∗ − t0| , (4.1)

where C = max∂Σ(cosh θ), θ is the hyperbolic angle between the Gauss map N of Σ and ∂t, and
h∗ = maxΣh.

In what follows, we say that Σn is tangent to H
n
t0
along its boundary ∂Σ if ∂Σ is contained

into H
n
t0
, and the restriction of the Gauss mapN of Σn to ∂Σ is equal to (∂t)t=t0 or −(∂t)t=t0 (that

is, the hyperbolic angle betweenN and ∂t is identically zero along ∂Σ).

Proposition 4.2. Let ψ : Σn → H
n+1
1 be a compact spacelike hypersurface, which is tangent to some

slice H
n
t0
along its boundary. Suppose that Σn is not a hyperbolic domain, that its mean curvature

H > 1 is constant and that one of the following conditions is satisfied.

(i) −π/2 < t0 ≤ 0 and Σn is contained into the chronological past with respect to H
n
t0
.

(ii) 0 ≤ t0 < π/2 and Σn is contained into the chronological future with respect to H
n
t0
.

Then

1 < H ≤ 1 + |sin t0| < 2. (4.2)

Proof. Initially, we observe, from Proposition 4.1 and from our assumption, that Σn is tangent
to H

n
t0
along its boundary:

H ≤ 1 +
cos t0 − cosh

(
p
)

∣∣h
(
p
) − t0

∣∣ (4.3)

for all p ∈ Σn such that h(p)/= t0. Therefore, taking in the previous inequality the limit h(p) →
t0, we conclude that

H ≤ 1 + |sin t0| < 2. (4.4)
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As a consequence of the previous result, we get the following characterization of
hyperbolic domains of H

n+1
1 .

Corollary 4.3. Let ψ : Σn → H
n+1
1 be a compact spacelike hypersurface, which is tangent to some

slice H
n
t0
along its boundary. Suppose that one of the following conditions is satisfied.

(i) −π/2 < t0 ≤ − arctan 2 and Σn is contained into the chronological past with respect to H
n
t0
.

(ii) arctan 2 ≤ t0 < π/2 and Σn is contained into the chronological future with respect to H
n
t0
.

If its mean curvatureH ≥ 2 is constant, then Σn is a hyperbolic domain.

Finally, we obtain the following nonexistence results.

Corollary 4.4. There is no compact spacelike hypersurface ψ : Σn → H
n+1
1 tangent to some slice

H
n
t0
along its boundary, with constant mean curvature H ≥ 2 and satisfying one of the following

conditions.

(i) Σn is contained into the chronological past with respect to H
n
t0
, with— arctan 2 < t0 ≤ 0.

(ii) Σn is contained into the chronological future with respect to H
n
t0
, with 0 ≤ t0 < arctan 2.

Corollary 4.5. There is no compact spacelike hypersurface ψ : Σn → H
n+1
1 with constant mean

curvatureH ≥ 2 and tangent to the slice H
n
0 along its boundary.
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