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1. Introduction

The laws of large numbers for orthogonal random variables or Banach space-valued
random elements are investigated by several authors. A consequence of Rademacher-
Menshov theorem [2, 3] showed that the sufficient condition for a strong law of large
numbers of a sequence of orthogonal real-valued random variables with 0 means and
finite second moments is ;" (07/k?) - [log,(k + 1)]> < co. Warren and Howell [4] pro-
posed the sufficient condition >, (E|| X[l 't%/k!**) - logH“ k< o0,0< o0 <1, for strong
convergence of the one-dimensional B-valued James-type orthogonal random variables.
Méricz [5] showed that .2, 37 (64/i%k?) - [log,(i+ 1)]?[log, (k + 1)]? < oo is the nec-
essary condition for the strong convergence for arrays of quasi-orthogonal real-valued
random variables. Moéricz [6] obtained a sufficient condition for strong limit theorems
for arrays of quasi-orthogonal real-valued random variables. Méricz et al. [7] showed that
the sufficient condition for the strong convergence of (1/m®nf) > >°}_| Xy for arrays
of orthogonal, type p Banach space-valued random elements is
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In this paper, the strong laws of large numbers will be investigated for James type of or-
thogonality in a Banach space. In order to induce d-dimensional case, d > 2, we wish
to investigate the strongly convergent behavior of a more general Cesaro-type means,
(/menB) Y SE (1= (i— 1)/m)(1 — (k — 1)/n) X, as m,n — oo, for arrays of two-
dimensionally indexed orthogonal random elements in a Banach space of type p, 1 <
p<2,and 1/2 < a, § < 1, though Su [1] showed a case of « = 1 = f. In particular, it will
be proven that the sufficient conditions are also the best possible even for independent
real-valued random variables. The definition for an array of orthogonal random elements
and the formulation of previous results and auxiliary lemmas for orthogonality are given
in Section 2. The major results and their proofs are in Sections 3 and 4, respectively.

2. Preliminaries and auxiliary lemmas

The basic definitions and properties of Banach space-valued random variables (or ran-
dom elements) are well established in the literature (e.g., [8]). In these preliminaries, we
only introduce the concepts which are necessary and not easy to read in the literature.

Our sense of orthogonality throughout this manuscript is that of James type orthog-
onality. For elements x and y in a Banach space B, x is said to be James orthogonal to y
(denoted by x L y) if [Ix|| < |x + ¢yl for all t € R. If B is a Hilbert space, then James
type orthogonality agrees with the usual notion of orthogonality where the inner prod-
uct is 0 since |lx+tyll> = (x+ty,x +ty) = [Ix[I? + 2| ylI? + 2t(x, y) > ||x|* for all t € R
if and only if (x,y) = 0. However, in a Banach space where the norm is not generated
by an inner product, it is possible for x L; y but y L; x with (x,y) # 0. For instance,
let B2 = {(x1,x2) : 1 (x1,x) || = [x1] + [x2], x1,%0 € R} and x = (2,0) and y = (2,-2).
Then, it is clear that the usual inner product (x,y) =4 # 0. Next, x L7 y but y [; x
since [[x+tyll = [2+2¢|+ ]| —2t| =2 = |lx|land [ly + tx]| = 2+ 2¢] + | =2| =3 < ||yl =4
while picking t = —1/2. Therefore, it is not possible to create a notation of orthogonality
with a good geometrical meaning in an arbitrary Banach space without the inner product.
As a result, James-type orthogonality is adopted to circumvent this shortcoming [7].

Let {Xi, i,k = 1} be a double sequence of random elements in the Banach space L?(B)
with zero means, that is, E(Xj) = 0 for all 4, k and finite pth moments, E|| Xj||? < oo for
all 4, k, where || - || is the norm of the separable Banach space B. The following is the
extended definition for arrays of orthogonal random variables in Banach spaces.

Definition 2.1. An array of random elements {Xj;} is orthogonal in L?(B), 1 < p < oo, if

(1) E||Xi|lf <o Vik,

ny

ni
E ZZ Ay (i), (k) Koy (1), (k)
i=1 k=1

ny+mp ny+my

Z Z iy (i), (k) X (i) 0> ()
i=1 k=

p (2.1)

>

<E

for all arrays {ax} = R, for all ny, ny, my, and my, and for all permutations 73, 7, of the
positive integers {1,2,...,m; +n;} and {1,2,...,m, + ny}, respectively.

In retrospect, a separable Banach space B is of type p (1 < p <2) if and only if there
is a constant C > 0 (depending on B only) such that E|| 3.1, X;[|P < C>.I | El X;||? when
{Xi} are independent random elements with zero means and finite pth moments [8]. In
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order to obtain the desired results, a useful version of moment inequality for arrays that
extend the results of Howell and Taylor [9] is listed below.

ProrosiTioN 2.2. The following conditions are equivalent:
(i) B is a Banach space of type p, 1 < p <2,
(ii) for each array {Xmn} of orthogonal random elements in LP(B), there exists a con-
stant C (depending on {Xynn} and B) such that, for all m and n,

m n
E||> > Xi
i=1 k=1

P m n
<CY > ElXall”. (2.2)
i=1 k=1

The next lemma is from Moricz et al. [7].

Lemma 2.3. If {Xi; i = 1,k = 1} is an array of orthogonal (in LP(B)) random elements in
a Banach space B of type p for some 1 < p <2, then

atj  b+n p a+m  b+n
E[( max > Xik ) }sCl(logZZm)p ST El|Xullf (2.3)
I<j=m i=a+1 k=b+1 i=a+1 k=b+1
for some Cy >0 and
atj b+t P atm b+n
E[( max max > Xik ) ]§C2(10g22m (log,2n)” > > El[Xul|f
Ij=mi=t=n{l; 20 S i—atl kebr1

(2.4)

for some C, > 0.

The following lemma can be derived directly from Proposition 2.2 and Lemma 2.3.
Hence, the proofs are omitted.

LemMma 2.4. Let {Xi} be an array of orthogonal (in LP(B)) random elements in a Banach
space B of type p for some 1 < p <2 and let {ay} be any array of real numbers, then there
exists positive constants Cs and Cy such that, for all m and n, (a,b = 0; m,n=1)

a+m  b+n atm  b+n
(i) E[| > > awXu <C3 > >0 law | ElXall?
i=a+l k=b+1 i=a+l k=b+1
atm b+t atm b+n
(i) [( > > awXa ) ]<c4 log,2n)? > S [au| "E||Xul .
1252 i=at] k=b+1 i=at1 k=b+1

(2.5)

We also need two more crucial lemmas as follows; they are extended from Kronecker’s
lemma and Shiryayev [10], respectively, and will be proven in Section 4.

LemMa 2.5 (two-dimensionally indexed version of Kronecker’s lemma). Let {a,,} and
{b,} be sequences of positive increasing numbers, both a,, 1 00 and b, 1 oo when m — oo and
n — oo, respectively. Let {x;j; i,j = 1} be an array of positive numbers such that
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321 251 (xij/aibj) converges. Then,

) Lzzﬁ—ﬁ asm — oo,

amtzl] lbj
1 m n Xii
2 0 asn—w, (2.6)
mi=1j=1 "
. 1 <« <
(ii) b Zinj—>O as m — o0 0r 1 — 0
amn

LemMA 2.6. A sufficient and necessary condition that {,, — 0 with probability one as m,n —
oo is that for any € >0,

P<supsup||(,~k||>£> — 0 asm-— o0, n— o0, (2.7)

izm k>n

3. Major results

Theorems 3.1 and 3.2 are two-dimensionally indexed versions of strong convergence for
Cesaro-type means for arrays of Banach space-valued random elements and hence their
proofs are more complicated than that in real cases because of the structure of spaces.

TaeoreM 3.1. Let {Xj} be an array of orthogonal (in LP(B)) random elements with zero
means in a Banach space B of type p, for some 1 < p < 2. If 32 37 (Ell Xy |P/i%PkPP) <
00, 1/2 < a, B < 1. Then,

=0 a.s. (3.1)

THEOREM 3.2. Let {Xjk} be an array of orthogonal (in LP(B)) random elements with zero
means in a Banach space B of type p, for some 1 < p < 2. If > > (El X |P/i*P kPP -
[log,(k+1)]P < 0, 1/2< &, f < 1. Then,

lim =0 a.s. (3.2)
m,n— oo

1 << i—1
manP Z 2. (1 B m)Xik
i=1 k=1
The generalization to d-dimensional arrays random elements of the previous two the-
orems can be obtained easily by the same methods [1]. Theorems 3.3 and 3.4 are to show
that the sufficient conditions in the previous theorems are the best possible conditions
for independent real-valued random variables, since the real line is of type p, 1 < p <2.

TuEOREM 3.3. If {1} is an array of nonnegative real numbers such that tf /i*P~DF(p=1) <
1 holds for indices i and k and the condition 322 S5, (th/i*PkPP) = oo, for some 1 < p <2
and 1/2 < a, 3 < 1, then there exists an array {Xi} of independent real-valued random
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variables such that E(X;;) = 0, E| X |P = 1’5(, and

limsup = 0, (3.3)

m+n—oo

THEOREM 3.4. If {1y} is an array of nonnegative real numbers such that 5 - loggfl(k +
1)/iP=VkEP=D) < 1 holds for indices i and k and the condition >° 3., (th/iPkPP) -
[log,(k+1)]P = o, for some 1 < p <2 and 1/2 < &, < 1, then there exists an army { X}
of independent real-valued random variables such that E(Xy) = 0, E| X |P = le, and

limsup
m+n— oo

= 0. (3.4)

4. Proofs

Here we will verify Lemmas 2.5 and 2.6 first, then prove the case of d = 2, that is, Theo-
rems 3.1, 3.2, 3.3, and 3.4. We may apply the analogous approaches for the d-dimensional
cases, d > 2.

Proof of Lemma 2.5. (i) First, we have 3.7, (xij/a;b;) < oo for each j > 1 and X7, (x;j/
aibj) < oo for each i > 1. Then by the one-dimensional version Kronecker’s lemma, we can
conclude that (1/a,,) 3" (x;j/b;) — 0 as m — o, for every j, and (1/b,) 37_; (x;j/a;) — 0
as n — oo, for every i. Hence, for any & > 0, choose n > N such that (1/b,) Z;’:l(xij/ai) <
£1/2! for all i. Then, we have

fzz% I D IR 3 P (4.1)

mi=1j=1 i=1 7" j=1

Similarly, for any &, >0, choose m > M such that (1/a,,) Zﬁl(x,-j/bj) < &/2/ for all j,
then

><

1
am ;

M§

S Zﬂiz’é_f ZZ_Z (4.2)

j=1

1l
—_
-

(ii) Apparently, for any € > 0, when m > M (say), we can conclude that

>§

i SURK (4.3)

i=1 j=1 J

[\/]3

n[\/]§

" 1
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Proof of Lemma 2.6. Fix any m > 1, for any ¢ >0, let A%, = {w:sup,., (]l > ¢} and
Ag =1im,AE, = Moy Uksn A%y Then, {w :sup,,, [I{nll = 0, asn — oo} = .20 AS, =
Urs 1 AYE. However, P(AZ)) = lim,P(Uy=, A%,;). Hence, for any fixed m > 1,

0:P<w:§up||(in|| —/> OQasn— oo) —P<UAfn>

=m >0

<=>P<UA;,{t> =0 anyfixed m > 1

t=1

P(AVt) =0, t=1,anyfixedm>1

11

P(A%) =0 foranye >0, any fixed m > 1

1&

U ;)—»0 asn — oo, any fixed m = 1 (4.4)

|

>n i=m

P

|

k>=n izm

ﬁ {Supsupll(lkll >s}>) —0 asn— oo

P< sup sup | |Cix|| >£> — 0 asn— oo, any fixed m > 1

=P supsup||(,k|>£> — 0 asm-— o0, n— oo,
k=n izm

O

Proof of Theorem 3.1. We need some useful arguments in the proofin [1, 7], and Lemmas
2.3 and 2.4. For positive integers u and v, for any ¢,

ol s el >e] < 3 30| max ma wll>e]. G
where
1 & <& i—1 k-1
bon = 2 2 (1= ) (1255 o
We have
0 (j)
j
2r<mmi)2(r+1 2‘?135( 1||£mn|| = ||£2' 28 +;Ar3 > (4-7)
where

AS? _2 max ||€m 25— & sl

<m=<2rt +1
AR = max |6, — &l (4.8)
A(ri) = nax max ||£mn fm,zs - fZ',n +£2f,23||-

2rem<2rtl 2s<p<stl
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Therefore,

p[ max  max ||g,,m||>e] [||§2r,23||>2] i[Am f]. (4.9)

2r<m<2rtl 2s<p<stl

First, by Markov’s inequality and Lemmas 2.3 and 2.4,

r=u

[eY]
S=V

ill”

[

(%) h Z Z 2mpzﬁsp z Zl '

<%> rlzzzarpzﬁsp{ilzz Z Z+2 Z Z Z }E”Xika
()

k=1 i=24+1 k=1 i=1k=2v+1 i=2+1k=2v+1

o |
v
IM.&

w , say, for some I'; > 0.

(4.10)
Using some basic calculation, it follows that
2(a+ﬁ)p 1 2u v
L = : 1P
B =G 2w & & Bl (4.11)

Next,

2(Ot+ﬁ 2 1 E||Xk|| © E||Xk||p
@ , :

=2u+1 k= =2u4] f=2v+1

Similarly,

(3) i i
By = (227 — 1) (2P — {2 2 Qapu [Bp Z > “jrkbr

=1 k=2"+1 =041 k=2v+1 (4.13)
— < < S EllX P c < E||X1k||P
- Z Z txrpzﬂsp Z Z || ik|| - Z Z jopkBp *
r=us= =241 k=2v+1 i=26+1 k=2v+1
Secondly, since
2"+m
AV = max ||Epr — & =  nax Z (&2 = &129) ', (4.14)
2 <m=2r! 2=
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where

to2
o —Emr = > ap(t,9) Xk

i=1 k=1

ai(t,s) = 2}38(1—](2_51)[(1'—1)(@_ t(x1+1>_<(t_11)06 -

we have

(4.15)

#))

(4.16)

(4.17)

1
|aik(t,s)| < W.
Hence, for some I';,T'5 >0,
P[A“) > e]
gg 5>
0 00 2"+m .
<5 5r| mas | 3 -t 5]
r=us=v l=m<2 t=27+1
4 p © ® 2"+m p
() SSa| (mas | 3 - )]
r=us=v T t=2"+1
4 p o 2r+l
< (_) Z Zrz[log 2 2r z E||Em25 gm 1,26
&/ rus=v m=2r+1
4\ LSS (r)P E||Xal|”
Sy s $5
r=us=v m=2"+1i=1 k=1
s S S S s PR
~(mIE 3 35 e
r=us=v m=2"+1i=1 k=
4 P 00 ) 29 rP or 2r+1 27+1 2r+1 E||Xk||P
SO EPHOEA DR i e
r=us=v k=1 i=1 m=2"+1 i=2"+1 m=i
4 P 00 ) 29 rp 2" 1 27+1 1 )
< (g) EIDY 2/ssp[zzf[<a+1>pl+ >, e | Xl
r=us=v k=1 i=1 i=2"+1
4 P o 28 o 2" oo 2rtl
S(g)F Z zﬁsp{ZZZr a+1p1]+z Z Ot+l
s=v k=1 r=uj=1 r=uj= 2'+1

s e,
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Since the first term and the second term in the bracket of (4.17) can be expressed, respec-
tively, as

o 2"

00 2H ) 1
S5 <Y 3 e <2 (z v 3 o)
i=1 u<r;i< =1

r=uj=1

0 27+l

Z Z oc+1)p 1 = z Z 2r[ zx+1)p 1] Sz(aﬂp Z l(a+1p 1’

r=uj= 2r+1 =24+1 u<r;i<2rtl =2u+1
(4.18)
hence,
© 2 2% o0 p
4 ElIX;
(@17) =200 () Z[Z+ 5 ][z 2y ] Xl
s=vLk=1 k=2v+1 g1l !
8)” < EIIXlkII” < < EIIszII
ap( =
<2 (8) {zﬁv ; > = 2’”";(211 ZZMH (4.19)
S & El|Xall” o w E||Xal
%HIZ;‘ otpkﬁp 2 %+11 2z“+1 l'vtpkﬁp '
Similarly, for some I's >0,
© 2V 2 [
E||X|” E”Xk“
;;P[ rs _] <2ﬁp<8> {ztxu Z Z kﬂlp leup Z Z l
=us= k=1i= i=1 k=2v+1
© 2Y 00 P
| Xe||” E|[ X
Z Z apkfsp +2 Z Z opjBp |
i=2u4] k= i=20+1 k=2v+1 (4.20)
Next, since
max max ||€mn gm,25_£2',n+€2',25||
27<m<27+1 25<n<25+1
2"+m 2°+n
SIISI}I’laSXZY lrﬁrll’laﬁ)%s %+1 . §+1 ftl th T t] 1), Et} (t— 1)+Et1 1),(t— 1))' (4‘21)

1 2
&ty — -1t — En-1) T &t -1 (0-1) = Z Z bir (t1,t2) Xik»
i=1k=1

where

bie(t1,12) = [%(1 - i;1> (1 —1 )¢ <1 - tl1_—11>]

- - (4.22)
L0 -]
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so apparently,

(i—-1(k-1) . 1 _ 1
tclzﬂl_gﬂ (tl _ 1)(t2 _ 1) - t¢11+1t§+1-

|bix (t1,12) | < (4.23)

Hence, for some 'y >0,

> >p|ap>4]

=Us=v

<

2"'+m 2°+n

Z Z Etl fh ti Dt = fti,(tz—l) + f(ti—l),(tz—l))

’ s
1<m<2" 1<n<2 21 =241

< Z ZP[ max max

<

=
©

<

o oo or+l s+l n
4\? r s E”Xlk”
= e Iy 2 Z (log,2-2 ) (log,2-2%) z Z z Z (@D (B+1)p
r=us=v =2"+1 n=2+1i=1k
4 P 0 00 2r+1 2s+l m n E| |Xlk | |
() nX Serery O3 33 o
€ r=us=v =2r+1 n=25+1 i=1 k=1 h
4 » 0o oo or  prtl or+l orl 25 gstl gt g5+l E||X ||p
S(OrESee(S S+ S TS S8 S) Al
r=us= i=1 m=2"+1 i=2"+1 m=i k=1n=25+1 k=25+1 n=i

161" S » S S E”X"H
2(a+/5)P( B ) {ztxupzﬁvp Z ZEHsz” 2“”P Z Z 1

i=1 k=2v+1

[eY)

EIIXk|| < E|[Xall”
zﬁv > Z gy v i ("

i=24+1 k=1 i=244+1 k=2v+1
(4.24)

Combining the results in (4.9), (4.10), (4.19), (4.20), and (4.24), we can conclude that
P[limy, - 1€l = 0] = 1. Since Plsup,,- =¢ 1Emnll > €] — 0 as s,t — oo by applying
Lemmas 2.5 and 2.6 on the right-hand side of the previous inequalities, then the proof is
completed by a convention that X7, >i  =0=>23Si, =57, 5, and
ity Dgear = Dimy D ifr =1 O

Proof of Theorem 3.2. Similar to the previous proof, we start out from assuming that 2" <
m < 21 and 2° < n < 2°*! with nonnegative integers u and v, and letting

oinﬁ i >, (1 - %)Xik- (4.25)
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First, we can write

[SS I

> ZP[ max  max |[Tml| >s] <> ZP[H‘@,ZS

3
€ ()
>— |+ R 4.26
2r<m<2rtl 2s<p<stl :| Z rs ( )

r=us=v r=us=v j:l

where

DY = _ £
ZZP[z%mmiuz(MHTmzs Tyr s >4],

r=us=v

:Xz [ max ||ty — T2 >£], (4.27)
o L= 4

(o] o0
DS):ZZP[ max  max ||Tum — Tmas — Torn + Tor s

>— .
" 2r<m=<2r+l 25<pn <25t 4]

Comparing (4.9) to (4.24), we can easily obtain that for some I's > 0,

o < PooE 2 X
S 2rleal-g]s () 2 S 50 (429

i=24+1 k=2v+1

and for some I['s,I¢ >0,

4 ad e m ¥ E||X;
o= (Hr 3 Shog2 2y 5 33 EEIT

r=us=v m=2"+1 z:lkzl

8 LS EXl, 1S E\IszII
ap( 2}
sor(rpf gy S, S S HEE g
i=1 k=1 i=24+1 k=1
< o ElIXallf S EIIXikHP
+Z Z jop kPp +2 Z Z jop kPP :

i=1 k=2"+1 i=24+1 k=2v+1

Next, we need to examine that

2°+n
max ||t — 1|l = max || > (1o —721)]|s
25<n=<2s*1 25<n<25t1 Pvy

(4.30)

ot
Ty = Tor—1 = z Z cik (7, 1) Xik

i=1 k=1

where

1 i—1\[1 1
L[5 L] ke
cik(r,t) = (4.31)

1 i—1 1
w15 ) k=t
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Hence, we use basic calculus to obtain

. B _ A R S
[cik(r,t)] < 2B 1P k=1,...,t—1, |Clk(r’t)|§2mtﬁ’ k=t (4.32)

Following the arguments in the proof of Theorem 3.1, we can get that for some I';,I'5 >0,

4]

24n 2"t

S S S

r=us=v =251 im1 k=1
VR [log, 25*1] p 2 2t
= (E) L7 z Z gzzfxrp Z Z Z Iclk(r t)|pE||X,k||p
rEus=y i=1 n=25+1 k=1
AP 2 S s41]P A 1E||Xk||p EHX ||p
= (E) F7Z Z 20rp Z Z Z nzll’ nﬁl;
r=us=v i=1 n=25+1 Ug=1 )
(8 LS S Bl g E||X,k||
B E 7 20‘”}7 Z kPP zaupz Z
i=1k=1 i=1 k=2v+1
S Bl S ElXa”
+Zzzapkﬁp Z ZW
i=21+1 k=1 i=2U+1 k=2v+1
- E|X;
+ Z > up]j?! l+log§(k+l)]}.
i=2041 k=2v+1

The second term in (4.33) is obtained by the following basic calculation. Next, similar to
the procedure of getting (4.24), we have

|

max  max ||Tun — Tmos — Torn + Tor s
2r<m=<2rtl 2s<p<s+l

24m 254n (4.34)
< — Ty 1p — _ e
= max  max 1§+1 t2=%:+1 (Tets = To-16 = Ttto—1 + T —1,6-1) |5
where
t1 tH
Tty = To—1 — Tth—1 1t Ty —1,6-1 = Z Z dik (t1,12) Xik,
i=1 k=1
1 ( i— 1) 1 ( i—1 )] [ 1 1 ]
—(1- - 1- e, k=n-1,
[l‘ix ) (h—1)° th—1 £ (t-1)F
die(tu) =907 1 i—1\7]1
—(1- >_ (1_ )]—, k=n.
[tf‘( t (t—1)" h—1/14

(4.35)
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Similarly

| dix (t1,12) | S%, k<n, |dix (t1,12) | < B k=n. (4.36)
(e s

Then, by the analogous approaches of the proof of Theorem 3.1, for some H > 0, we have

P s o e
DY < (%) H - {(lower order terms) + » > E.||sz||

i=24+1 k=2v+1 l“PkﬁP (4 37)
> E|X: '
+ Z S |0|Cpk’;3\p| [1+]1o gz(k+1)]}
i=24+1 k=2v+1

Consequently, following the analogous arguments in the previous proof, we can conclude
the desired result. O

Proof of Theorem 3.3. By 3.2, S5, (14/i%kPP) = oo, there exists an array {ej} of nonin-
creasing positive numbers converging to 0 as max{i,k} — co such that >.°, ¢ (theh/
i*PkPP) = oo, Next, define an array of independent random variables { Wy} with the fol-

lowing properties [8]:

k] The ik
P[W,k o ] e P[Wik=0] =1~ 2% (4.38)
Then, it is easy to have that
p Thed ] p-l
E|Wi|? = 1, 0<E(Wy) = e ’1);{/3 oD < Eik - (4.39)

Now let Xix = 7ix - (Wi — E(Wi))/8ix) = X, = Xz, where 8% = E| Wi — (W) |P, X5t =
Tik Wir/Oik, and X = Tk E(Wi)/ 8. Since Wi and E(Wj) are all positive, and by the
dominated convergence theorem for i, we have

=1 (4.40)
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Consequently, we can obtain that Xj, = max{0, Wi}, i,k = 1,2,3,..., and |X;| < 285:1,
when i+ k is sufficiently large. Then,

i 22 (125 (155
> (-5 -5

)

v
3|

i=1 k=1 n
m
w22 (-5 0= )]
men p i=1 k=1 m
1 &Y i—1 k=1\o, 2e07' (m+1\(n+1 .
Zm“nﬁg,gl(l_ m)(l_ n )Xik_m“nﬁ( 2 )( 2 ) (X = 0)
C { u ( i—l) . ( k—l)} Cymn
> 1-—) > (1-—)tx -2
[m/2],[n/2] >
menf i=[m/2] m ) h e menf
C,Cy >0, (X, are nondecreasing when i+ k is large enough)
C m n . Cimn
= e 4 g K T g
C m n Twmanne Cimn
> — 0 — .« — 7W -
menP 4 4 (5[,”/2] [n/2] (m/2)[n/2) = menb
.. C mn [m/2]*[n/2]F  Cimn
TmnP 44 e menP
C-m-n _ClmnN C, m-n

~ ~ . 5> C2>01
64 - lmal 2] MNP ey monf

(4.41)

where [-] denotes the greatest integer function. Finally, employing the Borel-Cantelli
lemma and the assumption conditions can yield that

) 1 m n . k _ 1
limsup /;Z z (1——) (1— )Xik =00, a.s. (4.42)
m+n—oco [ n

This completes the desired proof. O

Proof of Theorem 3.4. Here we define an array { Wi} of independent random variables as
follows [8]:

i*kP thel .,
P[Wzk_ S,klogz(k+1):| = 1"‘1’]{/517 10g2(k+1)3
p P

0] =1 FikCik q P
P[Wig=0]=1 iapkﬁplogz(k+1).

(4.43)
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Hence, we also have that

-1 -1
tyey logi (k+1) _ o
0P Dhp-1  ~ Cik

E|lWg|P =1,  0<E(Wy) = (4.44)
Then, choosing {Xix} and following the similar steps as in the proof of Theorem 3.3, we
can obtain the desired results. O
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