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1. Introduction

Huang and Zhang [1] generalized the notion of metric space by replacing the set of real
numbers by ordered Banach space, deffined a cone metric space, and established some fixed
point theorems for contractive type mappings in a normal cone metric space. Subsequently,
several other authors [2–5] studied the existence of common fixed point of mappings
satisfying a contractive type condition in normal cone metric spaces. Afterwards, Rezapour
and Hamlbarani [6] studied fixed point theorems of contractive type mappings by omitting
the assumption of normality in cone metric spaces (see also [7–14]). In this paper we obtain
common fixed points for a pair of self-mappings satisfying a generalized contractive type
condition without the assumption of normality in a class of topological vector space valued
cone metric spaces which is bigger than that introduced by Huang and Zhang [1].

Let (E, τ) be always a topological vector space and P a subset of E. Then, P is called a
cone whenever

(i) P is closed, nonempty and P /= {0},
(ii) ax + by ∈ P for all x, y ∈ P and nonnegative real numbers a, b,

(iii) P ∩ (−P) = {0}.
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For a given cone P ⊆ E, we can define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P. x < y will stand for x ≤ y and x /=y, while x � y will stand for
y − x ∈ intP , where intP denotes the interior of P .

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X ×X → E satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric onX and (X, d) is called a topological vector space valued cone
metric space.

Note that Huang and Zhang [1] notion of cone metric space is a special case of our
notion of topological vector space valued cone metric space.

Example 1.2. Let X = [0, 1], and let E be the set of all real valued functions on X which also
have continuous derivatives on X, then E is a vector space over R under the following
operations:

(
f + g

)
(t) = f(t) + g(t),

(
αf

)
(t) = αf(t), (1.1)

for all f, g ∈ E, α ∈ R. Let τ be the strongest vector (locally convex) topology on E, then
(X, τ) is a topological vector space which is not normable and is not even metrizable (see
[15]). Define d : X ×X → E as follows:

(
d
(
x, y

))
(t) =

∣∣x − y
∣∣et,

P = {x ∈ E : x(t) � 0 ∀t ∈ X}.
(1.2)

Then (X, d) is a topological vector space valued cone metric space.

Example 1.2 shows that this category of cone metric spaces is larger than that
considered in [1–8] .

Definition 1.3. Let (X, d) be a topological vector space valued cone metric space, and let x ∈ X
and {xn}n≥1 be a sequence in X. Then

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
number N such that d(xn, x) � c for all n ≥ N. We denote this by limn→∞xn = x or xn → x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a
natural number N such that d(xn, xm) � c for all n,m ≥ N.

(iii) (X, d) is a complete topological vector space valued cone metric space if every
Cauchy sequence is convergent.

2. Fixed Point

In this section, we shall give some results which generalize [6, Theorems 2.3, 2.6, 2.7, and 2.8]
(and so [1, Theorems 1, 3, and 4]).
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Theorem 2.1. Let (X, d) be a complete topological vector space valued cone metric space and let the
self-mappings S, T : X → X satisfy

d
(
Sx, Ty

) ≤ kd
(
x, y

)
+ l

(
d
(
x, Ty

)
+ d

(
y, Sx

))
, (2.1)

for all x, y ∈ X, where k, l ∈ [0, 1) with k + 2l < 1. Then S and T have a unique common fixed point.

Proof. For x0 ∈ X and n ≥ 0, define x2n+1 = Sx2n and x2n+2 = Tx2n+1. Then,

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

� kd(x2n, x2n+1) + l[d(x2n, Tx2n+1) + d(x2n+1, Sx2n)]

= kd(x2n, x2n+1) + l[d(x2n, Tx2n+1)]

� kd(x2n, x2n+1) + l[d(x2n, x2n+1) + d(x2n+1, x2n+2)]

= [k + l]d(x2n, x2n+1) + ld(x2n+1, x2n+2).

(2.2)

It implies that d(x2n+1, x2n+2) � [(k + l)/(1 − l)]d(x2n, x2n+1). Similarly,

d(x2n+2, x2n+3) = d(Sx2n+2, Tx2n+1)

� kd(x2n+2, x2n+1) + l[d(x2n+2, Tx2n+1) + d(x2n+1, Sx2n+2)]

� kd(x2n+2, x2n+1) + l[d(x2n+2, x2n+3) + d(x2n+1, x2n+2)]

= [k + l]d(x2n+1, x2n+2) + ld(x2n+2, x2n+3).

(2.3)

Hence, d(x2n+2, x2n+3) ≤ [(k + l)/(1 − l)]d(x2n+1, x2n+2). Thus,

d(xn, xn+1) � λnd(x0, x1), (2.4)

for all n ≥ 0, where λ = ((k + l)/(1 − l)) < 1. Now, for n > m we have

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

�
(
λn−1 + λn−2 + · · · + λm

)
d(x0, x1)

� λm

1 − λ
d(x0, x1).

(2.5)

Let 0 � c. Take a symmetric neighborhood V of 0 such that c + V ⊆ intP . Also, choose
a natural number N1 such that (λm/(1 − λ))d(x1, x0) ∈ V , for all m ≥ N1. Then, (λm/(1 −
λ))d(x1, x0) � c, for all m ≥ N1. Thus,

d(xn, xm) ≤ λm

1 − λ
d(x1, x0) � c, (2.6)
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for all n > m. Therefore, {xn}n≥1 is a Cauchy sequence in (X, d). Since X is complete, there
exists u ∈ X such that xn → u. Choose a natural number N2 such that d(xn, u) � [c(1 −
l)/2(1 + l)] for all n � N2. Thus,

d(u, Tu) � d(u, x2n+1) + d(x2n+1, Tu)

= d(u, x2n+1) + d(Sx2n, Tu)

� d(u, x2n+1) + kd(u, x2n) + l[d(u, Sx2n) + d(x2n, Tu)]

� d(u, x2n+1) + kd(u, x2n) + l[d(u, x2n+1) + d(x2n, u) + d(u, Tu)]

= (1 + l)d(u, x2n+1) + (k + l)d(u, x2n) + ld(u, Tu).

(2.7)

So,

d(u, Tu) �
[
1 + l

1 − l

]
d(u, x2n+1) +

[
k + l

1 − l

]
d(u, x2n)

�
[
1 + l

1 − l

]
d(u, x2n+1) +

[
1 + l

1 − l

]
d(u, x2n)

=
c

2
+
c

2
= c,

(2.8)

for all n ≥ N2. Therefore, d(u, Tu) � c/i for all i � 1. Hence, (c/i)−d(u, Tu) ∈ P for all i � 1.
Since P is closed, −d(u, Tu) ∈ P and so d(u, Tu) = 0. Hence, u is a fixed point of T . Similarly,
we can show that u = Su. Now, we show that S and T have a unique fixed point. For this,
assume that there exists another point u∗ in X such that u∗ = Tu∗ = Su∗. Then,

d(u, u∗) = d(Su, Tu∗)

� kd(u, u∗) + l[d(u, Tu∗) + d(u∗, Su)]

� kd(u, u∗) + l[d(u, u∗) + d(u∗, u)]

� (k + 2l)d(u, u∗).

(2.9)

Since k + 2l < 1, d(u, u∗) = 0 and so u = u∗.

The following corollary generalizes [6, Theorems 2.3, 2.7, and 2.8] (and so [1,
Theorems 1 and 4]).

Corollary 2.2. Let (X, d) be a complete topological vector space valued cone metric space and let the
self-mapping T : X → X satisfy d(Tx, Ty) � ad(x, y) + bd(x, Ty) + cd(y, Tx) for all x, y ∈ X,
where a, b, c ∈ [0, 1) with a + b + c < 1. Then T has a unique fixed point.
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Proof. The symmetric property of d and the above inequality imply that

d
(
Tx, Ty

)
� ad

(
x, y

)
+
b + c

2
[
d
(
x, Ty

)
+ d

(
y, Tx

)]
. (2.10)

By substituting S = Ta = k and (b+c)/2 = l in Theorem 2.1, we obtain the required result.

Theorem 2.3. Let (X, d) be a complete topological vector space valued cone metric space and let the
self-mappings S, T : X → X satisfy

d
(
Sx, Ty

) ≤ kd
(
x, y

)
+ l

(
d(x, Sx) + d

(
y, Ty

))
, (2.11)

for all x, y ∈ X, where k, l ∈ [0, 1) with k + 2l < 1. Then S and T have a unique common fixed point.

Proof. For x0 ∈ X and n ≥ 0, define x2n+1 = Sx2n and x2n+2 = Tx2n+1. Then,

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

� kd(x2n, x2n+1) + l[d(x2n, Sx2n) + d(x2n+1, Tx2n+1)]

= kd(x2n, x2n+1) + l[d(x2n, x2n+1) + d(x2n+1, x2n+2)]

= [k + l]d(x2n, x2n+1) + ld(x2n+1, x2n+2).

(2.12)

It implies that d(x2n+1, x2n+2) � [(k + l)/(1 − l)]d(x2n, x2n+1). Similarly,

d(x2n+2, x2n+3) = d(Sx2n+2, Tx2n+1)

� kd(x2n+2, x2n+1) + l[d(x2n+2, Sx2n+2) + d(x2n+1, Tx2n+1)]

= kd(x2n+2, x2n+1) + l[d(x2n+2, x2n+3) + d(x2n+1, x2n+2)]

= [k + l]d(x2n+1, x2n+2) + ld(x2n+2, x2n+3).

(2.13)

Hence, d(x2n+2, x2n+3) ≤ [(k + l)/(1 − l)]d(x2n+1, x2n+2). Thus,

d(xn, xn+1) � λnd(x0, x1), (2.14)

for all n ≥ 0, where λ = ((k + l)/(1 − l)) < 1. Now, for n > m we have

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

�
(
λn−1 + λn−2 + · · · + λm

)
d(x0, x1)

� λm

1 − λ
d(x0, x1).

(2.15)
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Let 0 � c. Take a symmetric neighborhood V of 0 such that c + V ⊆ intP . Also, choose
a natural number N1 such that (λm/(1 − λ))d(x1, x0) ∈ V , for all m ≥ N1. Then, (λm/(1 −
λ))d(x1, x0) � c, for all m ≥ N1. Thus,

d(xn, xm) ≤ λm

1 − λ
d(x1, x0) � c, (2.16)

for all n > m. Therefore, {xn}n≥1 is a Cauchy sequence in (X, d). Since X is complete, there
exists u ∈ X such that xn → u. Choose a natural number N2 such that d(xn, u) � [c(1 −
l)/2(1 + l)] for all n � N2. Thus,

d(u, Tu) � d(u, x2n+1) + d(x2n+1, Tu)

= d(u, x2n+1) + d(Sx2n, Tu)

� d(u, x2n+1) + kd(u, x2n) + l[d(u, Tu) + d(x2n, Sx2n)]

� d(u, x2n+1) + kd(u, x2n) + l[d(u, x2n+1) + d(x2n, u) + d(u, Tu)]

= (1 + l)d(u, x2n+1) + (k + l)d(u, x2n) + ld(u, Tu).

(2.17)

So,

d(u, Tu) �
[
1 + l

1 − l

]
d(u, x2n+1) +

[
k + l

1 − l

]
d(u, x2n)

�
[
1 + l

1 − l

]
d(u, x2n+1) +

[
1 + l

1 − l

]
d(u, x2n)

� c

2
+
c

2
= c,

(2.18)

for all n ≥ N2. Therefore, d(u, Tu) � c/i for all i � 1. Hence, (c/i)− d(u, Tu) ∈ P for all i � 1.
Since P is closed, −d(u, Tu) ∈ P and so d(u, Tu) = 0. Hence, u is a fixed point of T . Similarly,
we can show that u = Su. Now, we show that S and T have a unique fixed point. For this,
assume that there exists another point u∗ in X such that u∗ = Tu∗ = Su∗. Then,

d(u, u∗) = d(Su, Tu∗)

� kd(u, u∗) + l[d(u, u∗) + d(u∗, u)]

= kd(u, u∗).

(2.19)

Since k < 1, d(u, u∗) = 0 and so u = u∗.

The following corollary generalizes [6, Theorem 2.6] (and so [1, Theorem 3]).
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Corollary 2.4. Let (X, d) be a complete topological vector space valued cone metric space and let the
self-mapping T : X → X satisfy d(Tx, Ty) � ad(x, y) + bd(x, Tx) + cd(y, Ty) for all x, y ∈ X,
where a, b, c ∈ [0, 1) with a + b + c < 1. Then T has a unique fixed point.

Proof is similar to the proof of Corollary 2.2.

Example 2.5. Let (X, d) be a topological vector space valued cone metric space of
Example 1.2. Define S, T : X → X as follows:

S(t) = T(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t

3
if x /= 1,

1
6

if x = 1.
(2.20)

Then,

∣∣Sx − Ty
∣∣et ≤ k

∣∣x − y
∣∣et + l

[|x − Sx|et + ∣∣y − Ty
∣∣et

]
, (2.21)

if k = 1/6, l = 5/18. Hence all conditions of Theorem 2.3 are satisfied.
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