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The minimization of a quadratic function within an ellipsoidal trust region is an important
subproblem for many nonlinear programming algorithms. When the number of variables is large,
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subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems.
This algorithm is based on constructing a basis for the Krylov subspace in conjunction with a
model trust region technique to choose the step. The computational step on the small dimensional
subspace lies inside the trust region. The Krylov subspace is terminated such that the termination
condition allows the gradient to be decreased on it. A convergence theory of this algorithm is
presented. It is shown that this algorithm is globally convergent.
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1. Introduction

Nonlinear least squares (NLS) problems are unconstrained optimization problems with
special structures. These problems arise in many aspects such as the solution of overde-
termined systems of nonlinear equations, some scientific experiments, pattern recognition,
and maximum likelihood estimation. For more details about these problems [1]. The general
formulation of the NLS problem is to determine the solution x� ∈ Rn that minimizes the
function

f(x) = ‖R(x)‖22 =
m∑

i=1

(
Ri(x)

)2
, (1.1)

where R(x) = (R1(x), R2(x), . . . , Rm(x))
t, Ri : Rn → R, 1 ≤ i ≤ m and m ≥ n.

There are two general types of algorithms for solving NLS problem (1.1). The first
type is most closely related to solving systems of nonlinear equations [2] and it leads to
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Gauss-Newton and Levenberg-Marquart methods [3]. The second type is closely related to
unconstrained minimization techniques [4]. Of course the two types of algorithms are closely
related to each other [5].

The presented algorithm is a Newton-Krylov type algorithm. It requires a fixed-size
limited storage proportional to the size of the problem and relies only upon matrix vector
product. It is based on the implicitly restarted Arnoldi method (IRAM) to construct a basis
for the Krylov subspace and to reduce the Jacobian into a Hessenberg matrix in conjunction
with a trust region strategy to control the step on that subspace [6].

Trust region methods for unconstrained minimization are blessed with both strong
theoretical convergence properties and a good accurate results in practice. The trial
computational step in these methods is to find an approximate minimizer of some model
of the true objective function within a trust region for which a suitable norm of the correction
lies inside a given bound. This restriction is known as the trust region constraint, and the
bound on the norm is its radius. The radius is adjusted so that successive model problems
minimized the true objective function within the trust region [7].

The trust region subproblem is the problem of finding s(Δ) so that

φ(s(Δ)) = min{φ(s) : ‖s‖ ≤ Δ}, (1.2)

where Δ is some positive constant, ‖ · ‖ is the Euclidean norm in Rn, and

φ(s) = gts +
1
2
stHs, (1.3)

where g ∈ Rn andH ∈ Rn×n are, respectively, the gradient vector and the Hessian matrix or
their approximations.

There are two different approaches to solve (1.2). These approaches are based on either
solving several linear systems [8] or approximating the curve s(Δ) by a piecewise linear
approximation “dogleg strategies” [9]. In large-scale optimization, solving linear systems is
computationally expensive. Moreover, it is not clear how to define the dogleg curves when
the matrixH is singular [10].

Several authors have studied inexact Newton’s methods for solving NLS problems
[11]. Xiaofang et al. have introduced stable factorized quassi-Newton methods for solving
large-scale NLS [12]. Dennis et al. proposed a convergence theory for structured BFGS secant
method with an application for NLS [13]. The Newton-Krylov method is an example of
inexact Newton methods. Krylov techniques inside a Newton iteration in the context of
system of equations have been proposed in [14]. The recent work of Sorensen, provides
an algorithm which is based on recasting the trust region subproblem into a parameterized
eigenvalue problem. This algorithm provides a super linearly convergent scheme to adjust
the parameter and find the optimal solution from the eigenvector of the parameterized
problem, as long as the hard case does not occur [15].

This contribution is organized as follows. In Section 2, we introduce the structure of
the NLS problem and a general view about the theory of the trust region strategies and their
convergence. The statement of the algorithm and its properties is developed in Section 3.
Section 4 states the assumptions and presents the role of restarting mechanism to control the
dimension of the Krylov subspace. The global convergence analysis is presented in Section 5.
Concluding remarks and future ideas are given in the last section.
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2. Structure of the Problem

The subspace technique plays an important role in solving the NLS problem (1.1). We assume
that the current iterate xk and a Krylov subspace Sk. Denote the dimension of Sk to be kj and
{v(k)

1 , v
(k)
2 , . . . , v

(k)
kj
} be a set of linearly independent vectors in Sk. The next iterate xk+1 is such

that the increment xk+1 − xk ∈ Sk. Thus, we have ‖Rj(xk + Vky)‖ = 0, for j = 1, 2, . . . , m and
y ∈ Rkj , where the matrix Vk = [v(k)

1 , v
(k)
2 , . . . , v

(k)
kj

]. The second-order Taylor expansion of

‖R(x)‖22 at xk is

∥∥R
(
xk

)
+ Jks

∥∥2
2 + s

tQks, (2.1)

where Qk ∈ Rn×n is defined by Qk =
∑n

j=1 Rj(xk)∇2Rj(xk) and the jacobian matrix is Jk =
J(xk) = [∇R1(xk),∇R2(xk), . . . ,∇Rm(xk)]

t. If we consider s ∈ Sk, we get the quadratic model

qk(y) =
∥∥R

(
xk

)
+ JkVky

∥∥2
2 + y

tAky, (2.2)

where Ak ∈ Rkj ,kj approximates the reduced matrix V t
k
QkVk =

∑m
j=1 Rj(xk)V t

k
∇2Rj(xk)Vk.

The first order necessary conditions of (2.1) is

(
JtkJk +Qk

)
s + Rt

kJk = 0. (2.3)

Thus, a solution of the quadratic model is a solution to an equation of the form

(
JtkJk +Qk

)
s = −Rt

kJk. (2.4)

The model trust region algorithm generates a sequence of points xk, and at the kth
stage of the iteration the quadratic model of problem (1.2) has the form

φk(s) = JtkRks +
1
2
st
(
JtkJk +Qk

)
s. (2.5)

At this stage, an initial value for the trust region radius Δk is also available. An inner
iteration is then performedwhich consists of using the current trust region radius,Δk, and the
information contained in the quadratic model to compute a step, s(Δk). Then a comparison
of the actual reduction of the objective function

aredk
(
Δk

)
=
∥∥R

(
xk

)∥∥2
2 −

∥∥R
(
xk + sk

(
Δk

))∥∥2
2, (2.6)

and the reduction predicted by the quadratic model

predk
(
Δk

)
=
∥∥R

(
xk

)∥∥2
2 − qk(y) (2.7)
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is performed. If there is a satisfactory reduction, then the step can be taken, or a possibly larger
trust region used. If not, then the trust region is reduced and the inner iteration is repeated.
For now, we leave unspecified what algorithm is used to form the step s(Δ), and how the
trust region radiusΔ is changed. We also leave unspecified the selection of (JtkJk +Qk) except
to restrict it to be symmetric. Details on these points will be addressed in our forth coming
paper.

The solution s of the quadratic model (2.2) is a solution to an equation of the form

[(
JtJ +Q

)
+ μI

]
s = −RtJ, (2.8)

with μ ≥ 0, μ(sts − Δ2) = 0 and [(JtJ + Q) + μI] is positive semidefinite. This represents the
first-order necessary conditions concerning the pair μ and s, where s is a solution to model
(2.2) and μ is the Lagrange multiplier associated with the constraint sts ≤ Δ2. The sufficient
conditions that will ensure s to be a solution to (2.2) can be established in the following lemma
which has a proof in [16].

Lemma 2.1. Let μ ∈ R and s ∈ Rn satisfy [(JtJ +Q) + μI]s = −RtJ with [(JtJ +Q) + μI] positive
semidefinite, if

μ = 0, ‖s‖ ≤ Δ then s solves (2.2),

‖s‖ = Δ, then s solves min{φ(s) : ‖s‖ = Δ},
μ ≥ 0 with ‖s‖ = Δ, then s solves (2.2).

(2.9)

Of course, if [(JtJ +Q) + μI] is positive definite then s is a unique solution.
The main result which is used to prove that the sequence of gradients tends to zero for

modified Newton methods is

f − φ(s) ≥ 1
2
∥∥RtJ

∥∥min

{
Δ,

∥∥RtJ
∥∥

∥∥JtJ +Q
∥∥

}
, (2.10)

where s is a solution to (2.2). The geometric interpretation of this inequality is that for a
quadratic function, any solution s to (2.2) produces a decrease f − φ(s) that is at least as
much as the decrease along the steepest descent direction −RtJ . A proof of this result may be
found in [17].

3. Algorithmic Framework

The algorithm we will discuss here requires that f is twice differentiable at any point x in
the domain of f . This algorithm involves two levels. In the first level we use IRA method
to reduce the Hessian to a tridiagonal matrix and construct an orthonormal basis for the
invariant subspace of the Hessian matrix. The second level is used to compute the step and
update the trust region radius for the reduced local model (a model defined on the subspace).
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The desired properties of this algorithm are:

(1) the algorithm should be well defined for a sufficiently general class of functions
and it is globally convergent;

(2) the algorithm should be invariant under linear affine scalings of the variables, that
is, if we replace f(x) by f̂(y) = f(s + Vy), where V ∈ Rn×k is an orthonormal
matrix, x ∈ Rn and y ∈ Rk, then applying the iteration to f̂ with initial guess y0
satisfying x0 = s+Vy0 should produce a sequence {yl} related to the sequence {xl}
by xl = Vyl + s, where xl is produced by applying the algorithm to f with initial
guess x0;

(3) the algorithm should provide a decrease that is at least as large as a given multiple
of the minimum decrease that would be provided by a quadratic search along the
steepest descent direction;

(4) the algorithm should give as good a decrease of the quadratic model as a direction
of the negative gradient when the Hessian, (JtJ +Q), is indefinite and should force
the direction to be equal to the Newton direction when (JtJ + Q) is symmetric
positive definite.

The following describes a full iteration of a truncated Newton type method. Some of
the previous characteristics will be obvious and the other ones will be proved in the next
section.

Algorithm 3.1.

(1) Step 0 (initialization).

Given x0 ∈ Rn, compute (RtJ)(x0), (JtJ +Q)(x0).

Choose ξ1 < ξ2, η1 ∈ (0, 1), η2 > 1, Δ1 > 0, k = 1.

(2) Step 1 (construction a basis for the Krylov subspace).

(a) Choose ε ∈ (0, 1), an initial guess s0 which can be chosen to be zero, form
r0 = −RtJ − (JtJ +Q)s0, where RtJ = (RtJ)(xn), (JtJ +Q) = (JtJ +Q)(xn), and
compute τ = ‖r0‖ and v1 = r0/τ .

(b) For j = 1, 2, . . . until convergence, do.

(i) Form (JtJ +Q)vj and orthogonalize it against the previous v1, v2, . . . , vj then

h(i, j) = ((JtJ +Q)vj , vi), i = 1, 2, . . . , j,

v̂j+1 = (JtJ +Q)vj −
∑j

i=1 h(i, j)vi,

h(i + 1, j) = ‖v̂j+1‖.
vj+1 = v̂j+1/h(i + 1, j).

(ii) Compute the residual norm βj = ‖RtJ + (JtJ + Q)sj‖ of the solution sj that
would be obtained if we stopped.

(iii) If βj ≤ εj‖RtJ‖, where εj ≤ (1/Dj) ∈ (0, ε], and Dj is an approximation to the
condition number of (JtJ +Q)j , then set k = j and go to 3, else continue.
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(3) Step 2 (compute the trial step).

(i) Construct the local model,

ψk(y) = fk + htky +
1
2
ytHky, (3.1)

where hk = V t
k(R

tJ)k ∈ Rkj andHk = V t
k(J

tJ +Q)kVk ∈ Rkj×kj .
(ii) Compute the solution y to the problem min{ψk(y) : ‖y‖ ≤ Δk} and set sk =

Vky.

(4) Step 3 (test the step and update Δk).

(i) Evaluate fk+1 = f(xk +Vky), aredk = fk −f(xk +Vky) and predk = fk −ψ(Vky).
(ii) If (aredk/predk) < ξ1 then

begin Δk = η1Δk go to 3(i)
Comment: Do not accept the step “‖y‖”, reduce the trust region radius “Δk”
and compute a new step
Else if ξ1 ≤ (aredk/predk) ≤ ξ2 then
xk+1 = xk + Vky
Comment: Accept the step and keep the previous trust region radius the same
Else (aredk/predk) > ξ2 then
Δk = η2Δk

Comment: Accept the step and increase the trust region radius
end if

(5) Step 4.

Set k + 1← k and go to Step 1.

4. The Restarting Mechanism

In this section, we discuss the important role of the restarting mechanism to control
the possibility of the failure of nonsingularity of the Hessian matrix, and introduce the
assumptions under which we prove the global convergence.

Let the sequence of the iterates generated by Algorithm 3.1 be {xk}; for such sequence
we assume

(G1) for all k, xk and xk + sk ∈ Ωwhere Ω ⊂ Rn is a convex set;

(G2) f ∈ C2(Ω) and (RtJ) = ∇f(x)/= 0 for all x ∈ Ω;

(G3) f(x) is bounded in norm in Ω and (JtJ +Q) is nonsingular for all x ∈ Ω;

(G4) for all sk such that xk + sk ∈ Ω, the termination condition, ‖(RtJ)k + (JTJ +Q)sk‖ ≤
εj‖(RtJ)k‖, εk ∈ (0, 1) is satisfied;

An immediate consequence of the global assumptions is that the Hessian matrix
(JtJ + Q)(x) is bounded, that is, there exists a constant β1 > 0 such that ‖(JtJ + Q)(x)‖ < β1.
Therefore, the condition numbers of the Hessian, Dk = cond2((JtJ +Q)k) are bounded.
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Assumption G3 that (JtJ+Q) is nonsingular is necessary since the IRA iteration is only
guaranteed to converge for nonsingular systems. We first discuss the two ways in which the
IRAmethod can breakdown. This can happen if either v̂k+1 = 0 so that vk+1 cannot be formed,
or if Hkmax is singular which means that the maximum number of IRA steps has been taken,
but the final iterate cannot be formed. The first situation has often been referred to as a soft
breakdown, since v̂k+1 = 0 implies (JtJ +Q)k is nonsingular and xk is the solution [18]. The
second case is more serious in that it causes a convergence failure of the Arnoldi process. One
possible recourse is to hope that (JtJ +Q)k is nonsingular for some k among 1, 2, . . . , kmax−1.
If such k exists, we can compute xj and then restart the algorithm using xk as the new initial
guess x0. It may not be possible to do this.

To handle the problem of singular Hk, we can use a technique similar to that done in
the full dimensional space. If Hk is singular, or its condition number is greater than 1/

√
ν,

where ν is the machine epsilon, then we perturb the quadratic model ψ(y) to

ψ̂(y) = ψ(y) +
1
2
γyty = f + hty +

1
2
yt
(
Hk + γI

)
y, (4.1)

where γ =
√
nν‖Hk‖1. The condition number of (Hk + γI) is roughly 1/

√
ν. For more details

about this technique see reference [4].
We have discussed the possibility of stagnation in the linear IRAmethod which results

in a break down in the nonlinear iteration. Sufficient conditions under which stagnation of
the linear iteration never occurs are

(1) we have to ensure that the steepest descent direction belongs to the subspace, Sk.
Indeed in Algorithm 3.1, the Krylov subspace will contain the steepest descent
direction because v1 = −RtJ/‖RtJ‖ and the Hessian is nonsingular;

(2) there is no difficulty, if one required the Hessian matrix, (JtJ +Q)(x) to be positive
definite for all x ∈ Ω, then the termination condition can be satisfied, and so
convergence of the sequence of iterates will follow. This will be the case for some
problems, but, requiring (JtJ + Q)(x) to be positive definite every where is very
restrictive.

One of the main restrictions of most of the Newton-Krylov schemes is that the
subspace onto which a given Newton step is projected must solve the Newton equations
with a certain accuracy which is monitored by the termination condition (assumption G4).
This condition is enough to essentially guarantee convergence of the trust region algorithm.
Practically, the main difficulty is that one does not know in advance if the subspace chosen
for projection will be good enough to guarantee this condition. Thus, kj can be chosen as
large as the termination condition will eventually be satisfied, but, when kj is too large the
computational cost and the storage become too high. An alternative to that is to restart the
algorithm keeping (JtJ +Q) nonsingular and kj < n. Moreover, preconditioning and scaling
are essential for the successful application of these schemes [19].

5. Global Convergence Analysis

In this section, we are going to establish some convergence properties which are possessed
by Algorithm 3.1. The major differences between the proposed results and the preexisting
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ones arise from the fact that a lower dimensional quadratic model is used, rather than the full
dimension model that is used in the preexisting results [10].

Lemma 5.1. Let the global assumptions hold. Then for any s ∈ Ω, one has

∣∣(RtJ
)t
ks
∣∣

‖s‖2 ≥ Dk − εk
∥∥(JtJ +Q

)
k

∥∥
(
1 + εk

)Dk
∥∥(RtJ

)
k

∥∥ > 0. (5.1)

Proof. Suppose rk be the residual associated with s so that rk = (RtJ)k + (JtJ +Q)ks and
(RtJ)k /= 0. Then ‖rk‖ ≤ εk‖(RtJ)k‖, and s = −(JtJ +Q)−1k ((RtJ)k − rk). So,

(
RtJ

)t
ks =

(
RtJ

)t
k

[ − (JtJ +Q)−1
k

((
RtJ

)
k − rk

)]
= −(RtJ

)t
k

(
JtJ +Q

)−1
k

(
RtJ

)
k +

(
RtJ

)t
krk.
(5.2)

Hence,

∣∣(RtJ
)t
ks
∣∣

‖s‖ =

∣∣(RtJ
)t
k

(
JtJ +Q

)−1
k

(
RtJ

)
k −

(
RtJ

)t
krk

∣∣
∥∥(JtJ +Q

)−1
k

((
RtJ

)
k − rk

)∥∥

≥
(
RtJ

)t
k

(
JtJ +Q

)−1
k

(
RtJ

)
k −

∣∣(RtJ
)t
krk

∣∣
∥∥(JtJ +Q

)−1
k

((
RtJ

)
k − rk

)∥∥
.

(5.3)

Next, ‖rk‖ ≤ ε‖(RtJ)k‖ implies |(RtJ)tkrkj | ≤ εk‖(RtJ)k‖2 which gives

(
RtJ

)t
k

(
JtJ +Q

)−1
k

(
RtJ

)
k −

∣∣(RtJ
)t
krk

∣∣ ≥ (∥∥(JtJ +Q
)−1
k

∥∥ − εk
)∥∥(RtJ

)
k

∥∥2
,

∥∥(JtJ +Q
)−1
k

((
RtJ

)
k − rk

)∥∥ ≤ ∥∥(JtJ +Q
)−1
k

∥∥∥∥(RtJ
)
k

∥∥ +
∥∥(JtJ +Q

)−1
k rk

∥∥

≤ (
1 + εk

)∥∥(JtJ +Q
)−1
k

∥∥∥∥(RtJ
)
k

∥∥.

(5.4)

Introduce (5.4) into (5.3), we obtain the following:

∣∣(RtJ
)t
ks
∣∣

‖s‖ ≥
(∥∥(JtJ +Q

)−1
k

∥∥ − εk
)∥∥(RtJ

)
k

∥∥2

(
1 + εk

)∥∥(JtJ +Q
)−1
k

∥∥∥∥(RtJ
)
k

∥∥

≥
(∥∥(JtJ +Q

)−1
k

∥∥ − εk
)

(
1 + εk

)∥∥(JtJ +Q
)−1
k

∥∥
∥∥(RtJ

)
k

∥∥

=

(Dk − εk
∥∥(JtJ +Q

)
k

∥∥
(
1 + εk

)Dk

)
∥∥(RtJ

)
k

∥∥.

(5.5)
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Inequality (5.1) can be written as

∣∣(RtJ
)t
ks
∣∣

‖s‖∥∥(RtJ
)
k

∥∥ ≥
Dk − εk

∥∥(JtJ +Q
)
k

∥∥
(
1 + εk

)Dk
. (5.6)

This condition (5.6) tells us at each iteration of Algorithm 3.1, we require that the termination
condition holds. Since the condition numbers, Dk, are bounded from above, condition (5.6)
gives

cos θ ≥ D − ε
∥∥(JtJ +Q

)
k

∥∥

(1 + ε)D , (5.7)

where θ is the angle between (RtJ)k and s and D are the upper bound of the condition
numbers Dk. Inequality (5.7) shows that the acute angle θ is bounded away from π/2.

The following lemma shows that the termination norm assumption G4 implies that
the cosine of the angle between the gradient and the Krylov subspace is bounded below.

Lemma 5.2. Let the global assumptions hold. Then

∥∥V t
k

(
RtJ

)
k

∥∥ ≥ Dk − εk
∥∥(JtJ +Q

)
k

∥∥
(
1 + εk

)Dk
∥∥(RtJ

)
k

∥∥. (5.8)

Proof. Suppose s = Vky be a vector of Sk satisfying the termination condition, ‖(RtJ)k +
(JtJ +Q)ks‖ ≤ εk‖(RtJ)k‖, εk ∈ (0, 1). From Lemma 5.1 and the fact that ‖s‖ = ‖Vy‖ = ‖y‖,
we obtain

∣∣(RtJ
)t
kVky

∣∣

‖y‖ ≥ Dk − εk
∥∥(JtJ +Q

)
k

∥∥
(
1 + εk

)Dk
∥∥(RtJ

)
k

∥∥. (5.9)

From Cauchy-Schwartz inequality, we obtain

∣∣(RtJ
)t
kVky

∣∣ ≤ ∥∥V t
k

(
RtJ

)
k

∥∥‖y‖. (5.10)

Combining formulas (5.9) and (5.10), we obtain the result.

The following Lemma establishes that Algorithm 3.1 converges with a decrease in the
quadratic model on the lower dimensional space at least equal to the decrease in the quadratic
model on the full dimensional space.
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Lemma 5.3. Let the global assumptions hold and let y be a solution of the minimization problem,
min‖y‖≤Δ ψ(y). Then

∥∥hk
∥∥min

{
Δk,

∥∥hk
∥∥

∥∥Hk

∥∥

}
≥ αk

∥∥(RtJ
)
k

∥∥min

{
Δk,

αk
∥∥(RtJ

)
k

∥∥
∥∥(JtJ +Q

)
k

∥∥

}
, (5.11)

where αk = (Dk − εk‖(JtJ +Q)k‖)/(1 + εk)Dk.

Proof. Since, ψ(y) = φ(Vky) = fk + (RtJ)tkVky + (1/2)(Vky)
t(JtJ + Q)(Vky). Thus ∇ψ(0) =

V t
k(R

tJ)k. From Step 3 of Algorithm 3.1, we obtain

fk − fk+1 ≥ ξ1
(
fk − φk(y)

)
(5.12)

≥ ξ1
2
∥∥V t

k

(
RtJ

)
k

∥∥min

{
Δk,

∥∥V t
k

(
RtJ

)
k

∥∥
∥∥V t

k

(
JtJ +Q

)
kVk

∥∥

}
(5.13)

=
ξ1
2
∥∥hk

∥∥min

{
Δk,

∥∥hk
∥∥

∥∥Hk

∥∥

}
. (5.14)

We have to convert the lower bound of this inequality to one involving ‖(RtJ)k‖ rather than
‖V t

k(R
tJ)k‖. Using Lemma 5.2, we obtain ‖hk‖ ≥ αk‖(RtJ)k‖, but, ‖Hk‖ = ‖V t

k(J
tJ +Q)kVk‖ ≤

‖(JtJ +Q)k‖. Substituting in (5.14), we obtain

∥∥hk
∥∥

2
min

{
Δk,

∥∥hk
∥∥

∥∥Hk

∥∥

}
≥ αk

2
∥∥(RtJ

)
k

∥∥min

{
Δk,

αk
∥∥(RtJ

)
k

∥∥
∥∥(JtJ +Q

)
k

∥∥

}
, (5.15)

which completes the proof.

The following two facts will be used in the remainder of the proof.

Fact 1.

By Taylor’s theorem for any k and Δ > 0, we have

∣∣aredk(Δ) − predk(Δ)
∣∣ =

∣∣∣∣
(
fk − fk+1

) −
(
− htkyk(Δ) − 1

2
ytk(Δ)V t

k

(
JtJ +Q

)
kVkyk(Δ)

)∣∣∣∣

=
∣∣∣∣
1
2
ytk(Δ)Hkyk(Δ) −

∫1

0
ytk(Δ)Hk(η)yk(Δ)(1 − η)dη

∣∣∣∣

≤ ∥∥yk(Δ)
∥∥2

∫1

0

∥∥Hk −Hk(η)
∥∥(1 − η)dη.

(5.16)
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where,Hk(η) = V t
k(J

tJ +Q)(xk + ηsk)Vk with sk = xk+1 − xk = Vyk. Thus,

∣∣∣∣∣
aredk(Δ)
predk(Δ)

− 1
∣∣∣∣∣ ≤

∥∥yk(Δ)
∥∥2

∣∣predk(Δ)
∣∣

∫1

0

∥∥Hk −Hk(η)
∥∥(1 − η)dη. (5.17)

Fact 2.

For any sequence {xk} generated by an algorithm satisfying the global assumptions, the
related sequence {fk} is monotonically decreasing and bounded from below, that is, fk → f�
as k → ∞.

The next result establishes that every limit point of the sequence {xk} satisfies the first-
order necessary conditions for a minimum.

Lemma 5.4. Let the global assumptions hold and Algorithm 3.1 is applied to f(x), generating a
sequence {xk}, xk ∈ Ω, and k = 1, 2, . . . , then hk → 0.

Proof. Since εk ≤ ε < 1 for all k, we have

αk ≥
D − ε∥∥(JtJ +Q)

k

∥∥

(1 + ε)D = α > 0 ∀k. (5.18)

Consider any xl with ‖(RtJ)l‖/= 0, ‖(RtJ)(x) − (RtJ)l‖ ≤ β1‖x − xl‖. Thus, if ‖x − xk‖ ≤
(‖(RtJ)k‖/2β1), then ‖(RtJ)(x)‖ ≥ ‖(RtJ)k(R

tJ)l‖ − ‖(RtJ)(x) − (RtJ)k‖ ≥ (‖(RtJ)k‖/2). Let,
ρ = ‖(RtJ)k‖/2 and Bρ = {x : ‖x − xk‖ < ρ}. There are two cases, either for all k ≥ l, xl ∈ Bρ or
eventually {xl} leaves the ball Bρ. Suppose xl ∈ Bρ for all k ≥ l, then ‖gl‖ ≥ ‖gk‖/2 = σ for all
l > k. Thus by Lemma 5.3, we have

predk(Δ) ≥ ξ1ασ
2

min

{
Δk,

ασ

‖Hk‖

}
∀k ≥ l. (5.19)

Put ασ = σ, introduce inequality (5.19) into (5.17) and since ‖Hk‖ ≤ ‖(JtJ +Q)k‖ ≤ β1, we
obtain

∣∣∣∣∣
aredk(Δ)
predk(Δ)

− 1
∣∣∣∣∣ ≤

∥∥yk
∥∥2∫1

0

∥∥Hk −Hk(η)
∥∥(1 − η)dη

ξ1σmin
{
Δk, σ/β1

}

≤ Δ2
k

(
2β1

)

ξ1σmin
{
Δk, σ/β1

}

≤ 2Δkβ1
ξ1σ

, Δk ≤ σ

β1
∀k ≥ l.

(5.20)

This gives for Δk sufficiently small and k ≥ l that

aredk(Δ)
predk(Δ)

> ξ2. (5.21)
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In addition, we have

∥∥(JtJ +Q
)−1
k hk

∥∥ ≥
∥∥hk

∥∥
∥∥Hk

∥∥ ≥
α
∥∥(RtJ

)
k

∥∥

β1
≥ σ

β1
. (5.22)

Inequalities (5.21) and (5.22) tell us that, for Δk sufficiently small, we cannot get a decrease
in Δk in Step 3(ii) of Algorithm 3.1. It follows that Δk is bounded away from 0, but, since

fk − fk+1 = aredk(Δ) ≥ ξ1predk(Δ) ≥ ξ1σmin
{
Δk,

σ

β1

}
, (5.23)

and since f is bounded from below, we must have Δk → 0 which is a contradiction.
Therefore, {xk}must be outside Bρ for some k > l.

Let xj+1 be the first term after xl that does not belong to Bρ. From inequality (5.23), we
get

f
(
xl
) − f(xj+1

)
=

j∑

k=l

(
fk − fk+1

)

≥
l∑

j+1

ξ1predk(Δ)

≥
j∑

k=l

ξ1σmin
{
Δk,

σ

β1

}
.

(5.24)

If Δk ≤ σ/β1 for all l ≤ k ≤ j, we have

f
(
xl
) − f(xj+1

) ≥ ξ1σ
j∑

k=l

Δk ≥ ξ1σρ. (5.25)

If there exists at least one k with Δk > σ/β1, we get

f
(
xm

) − f(xm+1
) ≥ ξ1σ

2

β1
. (5.26)

In either case, we have

f
(
xm

) − f(xj+1
) ≥ ξ1σmin

{
ρ,
σ

β1

}

= ξ1α

∥∥(RtJ
)
k

∥∥

2
min

{
α
∥∥(RtJ

)
k

∥∥

2β1
,
α
∥∥(RtJ

)
k

∥∥

2β1

}

≥ ξα
2

4β1

∥∥(RtJ
)
k

∥∥2
.

(5.27)
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Since, f is bounded below, {fk} is a monotonically decreasing sequence (i.e., fk → f�).
Hence,

∥∥(RtJ
)
k

∥∥2 ≤ 4β1
ξ1α2

(
fk − f�

)
, (5.28)

(i.e., (RtJ)k → 0 as k → ∞). The proof is completed by using Lemma 5.2.

The following lemma proves that under the global assumptions, if each member of
the sequence of iterates generated by Algorithm 3.1 satisfies the termination condition of the
algorithm, then this sequence converges to one of its limit points.

Lemma 5.5. Let the global assumptions hold, Hk = V t
k(J

tJ + Q)(xk)Vk for all k, (JtJ + Q)(x) is
Lipschitz continuous with L, and x∗ is a limit point of the sequence {xk}with (JtJ+Q)(x∗) be positive
definite. Then {xk} converges q-Superlinearly to x�.

Proof. Let {xkm} be a subsequence of the sequence {xk} that converges to x�, where, x� is a
limit of {xk}. From Lemma 5.4, (RtJ)(x�) = 0. Since (JtJ + Q)(x�) is positive definite and
(JtJ + Q)(x) is continuous there exists δ1 > 0 such that if ‖x − x�‖ < δ1, then (JtJ + Q)(x) is
positive definite, and if x /=x� then (RtJ)(x�)/= 0. Let, B1 = {x : ‖x − x�‖ < δ1}.

Since (RtJ)(x�) = 0, we can find δ2 > 0 with δ2 < δ1/4 and ‖(JtJ +Q)−1‖‖(RtJ)‖ ≤ δ1/2
for all x ∈ B2 = {x : ‖x − x�‖ < δ2}.

Find lo such that f(xlo) < inf{f(x) : x ∈ B1 − B2} and xlo ∈ B2. Consider any xi with
i ≥ kl, xi ∈ B2.

We claim that xi+1 ∈ B2, which implies that the entire sequence beyond xklo ∈ B2.
Suppose xi+1 does not belong to B2. Since fi+1 < fklo , xi+1 does not belong to B1 either. So

Δi ≥
∥∥xi+1 − xi

∥∥

≥ ∥∥xi+1 − x�
∥∥ − ∥∥xi − x�

∥∥

≥ δ1 − δ14

=
3δ1
4

>
δ1
2

≥ ∥∥(JtJ +Q
)−1
i

∥∥∥∥(RtJ
)
i

∥∥

≥ ∥∥H−1i
∥∥∥∥hi

∥∥.

(5.29)

So , the truncated-Newton step is within the trust region, we obtain

yi
(
Δi

)
= −(V t

i

(
JtJ +Q

)
iVi

)−1
V t
i

(
RtJ

)
i. (5.30)
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Since ‖yi(Δ)‖ < δ1/2, it follows that xi+1 ∈ B1, which is a contradiction. Hence, for all k ≥
klo , xk ∈ B2, and so since f(xk) is strictly decreasing sequence and x� is the unique minimizer
of f in B2, we have that {xk} → x�.

The following lemma establishes the rate of convergence of the sequence of iterates
generated by Algorithm 3.1 to be q-super linear.

Lemma 5.6. Let the assumptions of Lemma 5.5 hold. Then the rate of convergence of the sequence
{xk} is q-Super linear.

Proof. To show that the convergence rate is super linear, we will show eventually that
‖H−1k hk‖ will always be less than Δj and hence the truncated-Newton step will always be
taken. Since (JtJ + Q)(x�) is positive definite, it follows that the convergence rate of {xk} to
x� is super linear.

To show that eventually the truncated-Newton step is always shorter than the trust
region radius, we need a particular lower bound on predk(Δ). By assumptions, for all k large
enough, Hk is positive definite. Hence, either the truncated-Newton step is longer than the
trust region radius, or yk(Δ) is the truncated-Newton step. In either case

∥∥yk(Δ)
∥∥ ≤ ∥∥(V t

k

(
JtJ +Q

)
jVj

)−1
V t
k

(
RtJ

)
k

∥∥ ≤ ∥∥(V t
k

(
JtJ +Q

)
kVk

)−1∥∥∥∥V t
k

(
RtJ

)
k

∥∥, (5.31)

and so it follows that ‖V t
k
(RtJ)k‖ ≥ ‖sk(Δ)‖/‖(V t

k
(JtJ +Q)kVk)

−1‖. By Lemma 5.3, for all k
large enough, we have

predk(Δ) ≥ ξ1α
2

∥∥yk(Δ)
∥∥

∥∥(JtJ +Q
)−1
k

∥∥
min

{
Δk,

α
∥∥(RtJ

)
k

∥∥
∥∥(JtJ +Q

)
k

∥∥

}
. (5.32)

Thus,

predk(Δ) ≥ ξ1α
2

∥∥yk(Δ)
∥∥

∥∥(JtJ +Q
)−1
k

∥∥
min

{
∥∥yk(Δ)

∥∥,
α
∥∥yk(Δ)

∥∥
∥∥(JtJ +Q

)
k

∥∥∥∥(JtJ +Q
)−1
k

∥∥

}

≥ ξ1α
2

2

∥∥yk(Δ)
∥∥2

D∥∥(JtJ +Q)−1
k

∥∥
.

(5.33)

So, by the continuity of (JtJ +Q)(x), for all k large enough, we obtain

predk(Δ) ≥ ξ1α
2

4

∥∥yk(Δ)
∥∥2

∥∥(JtJ +Q
)−1(

x�
)∥∥
. (5.34)

Finally, by the argument leading up to Fact 1 and the Lipschitz continuity assumption, we
have

∣∣aredk(Δ) − predk(Δ)
∣∣ ≤ ∥∥yk(Δ)

∥∥3L

2
. (5.35)
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Thus, for any Δk > 0 and k large enough, we obtain

∣∣∣∣∣
aredk(Δ)
predk(Δ)

− 1
∣∣∣∣∣ ≤

∥∥sk(Δ)
∥∥3L

2
.
4
∥∥(JtJ +Q

)−1(
x�
)∥∥

ξ1α2
∥∥yk(Δ)

∥∥2

=
2L
ξ1α2

∥∥(JtJ +Q
)−1(

x�
)∥∥∥∥yk(Δ)

∥∥

≤ 2L
∥∥(JtJ +Q

)−1(
x�
)∥∥

ξ1α2
Δk.

(5.36)

Thus by Step 3(ii) of Algorithm 3.1, there is a Δ such that if Δk−1 < Δ, then Δk will be less
thanΔk−1 only ifΔk ≥ ‖(V t

k−1(J
tJ +Q)k−1Vk−1)

−1
V t
k−1(R

tJ)k−1‖. It follows from the superlinear
convergence of the truncated-Newton method that for xk−1 close enough to x� and k large
enough,

∥∥(V t
k

(
JtJ +Q

)
kVk

)−1
V t
k

(
RtJ

)
k

∥∥ <
∥∥(V t

k−1
(
JtJ +Q

)
k−1Vk−1

)−1
V t
k−1

(
RtJ

)
k−1

∥∥. (5.37)

Now, if Δk is bounded away from 0 for all large k, then we are done. Otherwise, if for an
arbitrarily large k, Δk is reduced, that is, Δk < Δk−1, then we have

Δk ≥
∥∥(V t

k−1
(
JtJ +Q

)
k−1Vk−1

)−1
V t
k−1

(
RtJ

)
k−1

∥∥ >
∥∥(V t

k

(
JtJ +Q

)
kVk

)−1
V t
k

(
RtJ

)
k

∥∥, (5.38)

and so the full truncated-Newton step is taken. Inductively, this occurs for all subsequence
iterates and super linear convergence follows.

The next result shows that under the global assumptions every limit point of the
sequence {xk} satisfies the second-order necessary conditions for a minimum.

Lemma 5.7. Let the global assumptions hold, and assume predk(Δ) ≥ α2(−λ1(H))Δ2 for all the
symmetric matrix H ∈ Rkj×kj , h ∈ Rkj , Δ > 0 and some α2 > 0. If {xk} → x�, then H(x�) is
positive semidefinite, where λ1(H) is the smallest eigenvalue of the matrixH.

Proof. Suppose to the contrary that λ1(H(x�)) < 0. There exists K such that if k ≥ K, then
λ1(Hk) < (1/2)λ1(H(x�)). For all k ≥ K and for all Δk > 0, we obtain

predk(Δ) ≥ α2
( − λ1

(
Hk

))
Δ2
k ≥

α2
2
( − λ1

(
H
(
x�
)))

Δ2
k. (5.39)

Using inequality (5.17), we obtain

∣∣∣∣∣
aredk(Δ)
predk(Δ)

− 1
∣∣∣∣∣ ≤

∥∥yk(Δ)
∥∥2

∥∥predk(Δ)
∥∥

∫1

0

∥∥Hk(η) −Hk

∥∥(1 − η)dη

≤ 2
∥∥yk(Δ)

∥∥2

Δ2
k

∫1

0

∥∥Hk(η) −Hk

∥∥(1 − η)dη
α2
( − λ1

(
H
(
x�
))) .

(5.40)
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Since the last quantity goes to zero as Δk → 0 and since a Newton step is never taken for
k > K, it follows from Step 3(ii) of Algorithm 3.1 that for k ≥ K Δk sufficiently small. Δk

cannot be decreased further. Thus, Δ is bounded below, but

aredk(Δ) ≥ ξ predk(Δ) ≥ ξα2
2

( − λ1
(
H
(
x�
)))

Δ2
k. (5.41)

Since f is bounded below, aredk(Δ) → 0, so Δk → 0 which is a contradiction. Hence
λ1(H(x�)) ≥ 0. This completes the proof of the lemma.

6. Concluding Remarks

In this paper, we have shown that the implicitly restarted Arnoldi method can be combined
with the Newton iteration and trust region strategy to obtain a globally convergent algorithm
for solving large-scale NLS problems.

The main restriction of this scheme is that the subspace onto which a given Newton
step is projectedmust solve the Newton equations with a certain accuracy which is monitored
by the termination condition. This is enough to guarantee convergence.

This theory is sufficiently general that is hold for any algorithm that projects the
problem on a lower dimensional subspace. The convergence results indicate promise for this
research to solve large-scale NLS problems. Our next step is to investigate the performance of
this algorithm on some NLS problems. The results will be reported in our forthcoming paper.
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