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1. Introduction and Preliminaries

Let X be a metric spaceand T : C — C a mapping. Recall that T is contraction if d(Tx, Ty) <
kd(x,y) for all x,y € X, where 0 < k < 1. A point x € C is a fixed point of T provided
Tx = x.If a map T satisfies F(T) = F(T") for each n € N, where F(T) denotes the set of
all fixed points of T, then it is said to have property P. Banach contraction principle which
gives an answer on existence and uniqueness of a solution of an operator equation Tx =
x is the most widely used fixed point theorem in all of analysis. Branciari [1] obtained a
fixed point theorem for a mapping satisfying an analogue of Banach’s contraction principle
for an integral type inequality. Akgun and Rhoades [2] have shown that a map satisfying a
Meir- Keeler type contractive condition of integral type has a property P. Rhoades and Abbas
[3] extended [4, Theorem 1] for mappings satisfying contractive condition of integral type.
They also studied several results for maps which have property P, defined on a metric space
satisfying generalized contractive conditions of integral type. Rhoades [5] proved two fixed
point theorems involving more general contractive condition of integral type (see, also [6, 7]).
If maps S and T satisfy F(S) N F(T) = F(S") N F(T") for each n € N, then they are said to
have property Q. Jeong and Rhoades [8] studied the property Q for pairs of maps satisfying
a number of contractive conditions.
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Recently Dutta and Choudhury [9] gave a generalization of Banach contraction
principle, which in turn generalize [4, Theorem 1] and corresponding result of [10]. Sessa
[11] defined the concept of weakly commuting to obtain common fixed point for pairs of
maps. Jungck generalized this idea, first to compatible mappings [12] and then to weakly
compatible mappings [13]. There are examples that show that each of these generalizations
of commutativity is a proper extension of the previous definition. The aim of this paper
is to present a common fixed point theorem for weakly compatible maps satisfying a
generalized weak contractive condition which is more general than the corresponding
contractive condition of integral type. Our results substantially extend, improve, and
generalize comparable results in literature [3, 14, 15].

The following definitions and results will be needed in the sequel.

Definition 1.1. Let X be a set, and f, g selfmaps of X. A point x in X is called a coincidence
point of f and g if and only if fx = gx. We will call w = fx = gx a point of coincidence of f
and g.

Definition 1.2. Two maps f and g are said to be weakly compatible if they commute at their
coincidence points.

Lemma 1.3 (see [16]). Let f and g be weakly compatible self maps of a set X. If f and g have a
unique point of coincidence w (say), then w is the unique common fixed point of f and g.

2. A Common Fixed Point Theorem

Set /' = {¢ : R* — R : ¢ is a Lebesgue integrable mapping which is summable and
nonnegative and satisfies fgd)(t)dt > 0, foreach e > 0} and G = {¢ : [0,00] — [0,00] : ¢
is continuous and nondecreasing mapping with ¢s(t) = 0 if and only if t = 0}.

The following is the main result of this paper.

Theorem 2.1. Let f, g be two self maps of a metric space (X, d) satisfying
g (d(fx fy)) < ¢(d(gx, gy)) — ¢(d(gx, gy)) 1)

forall x,y € X, where g, p € G. If range of g contains the range of f and g(X) is a complete subspace
of X, then f and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible,
f and g have a unique common fixed point.

Proof. Let xy be an arbitrary point of X. Choose a point x; in X such that f(x) = g(x1). This
can be done, since the range of g contains the range of f. Continuing this process, having
chosen x,, in X, we obtain x,,; in X such that f(x,) = g(xun), n =0,1,2,.... Suppose for
any n, g(x,) # g(x4+1), since, otherwise, f and g have a point of coincidence. From (2.1), we
have

¢ (d(gxn1, gxn)) = ¢ (d(fxn, fxn-1))
< ¢ (d(gxn, gxn-1)) — p(d(8%n, Xn-1)) (2.2)
< g (d(gxn gxn-1)),
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thatis, ¢ (d(gxn+1, §xn)) < ¢p(d(gxn, §xn-1)), and hence
A(gxn, gxns1) < d(g%n, §Xn-1). (2.3)

It follows that {d(gx,, gxs+1)} is monotone decreasing sequence of numbers and conse-
quently there exists r > 0 such that d(gx,, gx,1) — r asn — oo. Suppose that r > 0,
then

0 <g(r) < ¢(d(gxn1, gxn)) = ¢ (d(fXn, fXn1))

(2.4)
< ¢ (d(gxn, gxn-1)) — 9(d(gXn, gXu-1)),
which on taking limit as n — oo yields
p(r) <gp(r) - p(r) <y (r), (2.5)

which is a contradiction. Therefore r = 0. Now we prove that {gx,} is a Cauchy sequence.
If not, then there exist some ¢ > 0 and subsequences {gx,, } and {gx,, } of {gx,} with k <
ny < my such that d(gxy,, §xm,) > 3¢ for each k. As d(gxp.+1,§%n,) — 0ask — oo, for large
enough k, we have d(gxy, 41, §Xn,) < € and d(gXm,+1, §%m,) < €. Thus we obtain

d(gxnk+1/ gxmk) 2 d(gxnk’ gxmk) - d(gxnk+1, gxnk) > €
A(gxXne+1, §%m-1) > A(Xny, §Xmy) — A(§Xm-1, §%m,) — A(§Xn+1, §Xn) (2.6)

> E.

We may assume that 7 are even and my are odd and that d(gx,,, gx,) > € for all k. Put

ri = min{my : d(gxn., §Xm, ) > €}. (2.7)

Now,

€< d(gxnk, gxrk) < d(gxnk'gxrk—z) + d(gxrk_z, gxrk—l) + d(gxrk—lf gxrk> (2.8)

implies that d(gx,,, gx,,) — € as k — oo. Furthermore

d(gx,,k, gxrk) - d(gxnk’ gxnk+1) - d(gxrk’ gx7k+1>
< d(gxn1, §xna1) < A(gxny, §%n) + A(§Xn, §Xns1) + A (g%r,, §Xp1)

(2.9)
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gives d(gxXp,+1, §%r+1) — €,as k — oo. Therefore

q"(d(gxnkﬂfgxfkﬂ)) = (P(d(fxnk'fxfk))

(2.10)
< ¢ (d(gxn., gxn)) — p(d(gxn, gxn))-

Taking limit as k — oo yields
w(e) <p(e) —gple), (2.11)

which is a contradiction. Hence {gx,} is a Cauchy sequence. From completeness of g(X),
there exists a point g in g(X) such that gx, — gasn — oo. Consequently, we can find p in
X such that g(p) = g. Now

w(d(gxn, fp)) = ¢(d(fxn fP))

(2.12)
< ¢(d(gxn gp)) — ¢(d(gxn, gpP))

on taking limit as n — oo implies
w(d(q, fp)) < ¢(0) - 9(0), (2.13)

¢(d(gq, fp)) = 0,and f(p) = g. Hence g is the point of coincidence of f and g. Assume that
there is another point of coincident r in X such that r # q. Then there exists s in X such that
f(s) = g(s) =r. Using (2.1), we have

¢ (d(gp 85)) = ¢(d(fp. f5))
<¢(d(gp gs)) - 9(d(gp. 85)) (2.14)

<g¢(d(gp gs)),
which is a contradiction which proves the uniqueness of point of coincidence; the result now
follows from Lemma 1.3 O

Corollary 2.2. Let f, g be two self maps of a metric space (X, d) satisfying

¢ (d(gx,8y))

p(t)dt - I p(t)dt (2.15)

0

J‘qf(d(f x,fy)) ¢ (d(gx, gy))

Pyt < f

0

forall x,y € X, where ¢ € I and ¢, ¢ € G. If range of g contains the range of f and g(X) is a
complete subspace of X, then f and g have a unique point of coincidence in X. Moreover if f and g
are weakly compatible, f and g have a unique common fixed point.
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Proof. Define @ : R* — R* by ®(x) = jg(i)(t)dt, then @ € G and (2.15) becomes

D(p(d(fx, fy))) < P(¢(d(gx,gy))) - P(p(d(gx,8y))). (2.16)

which further can be written as

i (d(fx, fy)) <g(d(gx,gy)) - p1(d(gx,8y)), (2.17)

where ¢ = Do and ¢ = Do ¢ € G. Clearly g1, ¢1 € G. Hence by Theorem 2.1 f and g have
unique common fixed point. O

Now we present two examples in the support of Theorem 2.1.

Example 2.3. Let X = [0,1]U {2,3,4,...},

|x-y|, ifx,ye[01], x#y,
d(x,y) =4 x+y, if atleast one of x or y¢[0,1], x#v, (2.18)
0, if x=y.

Then (X, d) is a complete metric space [17]. Consider f : X — X, and ¢, ¢ € G as given in
[9]:

x—lxz, ifo<x<1,
fx = 2 (2.19)
x-1, if x>1,
t, if0<t<],
w(t) = (2.20)
t2, ift>1,
1, .
—t5, if0<t<l,
() =112 (2.21)
5 if t >1.

Let g: X — X be defined as

x, if0<x<1,
gx = (2.22)
x+1, ifx>1.
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Assume that x > y and discuss the following cases.
When x € [0,1], then

y(d(fx fy)) = (x— %xz) - <y - %y2>

<(x-y)-5 (x-y)

= (d(gx,gy)) - ¢(d(gx, gv))-

Taking x in {3,4, ...}, and y in [0, 1], we obtain

pla(rr ) = (- 14y 29)
<(x+y- 1)2,
g(d(gx,gy)) = (x+y+1)",

p(d(gx 8v)) = 5.

Hence

w(d(fx, fy)) <¢(d(gx gy)) - ¢(d(gx, gv))-

Now, when x € {3,4,...},and y ¢ [0,1], then

g(d(fx, fy)) = (x-1+y-1)*
<(x+y- 1)2,
g(d(gx,gy)) = (x+y +2)°,

¢(d(gx 8v)) = %

Obviously (2.31) holds. Finally when x = 2, we have y € [0,1], fx =1, and

d(fx, fy)=1- (y— %y2> <1,

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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so that ¢(d(fx, fy)) <1, then

p(d(sx,3y)) - 9(d(sx,59)) = B+y)* 5
>1>¢(d(fx, fy)).

(2.28)

Thus all conditions of Theorem 2.1 are satisfied. Moreover f and g have a unique common
fixed point.

Example 2.4. Let X = [0,1] and f,g: X — X be given as
2, 3 2, 1
- = 2 == Z. 2.29
f(x) =Xt e g(x) 3X T3 (2.29)
Consider ¢, p € Gas ¢ (t) = (1/2)t and ¢(t) = (1/10)t. Then we have

p(d(fx, 1)) = | - ]

121, o 12(, (2.30)
< _Z — = —
=323 | 103" y|

= (d(gx,gy)) - p(d(gx, gv))-

Note that x = 1 is the unique coincidence point of f and g, and f and g are commuting
at x = 1. Hence all conditions of Theorem 2.1 are satisfied. Moreover, x = 1 is the unique
common fixed point of f and g.

Following theorem can be viewed as generalization and extension of [3, Theorem 3].

Theorem 2.5. Let f be a self map of a complete metric space (X, d) satisfying

¢ (d(x,y)) p(d(xy))

p(t)dt - f d(t)dt (2.31)

J‘w(d(fx,fy))
0

¢mmsf

0

forall x,y € X, where ¢ € | and @, p € G. Then f has a unique fixed point. Moreover f has property
P.
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Proof. Existence and uniqueness of fixed point of f follows from Corollary 2.2. Now we prove
that f has property P. Let u € F(f"). We shall always assume that n > 1, since the statement
for n = 1 is trivial. We claim that fu = u. If not, then, by (2.31),

¢ (d(u, fu)) g d(f"uf(f"u))) G (d(f ("), f(f"w))
[ pwa- | b= [ p(t)at
¢ (d(f" u, fru)) o (d(f" 1 u, fru))
< J b(t)dt - f b(t)dt
0 0

pd(f* u,fru) w(d(f(f"2u), f (1))

P(t)dt = J P(t)dt (2.32)

f 0
@ (d(f"2u, 7 1)) P(@d(f 2, 1)
< J o(t)dt - j P(t)dt
0

w(d(f"2u, " )
d(t)dt.

Continuing this process we arrive at

¢ (d(u, fu)) g (d(u,fu)) o(d(u,fu))
I P(t)dt < J‘ o(t)dt - J‘ o(t)dt
0 0 0
(2.33)
¢ (d(u,fu))
< f (t)dt,
0
which is a contradiction. Hence the result follows. O

Remarks 2.6. Existence and uniqueness of fixed point of f in above theorem also follows from
[9, Theorem 1].

Remarks 2.7. (a) It is noted that if maps f and g involved in Theorem 2.1 are commuting, then
they have property Q.

(b) Suzuki [18] observed that Branciari [1, Theorem 1] is a particular case of Meir-
Keeler fixed point theorem [19]. We pose an open problem to see if a link exists between the
contractive conditions (2.15) and the Meir-Keeler condition.
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