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1. Introduction

Pierre Fermat (1601–1665) formulated the following problem.
Given a triangle ABC, find a point P such that the sum of the three distances from P to

the vertices A, B, C is minimal.
In the literature, one can find various beautiful ways to solve the problem (see, e.g.,

[1–4]). In short, the answer is as follows. If every angle of ABC measures less than 120◦, then
the point P in the interior of the triangle such that ∠APB = ∠BPC = ∠CPA = 120◦ minimizes
the sum of the three distances. If one of the angles of ABC measures 120◦ or more, then the
vertex corresponding to this angle minimizes the sum of the three distances to the vertices.

An important application is the shortest network problem, used in the construction of tele-
phone, pipeline, and roadway networks; see, for example, [5].

In this paper, we consider a weighted Fermat triangle problem.
Given a triangle P1P2P3 and given three positive numbers λ1, λ2, λ3, find a point P on the

triangle such that the weighted sum of the distances to the three vertices λ1P1P +λ2P2P +λ3P3P
is the least possible.

A possible application is the problem of constructing a consumer center servicing three
given cities in such a way as to minimize the total distance to all three, but also making the
distance to a given city inversely proportional to the population of that city. As we found out
after working out a solution, this problem had been previously formulated by Greenberg and

mailto:juan.tolosa@stockton.edu


2 International Journal of Mathematics and Mathematical Sciences

P1

P2

P3

P

d1

d2

d3

Figure 1

Robertello in 1965 [6] as the three-factory problem and solved using trigonometry; two subse-
quent papers by van de Lindt [7] and Tong and Chua [8] offered geometric solutions. There
is also a higher-dimensional generalization in [9]. However, we think our approach is still
of interest, firstly, because of the geometric connections explored throughout the paper, and
secondly because of its accessibility. Except possibly for the last section, the paper can be un-
derstood by students who have completed the calculus sequence.

Using calculus, we obtain necessary and sufficient conditions for λ1P1P + λ2P2P + λ3P3P
to attain its absolute minimum in the interior of the triangle P1P2P3. We show uniqueness of
such minimizing point, and present an elegant geometric construction of this point.

In the event that the absolute minimum of λ1P1P + λ2P2P + λ3P3P does not occur in the
interior of the triangle, we show that one and only one vertex of the triangle minimizes this
sum, and we locate that vertex.

In the last section, we briefly show a connection between the Fermat problem and a
gradient dynamical system.

2. Existence of a minimum inside the triangle

Assuming our plane has Cartesian coordinates (x, y), let Pi have coordinates (xi, yi), i = 1, 2, 3,
and let P have coordinates (x, y). Call di the distance between Pi and P , i = 1, 2, 3 (see Figure 1).

Then, the problem is to minimize the function

f(P) = f(x, y) = λ1d1 + λ2d2 + λ3d3. (2.1)

This function is continuous on the whole plane R
2, so it must attain an absolute mini-

mum on the closed triangle P1P2P3.
Let us find the gradient of f(P). First of all, we have

d2
i =

(
x − xi

)2 +
(
y − yi

)2
, i = 1, 2, 3, (2.2)

and therefore,

∂

∂x

(
di
)2 = 2

(
x − xi

)
. (2.3)

If P /= Pi, then di itself is differentiable, in which case we have

2di
∂

∂x
di = 2

(
x − xi

)
. (2.4)
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It follows that

∂

∂x
di =

x − xi
di

, ifP /= Pi. (2.5)

Similarly, we get

∂

∂y
di =

y − yi
di

, ifP /= Pi. (2.6)

Therefore, the gradient ∇di of di is equal to

∇di =
1
di

(
x − xi, y − yi

)
, ifP /= Pi, where i = 1, 2, 3. (2.7)

Let us call

ui = ∇di =
1
di

(
x − xi, y − yi

)
=

1
di

−−−→
PiP. (2.8)

This is a unit vector, defined for every P /= Pi, i = 1, 2, 3.
Getting back to our function f(P), we conclude that f is differentiable on the open do-

main

Ω = R
2 \

{
P1, P2, P3

}
, (2.9)

and its gradient is equal to

∇f = λ1u1 + λ2u2 + λ3u3 on Ω. (2.10)

Let us see when f can have stationary points.

Lemma 2.1. A necessary condition for ∇f to be zero (at some point in Ω) is that

λ1 < λ2 + λ3,

λ2 < λ3 + λ1,

λ3 < λ1 + λ2.

(2.11)

(Geometrically, this means that we can construct a nondegenerate triangle with sides λ1,
λ2, λ3.)

Indeed, ∇f = 0 is equivalent to λ1u1 + λ2u2 + λ3u3 = 0. This, in turn, means that the
polygonal curve with sides λ1u1, λ2u2, λ3u3 must be a triangle; see Figures 2 and 3.

Moreover, in our case the triangle cannot be degenerate, since this would imply that the
three vectors u1, u2, u3 are parallel, which is impossible, for the points P1, P2, P3 do not lie on
one line.

Since u1, u2, and u3 are unit vectors, this triangle has sides λ1, λ2, λ3, so these three
numbers must satisfy the triangle inequalities (2.11).
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Lemma 2.2. If ∇f(P) = 0 at some P ∈ Ω, then at this point one has

u1 · u2 =
λ2

3 − λ
2
1 − λ

2
2

λ1λ2
,

u2 · u3 =
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
,

u3 · u1 =
λ2

2 − λ
2
1 − λ

2
3

λ1λ3
.

(2.12)

Indeed, if ∇f(P) = 0, then at P we have

λ1u1 + λ2u2 + λ3u3 = 0. (2.13)

Let us dot multiply this equality successively by u1, u2, and u3. Recalling that ui · ui =
‖ui‖2 = 1, we get

λ1 + λ2u1 · u2 + λ3u1 · u3 = 0,

λ1u2 · u1 + λ2 + λ3u2 · u3 = 0,

λ1u3 · u1 + λ2u3 · u2 + λ3 = 0.

(2.14)

To simplify matters, let us call for a moment

v3 = u1 · u2, v2 = u1 · u3, v1 = u2 · u3. (2.15)

Then, the previous system looks like

λ1 + λ2v3 + λ3v2 = 0,

λ1v3 + λ2 + λ3v1 = 0,

λ1v2 + λ2v1 + λ3 = 0.

(2.16)
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Let us multiply the first equation by λ1, the second by λ2, and subtract the second from the
first:

λ2
1 + λ1λ3v2 − λ2

2 − λ2λ3v1 = 0. (2.17)

This can be rewritten as

λ1λ3v2 − λ2λ3v1 = λ2
2 − λ

2
1. (2.18)

Let us adjoin to this equation the last equation in (2.16), previously multiplied by λ3:

λ1λ3v2 − λ2λ3v1 = λ2
2 − λ

2
1,

λ1λ3v2 + λ2λ3v1 + λ2
3 = 0.

(2.19)

Adding both equations in this system, and solving for v2, we get

v2 =
λ2

2 − λ
2
1 − λ

2
3

λ1λ3
. (2.20)

Similarly one gets

v1 =
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
,

v3 =
λ2

3 − λ
2
1 − λ

2
2

2λ1λ2
.

(2.21)

Our result follows if we recall the notation (2.15).

Geometric interpretation of equalities (2.12)

Assume that conditions (2.11) hold, so that we can construct the triangle in Figure 3. Call θi the
angle opposite to the side λi in this triangle (see Figure 4).

Then, for example,

u1 · u2 = cos
(
π − θ3

)
= − cos θ3 (2.22)

(recall that the ui are unit vectors), and the first equality in (2.12) follows from the law of the
cosine. The other two equalities in (2.12) have analogous geometric interpretations.
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Lemma 2.3. If P lies on one of the sides of the triangle P1P2P3, but does not coincide with one of the
vertices, then ∇f(P) /= 0.

Indeed, assume, for example, that P lies on the side P1P2 (see Figure 5).
Then u1 and u2 are parallel. Moreover, the vectors λ1u1 + λ2u2 and λ3u3 are linearly

independent, and at least the second one is nonzero. Therefore,

∇f(P) =
(
λ1u1 + λ2u2

)
+ λ3u3 /= 0. (2.23)

Lemma 2.4. If P lies outside the triangle P1P2P3, then ∇f(P) /= 0.

Indeed, if P lies outside this triangle, then it must lie on one of the half-planes whose
boundary is the line joining two vertices, which does not contain the third vertex. Assume, for
example, that P lies on the half-plane with the boundary through P1P2 which does not contain
P3 (see Figures 6 and 7).

Then, if we draw the vectors λ1u1, λ2u2, and λ3u3 starting at a common origin P , all three
will lie on the same half-plane with boundary being the line parallel to P1P2 passing through
P . Since all three vectors are nonzero, so is their sum

λ1u1 + λ2u2 + λ3u3 = ∇f(P). (2.24)

The gradient ∇f does not exist at the vertices of the triangle. However, we can compute
one-sided directional derivatives at these points.

Let us start by analyzing the behavior of d1(P) = d1(x, y) near the singular point P1. Let
us fix an arbitrary unit vector n and a nonzero number h. Then,

d1
(
P1 + hn

)
− d1

(
P1
)

h
=
d1
(
P1 + hn

)

h
=
‖hn‖
h

=
|h|
h
. (2.25)



Y. Shen and J. Tolosa 7

P1

P2

P3

P

Figure 7

P1

P2

P3

α1

α2

α3

Figure 8

Therefore,

D+
nd1

(
P1
) def= lim

h→0+

d1
(
P1 + hn

)
− d1

(
P1
)

h
= 1,

D−nd1
(
P1
) def= lim

h→0−

d1
(
P1 + hn

)
− d1

(
P1
)

h
= −1.

(2.26)

Let us denote by αi the angle of the triangle P1P2P3 at Pi, where i = 1, 2, 3 (see Figure 8).

Lemma 2.5. If

cos α1 >
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
, (2.27)

then the absolute minimum of the function f(P) given by (2.1) on the triangle P1P2P3 is not attained
at P1.

To show this, let us compute the one-sided directional derivative D+
nf(P1). Now, only

the first term of f(P), that is, λ1d1, is not differentiable at P1; for the other two terms, we can
compute the directional derivative in the usual way. Therefore, we have

D+
nf

(
P1
)
= λ1D

+
nd1

(
P1
)
+ λ2∇d2

(
P1
)
· n + λ3∇d3

(
P1
)
· n

= λ1 +
[
λ2u2

(
P1
)
+ λ3u3

(
P1
)]
· n.

(2.28)
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The smallest value of this derivative will happen when n is parallel to the vector λ2u2(P1) +
λ3u3(P1) and has the opposite direction. For such n we get

D+
nf

(
P1
)
= λ1 −

∥∥λ2u2
(
P1
)
+ λ3u3

(
P1
)∥∥. (2.29)

Let us denote

v2 = u2
(
P1
)
, v3 = u3

(
P1
)
; (2.30)

these are unit vectors directed along the sides P2P1 and P3P1, respectively, as shown in Figure 9.
With this notation, we have

D+
nf

(
P1
)
= λ1 −

∥∥λ2v2 + λ3v3
∥∥. (2.31)

Notice that the vector n we have chosen, directed opposite to λ2v2 + λ3v3, points towards the
interior of the triangle P1P2P3.

If this derivative is negative, this means that when we move from P1 in the direction of
n, the function f(P) will decrease, so that P1 cannot be a minimum. For this derivative to be
negative, we must have

∥∥λ2v2 + λ3v3
∥∥2

> λ2
1 (2.32)

or

(
λ2v2 + λ3v3

)
·
(
λ2v2 + λ3v3

)
> λ2

1, (2.33)

or still

λ2
2 + 2λ2λ3v2 · v3 + λ2

3 > λ
2
1. (2.34)

This implies that

v2 · v3 >
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
. (2.35)

Finally, notice that v2 · v3 = cos α1 (see Figure 9).
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In a totally similar way, one can prove that if

cos α2 >
λ2

2 − λ
2
3 − λ

2
1

2λ3λ1
, (2.36)

then the absolute minimum f(P) on P1P2P3 cannot be attained at P2, and if

cos α3 >
λ2

3 − λ
2
1 − λ

2
2

2λ1λ2
, (2.37)

then the absolute minimum f(P) on P1P2P3 cannot be attained at P3.
Each of conditions (2.27), (2.36), (2.37) implies the corresponding one in (2.11) (condi-

tion (2.27) implies the first one, etc.). Indeed, assume, for example, that (2.27) holds. Then,
since cos α1 < 1, we have

λ2
1 − λ

2
2 − λ

2
3

2λ2λ3
< 1. (2.38)

This is equivalent to

λ2
1 − λ

2
2 − λ

2
3 < 2λ2λ3 (2.39)

or

λ2
1 < λ

2
2 + λ

2
3 + 2λ2λ3 =

(
λ2 + λ3

)2
. (2.40)

Since all λi are positive, this in turn is equivalent to

λ1 < λ2 + λ3. (2.41)

The other two inequalities are proved in a similar way.
Hence, if (2.27), (2.36), (2.37) hold, we can construct a nondegenerate triangle with sides

λ1, λ2, λ3, as in Figure 4. Calling, as before, θi the angle opposite to λi on this triangle, and
recalling that the cosine function decreases on [0, π], we can rewrite conditions (2.27), (2.36),
(2.37) in the following very natural way:

αi < π − θi, for i = 1, 2, 3. (2.42)

Lemma 2.6. Conditions (2.27), (2.36), (2.37) are necessary for the existence of the absolute minimum
of f(P) in the interior of the triangle P1P2P3.

Indeed, assume, for example, that

cos α1 ≤
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
. (2.43)

Pick any point P in the interior of the triangle P1P2P3 (see Figure 10).
Then the angle ∠P 2PP3 is strictly bigger than α1. Therefore,

cos α1 > cos ∠P 2PP3 = u2 · u3, (2.44)

and our assumption implies that

λ2
1 − λ

2
2 − λ

2
3

2λ2λ3
> u2 · u3. (2.45)

Then, we cannot have∇f(P) = 0 at this point, for otherwise we would get a contradiction with
the second equality in (2.12).
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Theorem 2.7. The function f(P) attains its absolute minimum in the interior of the triangle P1P2P3

if, and only if, conditions (2.27), (2.36), (2.37) hold, or, equivalently, if conditions (2.42) hold.

Indeed, we know, by Lemma 2.6, that these conditions are necessary. Conversely, assume
that the conditions hold.

Consider a circle CR, with center anywhere on the triangle, and with a radius R so large
that the whole triangle lies in its interior and, moreover, on the boundary of CR the minimum
of f(P) is larger than, say, f(P1). (This can be achieved because f(P) tends to infinity as P
tends to infinity in any direction.)

Now, the continuous function f(P) must attain a minimum on the compact set CR. By
our choice of R, this minimum is not on the boundary of CR. Further, by Lemma 2.5 and the
remark following it, this minimum is not attained on either vertex P1, P2, P3. Since these are the
only singular points of ∇f(P), it follows that the minimum must occur at a point P inside CR

at which∇(P) = 0. (This also proves that the gradient must vanish somewhere.) By Lemma 2.4,
we conclude that the minimum must lie on the triangle P1P2P3 (vertices excepted). Therefore,
by Lemma 2.3, the minimum must lie in the interior of the triangle P1P2P3, at a point for which
∇f(P) = 0.

3. Uniqueness of the minimum

As in the classical case, the function f(P) attains its absolute minimum value exactly at one
point.

Theorem 3.1. Assume that conditions (2.27), (2.36), (2.37) hold. Then f(P) attains its absolute min-
imum value in the interior of the triangle P1P2P3 at exactly one point.

We already know, by Theorem 2.7, that f(P) attains its minimum at some point P inside
the triangle P1P2P3.

Arguing by contradiction, assume that the minimum is also attained at some other point
P ′ inside the triangle. Then P ′ must lie on one of the triangles PP1P2, PP2P3, or PP3P1 (possibly
on one of the sides PPi). Assume that P lies on PP2P3 as in Figure 11.

Since we have both ∇f(P) = 0 and ∇f(P ′) = 0, by Lemma 2.2 we must have

u2 · u3 = u′2 · u′3 =
λ2

1 − λ
2
2 − λ

2
3

2λ2λ3
. (3.1)
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On the other hand, we have

u2 · u3 = cos ∠P 2PP3,

u′2 · u′3 = cos ∠P 2P
′P3.

(3.2)

But ∠P 2P
′P3 is strictly bigger than ∠P 2PP3, so we must have u′2 · u′3 < u2 · u3, a contra-

diction.

4. Construction of the interior minimizing point

Let us assume that conditions (2.27), (2.36), (2.37), or, equivalently, conditions (2.42), are satis-
fied. Then, by Theorem 2.7, there is a point P at which the function f(P) attains its minimum;
moreover, P lies in the interior of the triangle P1P2P3. Also, by Theorem 3.1, this point is unique.

To actually find the point, we can use a construction inspired by the one for the classical
case (see, e.g., [4]).

Taking P1P2 as one of the sides, let us construct a triangle P1P2P
′
3, as in Figure 12, which

is similar to the triangle in Figure 4, with sides λ1, λ2, λ3. Moreover, let us choose the angles so
that the angle at P1 is θ1, the angle at P2 is θ2, and the angle at P ′3 is θ3. Further, let us draw the
circumcircle to this triangle, and let O be its center.

The arc P1P
′
3P2 of this circle spans the angle θ3, so the complementary arc will span π−θ3.

Similarly, let us construct P1P
′
2P3, also similar to the triangle with sides λ1, λ2, λ3, as in

Figure 12, so that the angle at P1 is θ1, the angle at P ′2 is θ2, and the angle at P3 is θ3. Let us also
draw the circumcircle to P1P

′
2P3, and let O′ be its center.

Now, the formula for the radius of the circumscribed circle (see, e.g., [1, page 13]), ap-
plied to the triangle P1P

′
3P2, yields

P1P2

sin θ3
= 2P1O, whence

P1P2

P1O
= 2 sin θ3. (4.1)

Applying the same result to the triangle P1P3P
′
2, we obtain

P1P
′
2

sin θ3
= 2P1O

′, whence
P1P

′
2

P1O′
= 2 sin θ3. (4.2)

We conclude that

P1P2

P1O
=
P1P

′
2

P1O′
. (4.3)
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Hence, the isosceles triangles P1OP2 and P1O
′P ′2 are similar. Therefore, the angle ∠OP1P2 is

equal to the angle ∠O′P1P
′
2. Hence,

∠OP1O
′ = ∠OP1P2 + ∠P2P1P3 + ∠P3P1O

′ = ∠O′P1P
′
2 + α1 + ∠P 3P1O

′ = α1 + θ1. (4.4)

Now, by our assumption (2.42), α1 < π − θ1, whence ∠OP1O
′ < π . This guarantees that, firstly,

the two circles are not tangent, and secondly, the other point P of intersection of these circles,
besides P1, will occur inside the triangle P1P2P3. Indeed, from our construction it follows that
∠P2PP1 = π − θ3 and ∠P1PP3 = π − θ2. Consequently,

2π −
(
π − θ2

)
−
(
π − θ2

)
= θ3 + θ2 = π − θ1, (4.5)

which is less than π , so P cannot lie below the line P2P3.
We claim that P is the desired minimizing point.
Indeed, geometrically, the fact that ∠P 2PP1 = π − θ3, ∠P 1PP3 = π − θ2, and ∠P 1PP3 =

π − θ1 guarantees that at P one can arrange the vectors λiui as in Figure 4, and therefore,

λ1u1 + λ2u2 + λ3u3 = 0, (4.6)

that is, ∇f(P) = 0.
Here is an algebraic proof of the same fact. At P , we have

∥∥∇f(P)
∥∥2 =

(
λ1u1 + λ2u2 + λ3u3

)
·
(
λ1u1 + λ2u2 + λ3u3

)

= λ2
1 + λ

2
2 + λ

2
3 + 2λ1λ2u1 · u2 + 2λ1λ3u1 · u3 + 2λ2λ3u2 · u3

= λ2
1 + λ

2
2 + λ

2
3 + 2λ1λ2 cos

(
π − θ3

)
+ 2λ1λ3 cos

(
π − θ2

)
+ 2λ2λ3 cos

(
π − θ1

)

= λ2
1 + λ

2
2 + λ

2
3 − 2λ1λ2 cos θ3 − 2λ1λ3 cos θ2 − 2λ2λ3 cos θ1.

(4.7)
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Now, by the cosine law,

λ2
1 + λ

2
2 − 2λ1λ2 cos θ3 = λ2

3, (4.8)

so the above expression simplifies to

∥∥∇f(P)
∥∥2 = λ2

3 + λ
2
3 − 2λ1λ3 cos θ2 − 2λ2λ3 cos θ1. (4.9)

Now we add and subtract λ2
1 and apply the cosine law twice again:

‖∇f(P)‖2 =
(
λ2

3 + λ
2
1 − 2λ1λ3 cos θ2

)
+ λ2

3 − 2λ2λ3 cos θ1 − λ2
1

=
(
λ2

2 + λ
2
3 − 2λ2λ3 cos θ1

)
− λ2

1

= λ2
1 − λ

2
1 = 0.

(4.10)

Note. As for the classical case, it is not hard to show that actually the points P , P3, and P ′3 lie
on the same line, and so do the points P , P2, and P ′2; this provides another geometric way
of constructing the minimizing point P ; see [8]. Moreover, generalizing the situation in the
classical case, one can see that P3P

′
3 = d/λ3 and P2P

′
2 = d/λ2, where d is the minimum of our

function f(P) (attained at the point P we just constructed).

5. Degenerate cases

Case 1. When one of the triangle inequalities (2.11) fails to hold then, by Lemma 2.1, the ab-
solute minimum cannot occur in Ω, so it must happen at one of the vertices of our triangle
P1P2P3.

Assume, for example, that

λ1 ≥ λ2 + λ3. (5.1)

Then, we claim that the minimum is attained at P1.
Indeed, we have

f
(
P2
)
= λ1P1P2 + λ3P2P3 ≥

(
λ2 + λ3

)
P1P2 + λ3P2P3 = λ2P1P2 + λ3

(
P1P2 + P2P3

)
. (5.2)

By the triangle inequality, applied to P1P2P3, we have P1P2 + P2P3 > P1P3. Therefore, the last
expression is strictly greater than

λ2P1P2 + λ3P1P3 = f
(
P1
)
. (5.3)

This shows that f(P2) > f(P1). One shows analogously that f(P3) > f(P1).
The other two possibilities of failure of (2.11) are discussed analogously; this leads to the

following result.

Theorem 5.1. If λ1 ≥ λ2 + λ3, then the absolute minimum of f(P) is attained at P1 and only at P1.
Similarly, if λ2 ≥ λ1 + λ3, the minimum is attained at P2, and if λ3 ≥ λ1 + λ2, the minimum is attained
at P3.
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Case 2. Assume now that the triangle inequalities (2.11) hold, but one of the conditions (2.42)
fails to hold. We claim that only one of these conditions can fail.

Indeed, if we had, say, both

α1 ≥ π − θ1,

α2 ≥ π − θ2,
(5.4)

then we would have both

α1 + θ1 ≥ π,

α2 + θ2 ≥ π.
(5.5)

Adding up, we would get

(
α1 + α2

)
+
(
θ1 + θ2

)
≥ 2π, (5.6)

which is impossible, since α1 + α2 + α3 < π and θ1 + θ2 + θ3 < π . So, only one of the inequalities
in (2.42) can fail to hold.

If we have, for example,

α1 ≥ π − θ1, (5.7)

then we will have both α2 < π − θ2 and α3 < π − θ3. This implies, by Lemma 2.5, the remark
following it, and Theorem 2.7, that the minimum must be attained at P1.

The other two possibilities of failure of (2.11) are discussed similarly. The following re-
sult summarizes our discussion.

Theorem 5.2. If conditions (2.11) hold and α1 ≥ π−θ1, then the absolute minimum of f(P) is attained
at P1. Similarly, if α2 ≥ π − θ2, then the minimum is attained at P2, and if α3 ≥ π − θ3, the minimum
is attained at P3.

6. The classical case

The classical Fermat triangle problem happens when

λ1 = λ2 = λ3. (6.1)

Then, the triangles in Figures 3 and 4 are equilateral, and therefore

θ1 = θ2 = θ3= 60◦. (6.2)

Also, all the right-hand sides in (2.12) are equal to −1/2. Conditions (2.42) become

αi< 120◦ for i = 1, 2, 3. (6.3)

From here one can easily deduce the classical result stated in the introduction, especially
as discussed in [3].
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Figure 13

Figure 14

7. The Fermat gradient system

Assume conditions (2.42) hold. As we observed before, the gradient (2.10) of the weighted
distance sum f(x, y) given by (2.1) is defined in all of Ω = R

2 \ {P1, P2, P3}. Since the function
f(x, y) has a global minimum at the optimal point P , the trajectories in Ω of the gradient system

(ẋ, ẏ) = −∇f(x, y) (7.1)

will converge to the asymptotically stable equilibrium P . This follows immediately from the
fact that V (x, y) = −‖∇f(x, y)‖2 is a global Lyapunov function for the system on Ω (see, e.g.,
[10, Section 9.3]). Moreover, the trajectories of (7.1) are orthogonal to the level curves of the
weighted sum f(x, y). Figure 13 illustrates the situation for a more or less randomly chosen
triangle, for the classical Fermat problem, when all the weights λi coincide. We have depicted
the direction field of the gradient system plus several trajectories. The closed lines are the level
curves of f .

Several intriguing questions arise. For example, when the triangle is equilateral, a single
level curve will be tangent to all three sides as shown in Figure 14.

In general, under which condition(s) is there a level curve simultaneously tangent to
two sides? To all three sides? For a generic triangle, and for the generalized Fermat problem, is
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it always possible to pick the weights λi so that a single level curve of f will be tangent to all
three sides?
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