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1. Introduction and main results

In this paper, we use the standard notations and terms in the value distribution theory
[4]. For any nonconstant meromorphic function f (z) on the complex plane C, we denote
by S(r, f ) any quantity satisfying S(r, f ) = o(T(r, f )) as r →∞ except possibly for a set
of r of finite linear measures. A meromorphic function a(z) is called a small function
with respect to f (z) if T(r,a)= S(r, f ). Let S( f ) be the set of meromorphic functions in
the complex plane C which are small functions with respect to f . Set E(a(z), f ) = {z |
f (z)− a(z)= 0}, a(z)∈ S( f ), where a zero point with multiplicity m is counted m times
in the set. If these zero points are only counted once, then we denote the set by E(a(z), f ).
Let k be a positive integer. Set Ek)(a(z), f )= {z : f (z)− a(z)= 0,∃i, 1≤ i≤ k, such that
f (i)(z)− a(i)(z) �= 0}, where a zero point with multiplicity m is counted m times in the
set.

Let f (z) and g(z) be two transcendental meromorphic functions, a(z)∈ S( f )∩ S(g).
If E(a(z), f )= E(a(z),g), then we say that f (z) and g(z) share the function a(z)CM, espe-
cially, we say that f (z) and g(z) have the same fixed points when a(z)= z. If E(a(z), f )=
E(a(z),g), then we say that f (z) and g(z) share the function a(z)IM. If Ek)(a(z), f ) =
Ek)(a(z),g), we say that f (z)− a(z) and g(z)− a(z) have the same zeros with the multi-
plicities ≤ k.
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In addition, we also use the following notations.
We denote by Nk)(r, f ) the counting function for poles of f (z) with multiplicity ≤

k, and by Nk)(r, f ) the corresponding one for which multiplicity is not counted. Let
N (k(r, f ) be the counting function for poles of f (z) with multiplicity≥k, and letN (k(r, f )
be the corresponding one for which multiplicity is not counted. Set Nk(r, f )=N(r, f ) +
N (2(r, f ) + ···+N (k(r, f ).

Similarly, we have the notations

Nk)

(
r,

1
f

)
, Nk)

(
r,

1
f

)
, N (k

(
r,

1
f

)
, N (k

(
r,

1
f

)
, Nk

(
r,

1
f

)
. (1.1)

Let f (z) and g(z) be two nonconstant meromorphic functions and E(1, f ) = E(1,g).
We denote by NL(r,1/( f − 1)) the counting function for 1-points of both f (z) and g(z)
about which f (z) has larger multiplicity than g(z), with multiplicity not being counted,
and denote by N11(r,1/( f − 1)) the counting function for common simple 1-points of
both f (z) and g(z) where multiplicity is not counted. Similarly, we have the notation
NL(r,1/(g − 1)).

In 1929, Nevanlinna proved the following well-known result, which is the so-called
Nevanlinna four-value theorem.

Theorem 1.1 [5]. Let f and g be two nonconstant meromorphic functions. If f and g share
four distinct values CM, then f is a Möbius transformation of g.

In 1979, G. G. Gundersen proved the following result, which is an improvement of
Theorem 1.1.

Theorem 1.2 [6]. Let f and g be two nonconstant meromorphic functions. If f and g share
three distinct values CM and a fourth value IM, then f is a Möbius transformation of g.

In 1997, Li and Yang proved the following two results, which generalize Theorems 1.1
and 1.2 to small functions.

Theorem 1.3 [7]. Let f and g be two nonconstant meromorphic functions, and let aj ( j =
1, . . . ,4) be distinct small functions of f and g. If f and g share aj ( j = 1, . . . ,4)CM∗, then
f is a quasi-Möbius transformation of g.

Theorem 1.4 [7]. Let f and g be two nonconstant meromorphic functions, and let aj ( j =
1, . . . ,4) be distinct small functions of f and g. If f and g share aj ( j = 1, . . . ,3)CM∗ and
a4(z)IM, then f is a quasi-Möbius transformation of g.

Recently, some papers studied the uniqueness of meromorphic functions and differ-
ential polynomials, and obtained some results as follows.

In 2002, C.-Y Fang and M.-L. Fang [1] proved the following result.

Theorem 1.5 [1]. Let f and g be two nonconstant meromorphic functions and let n(≥ 13)
be an integer. If f n( f − 1)2 f ′ = gn(g − 1)2g′ share the value 1CM, then f ≡ g.

In 2006, Lahiri and Pal [2] proved the following results, the first of which improves
Theorem 1.5.
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Theorem 1.6 [2]. Let f and g be two nonconstant meromorphic functions and let n(≥ 13)
be an integer. If E3)(1, f n( f − 1)2 f ′)= E3)(1,gn(g − 1)2g′), then f ≡ g.

Fang and Qiu [8] proved the following results.

Theorem 1.7 [8]. Let f and g be two nonconstant meromorphic (entire) functions, n ≥
11(n ≥ 6) is a positive integer. If f n f ′ and gng′ share zCM, then either f = c1ecz

2
, g =

c2e−cz
2
, where c1, c2, and c are three constants satisfying 4(c1c2)n+1c2 =−1, or f ≡ tg for a

constant t such that tn+1 = 1.

Lin and Yi [3] proved the following results.

Theorem 1.8 [3]. Let f and g be two transcendental meomorphic functions, n ≥ 13 is an
integer. If f n( f − 1)2 f ′ and gn(g − 1)2g′ share zCM, then f (z)≡ g(z).

Question 1.9. Is it possible that the value 1 can be replaced by a small function a(z) in
Theorems 1.5 and 1.6?

Question 1.10. Is it possible to relax the nature of sharing z in Theorem 1.8 and if possible,
how far?

The purpose of this paper is to answer the above questions, and we get the following
results.

Theorem 1.11. Let f and g be two transcendental meromorphic functions and let n≥ 13,
k ≥ 3 be two positive integers. If Ek)(z, f n( f − 1)2 f ′)= Ek)(z,gn(g − 1)2g′), then f ≡ g.

Theorem 1.12. Let f and g be two transcendental meromorphic functions and let n ≥ 15
be a positive integer. If E2)(z, f n( f − 1)2 f ′)= E2)(z,gn(g − 1)2g′), then f ≡ g.

Theorem 1.13. Let f and g be two transcendental meromorphic functions and let n ≥ 23
be a positive integer. If E1)(z, f n( f − 1)2 f ′)= E1)(z,gn(g − 1)2g′), then f ≡ g.

Theorem 1.14. Let f and g be two transcendental meromorphic functions and n≥ 28 be a
positive integer. If f n( f − 1)2 f ′ and gn(g − 1)2g′ share z IM, then f ≡ g.

2. Some lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 [9]. Let f be a nonconstant meromorphic function and P( f )=a0 + a1 f + a2 f 2 +
···+ an f n, where a0,a1,a2, . . . ,an are constants and an �= 0. Then

T
(
r,P( f )

)= nT(r, f ) + S(r, f ). (2.1)
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Lemma 2.2 [10]. Let f and g be two meromorphic functions, and let k be a positive integer,
then

N
(
r,

1
f (k)

)
≤N

(
r,

1
f

)
+ kN(r, f ) + S(r, f ). (2.2)

Lemma 2.3 [11]. Let

Q(w)= (n− 1)2(wn− 1
)(
wn−2− 1

)−n(n− 2)
(
wn−1− 1

)2
, (2.3)

then

Q(w)= (w− 1)4(w−β1
)(
w−β2

)···(w−β2n−6
)
, (2.4)

where βj ∈ C\{0,1} ( j = 1,2, . . . ,2n− 6), which are distinct, respectively.

Lemma 2.4. Let f and g be two transcendental meromorphic functions. Then f n( f
− 1)2 f ′gn(g − 1)2g′ �≡ z2, where n≥ 8 is a positive integer.

Proof. If possible, let f n( f − 1)2 f ′gn(g − 1)2g′ ≡ z2. Let z0( �= 0,∞) be a 1-point of f with
multiplicity p(≥ 1). Then z0 is a pole of g with multiplicity q(≥ 1) such that 2p+ p− 1=
(n+ 2)q+ q+ 1, and so p ≥ (n+ 5)/3.

Let z1( �= 0,∞) be a zero of f with multiplicity p(≥ 1) and let it be a pole of g with
multiplicity q(≥ 1). Then np + p − 1 = (n + 3)q + 1, that is, 2q = (n + 1)(p − q)− 2 ≥
n− 1, that is, q ≥ (n− 1)/2. So (n+ 1)p = (n+ 3)q+ 2, that is, p ≥ (n+ 1)/2.

Since a pole of f is either a zero of g(g − 1) or a zero of g′, we get

N(r, f )≤N
(
r,

1
g

)
+N

(
r,

1
g − 1

)
+N0

(
r,

1
g′

)

≤ 2
n+ 1

N
(
r,

1
g

)
+

3
n+ 5

N
(
r,

1
g − 1

)
+N0

(
r,

1
g′

)

≤
(

2
n+ 1

+
3

n+ 5

)
T(r,g) +N0

(
r,

1
g′

)
,

(2.5)

where N0(r,1/g′) is the reduced counting function of those zeros of g′ which are not the
zeros of g(g − 1).

By the second fundamental theorem, we obtain

T(r, f )≤N
(
r,

1
f

)
+N(r, f ) +N

(
r,

1
f − 1

)
−N0

(
r,

1
f ′

)
+ S(r, f )

≤ 2
n+ 1

N
(
r,

1
f

)
+

3
n+ 5

N
(
r,

1
f − 1

)
+
(

2
n+ 1

+
3

n+ 5

)
T(r,g)

+N0

(
r,

1
g′

)
−N0

(
r,

1
f ′

)
+ 2logr + S(r, f ).

(2.6)
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So

(
1− 2

n+ 1
− 3
n+ 5

)
T(r, f )

≤
(

2
n+ 1

+
3

n+ 5

)
T(r,g) +N0

(
r,

1
g′

)
−N0

(
r,

1
f ′

)
+ 2logr + S(r, f ).

(2.7)

Similarly, we get

(
1− 2

n+ 1
− 3
n+ 5

)
T(r,g)

≤
(

2
n+ 1

+
3

n+ 5

)
T(r, f ) +N0

(
r,

1
f ′

)
−N0

(
r,

1
g′

)
+ 2logr + S(r,g).

(2.8)

Adding (2.7) and (2.8) we get

(
1− 4

n+ 1
− 6
n+ 5

){
T(r, f ) +T(r,g)

}≤ 4logr + S(r, f ) + S(r,g), (2.9)

which is a contradiction. This proves this lemma. �

Lemma 2.5. Let f and g be two transcendental meromorphic functions, F = f n( f − 1)2 f ′/z,
and G= gn(g − 1)2g′/z, where n(≥ 5) is a positive integer. If F ≡G, then f ≡ g.

Proof. If F ≡G, that is,

F∗ ≡G∗ + c, (2.10)

where c is a constant,

F∗ = 1
n+ 3

f n+3− 2
n+ 2

f n+2 +
1

n+ 1
f n+1,

G∗ = 1
n+ 3

gn+3− 2
n+ 2

gn+2 +
1

n+ 1
gn+1.

(2.11)

If follows that

T(r, f )= T(r,g) + S(r, f ). (2.12)

Suppose that c �= 0. By the second fundamental theorem, from (2.10) and (2.12) we
have

(n+ 3)T(r,g)= T
(
r,G∗

)
< N

(
r,

1
G∗

)
+N

(
r,

1
G∗ + c

)
+N

(
r,G∗

)
+ S(r,g)

≤N
(
r,

1
g

)
+N

(
r,

1
g −α1

)
+N

(
r,

1
g −α2

)
+N(r,g)

+N
(
r,

1
f

)
+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
+ S(r, f ),

(2.13)
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where α1, α2 are distinct roots of the algebraic equation

1
n+ 3

z2− 2
n+ 2

z+
1

n+ 1
= 0. (2.14)

Then we can get

(n+ 3)T(r,g) < 7T(r, f ) + S(r, f ). (2.15)

Since n≥ 5, we can get a contradiction. Therefore F∗ ≡G∗, that is,

f n+1
(

1
n+ 3

f 2− 2
n+ 2

f +
1

n+ 1

)
= gn+1

(
1

n+ 3
g2− 2

n+ 2
g +

1
n+ 1

)
. (2.16)

Let h= f /g, we substitute f = hg in (2.16), and it follows that

(n+ 2)(n+ 1)g2(hn+3− 1
)− 2(n+ 3)(n+ 1)g

(
hn+2− 1

)
+ (n+ 2)(n+ 3)

(
hn+1− 1

)= 0.
(2.17)

If h is not constant, using Lemma 2.3 and (2.17), we can conclude that

{
(n+ 1)(n+ 2)

(
hn+3− 1

)
g − (n+ 1)(n+ 3)

(
hn+2− 1

)}2 =−(n+ 3)(n+ 1)Q(h), (2.18)

where Q(h) = (h− 1)4(h− β1)(h− β2)···(h− β2n), βj ∈ \{0,1} ( j = 1,2, . . . ,2n), which
are pairwise distinct.

This implies that every zero of h−βj ( j = 1,2, . . . ,2n) has a multiplicity of at least 2. By
the second fundamental theorem, we obtain that n ≤ 2, which is again a contradiction.
Therefore, h is a constant. We have from (2.17) that hn+1− 1= 0 and hn+2− 1= 0, which
imply h= 1, and hence f ≡ g, so the lemma is proved. �

Lemma 2.6 [1]. Let f and g be two meromorphic functions, then and let k be a positive
integer. If Ek)(1, f )= Ek)(1,g), one of the following cases must occur:

(i)

T(r, f ) +T(r,g)≤N2(r, f ) +N2

(
r,

1
f − 1

)
+N2(r,g) +N2

(
r,

1
g

)

+N
(
r,

1
f − 1

)
+N

(
r,

1
g − 1

)

−N11

(
r,

1
f − 1

)
+N (k+1

(
r,

1
f − 1

)

+N (k+1

(
r,

1
g − 1

)
+ S(r, f ) + S(r,g);

(2.19)

(ii) f = ((b+ 1)g + (a− b− 1))/(bg + (a− b)), where a( �= 0), b are two constants.
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Lemma 2.7 [12]. Let f and g be two meromorphic functions. If f and g share 1IM, then
one of the following cases must occur:

(i)

T(r, f ) +T(r,g)≤ 2
[
N2(r, f ) +N2

(
r,

1
f

)
+N2(r,g) +N2

(
r,

1
g

)]

+ 3NL

(
r,

1
f − 1

)
+ 3NL

(
r,

1
g − 1

)

+ S(r, f ) + S(r,g);

(2.20)

(ii) f = ((b+ 1)g + (a− b− 1))/(bg + (a− b)), where a( �= 0), b are two constants.

Lemma 2.8. Let f and g be two transcendental meromorphic functions, let n≥ 8 be a posi-
tive integer, and let F = f n( f − 1)2 f ′/z and G= gn(g − 1)2g′/z. If

F = (b+ 1)G+ (a− b− 1)
bG+ (a− b)

, (2.21)

where a( �= 0), b are two constants, then f ≡ g.

Proof. By Lemma 2.1, we know

T(r,F)= T
(
r,

f n( f − 1)2 f ′

z

)

≤ T
(
r, f n( f − 1)2)+T(r, f ′) + logr

≤ (n+ 2)T(r, f ) + 2T(r, f ) + logr + S(r, f )

= (n+ 4)T(r, f ) + logr + S(r, f ),

(n+ 2)T(r, f )= T
(
r, f n( f − 1)2)+ S(r, f )

=N
(
r, f n( f − 1)2)+m

(
r, f n( f − 1)2)+ S(r, f )

≤N
(
r,

f n( f − 1)2 f ′

z

)
−N(r, f ′) +m

(
r,

f n( f − 1)2 f ′

z

)

+m
(
r,

1
f ′

)
+ logr + S(r, f )

≤ T
(
r,

f n( f − 1)2 f ′

z

)
+T(r, f ′)−N(r, f ′)−N

(
r,

1
f ′

)

+ logr + S(r, f )

≤ T(r,F) +T(r, f )−N(r, f )−N
(
r,

1
f ′

)

+ logr + S(r, f ).

(2.22)

So

T(r,F)≥ (n+ 1)T(r, f ) +N(r, f ) +N
(
r,

1
f ′

)
+ logr + S(r, f ). (2.23)
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Thus, by (2.22), (2.23) and n≥ 8, we get S(r,F)= S(r, f ). Similarly, we get

T(r,G)≥ (n+ 1)T(r,g) +N(r,g) +N
(
r,

1
g′

)
+ logr + S(r,g). (2.24)

Without loss of generality, we suppose that T(r, f )≤ T(r,g), r ∈ I , where I is a set with
infinite measures. Next, we consider three cases.

Case 1 b �= 0,−1. If a− b− 1 �= 0, then by (2.21) we know

N
(
r,

1
G+ (a− b− 1)/(b+ 1)

)
=N

(
r,

1
F

)
. (2.25)

By the Nevanlinna second fundamental theorem and Lemma 2.2, we have

T(r,G)≤N(r,G) +N
(
r,

1
G

)
+N

(
r,

1
G+ (a− b− 1)/(b+ 1)

)
+ S(r,G)

=N(r,G) +N
(
r,

1
G

)
+N

(
r,

1
F

)
+ S(r,g)

≤N(r,g) +N
(
r,

1
g

)
+T(r,g) +N

(
r,

1
g′

)
+ logr

+N
(
r,

1
f

)
+T(r, f ) +N

(
r,

1
f

)
+N(r, f ) + logr + S(r,g)

≤ 2T(r,g) +N(r,g) +N
(
r,

1
g′

)
+ logr + 2N

(
r,

1
f

)

+T(r, f ) +N(r, f ) + logr + S(r,g)

≤ 6T(r,g) +N(r,g) +N
(
r,

1
g′

)
+ 2logr + S(r,g).

(2.26)

Hence, by n≥ 8 and (2.24), we know T(r,g)≤ S(r,g), r ∈ I , this is impossible.
If a− b− 1= 0, then by (2.21) we know F = ((b+ 1)G)/(bG+ 1). Obviously,

N
(
r,

1
G+ 1/b

)
=N(r,F). (2.27)
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By the Nevanlinna second fundamental theorem and Lemma 2.2, we have

T(r,G)≤N(r,G) +N
(
r,

1
G

)
+N

(
r,

1
G+ 1/b

)
+ S(r,G)

=N(r,G) +N
(
r,

1
G

)
+N(r,F) + S(r,g)

≤N(r,g) +N
(
r,

1
g

)
+T(r,g) +N

(
r,

1
g′

)
+ logr +N(r, f )

+ logr + S(r,g)

≤ 2T(r,g) +N(r,g) +N
(
r,

1
g′

)
+T(r, f ) + 2logr + S(r,g)

≤ 3T(r,g) +N(r,g) +N
(
r,

1
g′

)
+ 2logr + S(r,g).

(2.28)

Then by n≥ 8 and (2.24), we know T(r,g)≤ S(r,g), r ∈ I , a contradiction.

Case 2 b =−1. Then (2.21) becomes F = a/(a+ 1−G).
If a+ 1 �= 0, then N(r,1/(G− a− 1))=N(r,F). Similarly, we can deduce a contradic-

tion as in Case 1.
If a+ 1= 0, then FG≡ 1, that is,

f n( f − 1)2 f ′gn(g − 1)2g′ ≡ z2. (2.29)

Since n≥ 8, by Lemma 2.4, a contradiction.

Case 3 b = 0. Then (2.21) becomes F = (G+ a− 1)/a.
If a− 1 �= 0, then N(r,1/(G + a− 1)) = N(r,1/F). Similarly, we can again deduce a

contradiction as in Case 1.
If a− 1= 0, then F ≡G, that is,

f n( f − 1)2 f ′ ≡ gn(g − 1)2g′. (2.30)

By Lemma 2.5, we obtain f ≡ g.

This completes the proof of this lemma. �

3. Proof of theorems

Let F and G be defined as in Lemma 2.8.

Proof of Theorem 1.11. Since k ≥ 3, we have

N
(
r,

1
F − 1

)
+N

(
r,

1
G− 1

)
−N11

(
r,

1
F − 1

)
+N (k+1

(
r,

1
F − 1

)
+N (k+1

(
r,

1
G− 1

)

≤ 1
2
N
(
r,

1
F − 1

)
+

1
2
N
(
r,

1
G− 1

)
≤ 1

2
T(r,F) +

1
2
T(r,G) + S(r, f ) + S(r,g).

(3.1)
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Then (i) in Lemma 2.6 becomes

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

}
+ S(r, f ) + S(r,g).

(3.2)

Since

N2

(
r,

1
F

)
+N2(r,F)=N2

(
r,

z

f n( f − 1)2 f ′

)
+N2

(
r,

f n( f − 1)2 f ′

z

)

≤ 2N
(
r,

1
f

)
+ 2N

(
r,

1
f − 1

)
+N

(
r,

1
f ′

)
+ 2N(r, f ) + 2logr.

(3.3)

Similarly, we obtain

N2

(
r,

1
G

)
+N2(r,G)≤ 2N

(
r,

1
g

)
+ 2N

(
r,

1
g − 1

)
+N

(
r,

1
g′

)
+ 2N(r,g) + 2logr. (3.4)

Suppose that

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

}
+ S(r, f ) + S(r,g).

(3.5)

By Lemma 2.2 and (2.23), (2.24), and (3.3), we get

T(r,F) +T(r,G)≤ 4N
(
r,

1
f

)
+ 4N

(
r,

1
f − 1

)
+ 2N

(
r,

1
f ′

)
+ 4N(r, f )

+ 4N
(
r,

1
g

)
+ 4N

(
r,

1
g − 1

)
+ 2N

(
r,

1
g′

)
+ 4N(r,g)

+ 8logr + S(r, f ) + S(r,g)

≤ 5N
(
r,

1
f

)
+ 4N

(
r,

1
f − 1

)
+N

(
r,

1
f ′

)
+ 5N(r, f )

+ 5N
(
r,

1
g

)
+ 4N

(
r,

1
g − 1

)
+N

(
r,

1
g′

)
+ 5N(r,g)

+ 8logr + S(r, f ) + S(r,g)

≤ 13T(r, f ) +N(r, f ) +N
(
r,

1
f ′

)
+ S(r, f ) + 13T(r,g)

+N(r,g) +N
(
r,

1
g′

)
+ 8logr + S(r,g).

(3.6)

By n≥ 13 and (2.23), (2.24), we can obtain a contradiction.
Thus, by Lemma 2.6, F = ((b + 1)G+ (a− b− 1))/(bG+ (a− b)), where a( �= 0),b are

two constants. By Lemma 2.8, we get f ≡ g .This completes the proof of Theorem 1.11.
�
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Proof of Theorem 1.12. Obviously, we have

N
(
r,

1
F − 1

)
+N

(
r,

1
G− 1

)
−N11

(
r,

1
F − 1

)
+

1
2
N (3

(
r,

1
F − 1

)
+

1
2
N (3

(
r,

1
G− 1

)

≤ 1
2
N
(
r,

1
F − 1

)
+

1
2
N
(
r,

1
G− 1

)
≤ 1

2
T(r,F) +

1
2
T(r,G) + S(r, f ) + S(r,g).

(3.7)

Then (i) in Lemma 2.6 becomes

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

}

+N (3

(
r,

1
F − 1

)
+N (3

(
r,

1
G− 1

)
+ S(r, f ) + S(r,g).

(3.8)

Consider

N (3

(
r,

1
F − 1

)
≤ 1

2
N
(
r,

F

F′

)
= 1

2
N
(
r,
F′

F

)
+ S(r, f )

≤ 1
2
N(r,F) +

1
2
N
(
r,

1
F

)
+ S(r, f )

≤ 1
2

[
N
(
r,

1
f

)
+N

(
r,

1
f − 1

)
+N

(
r,

1
f ′

)
+N(r, f )

]
+ logr + S(r, f )

≤ 5
2
T(r, f ) + logr + S(r, f ).

(3.9)

Similarly, we get

N (3

(
r,

1
G− 1

)
≤ 5

2
T(r,g) + logr + S(r,g). (3.10)

Suppose that

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

}

+N (3

(
r,

1
F − 1

)
+N (3

(
r,

1
G− 1

)
+ S(r, f ) + S(r,g).

(3.11)

Combining (3.3), (3.5) and (3.9)–(3.11), we can get

T(r,F) +T(r,G)≤ 31
2
T(r, f ) +N(r, f ) +N

(
r,

1
f ′

)
+ S(r, f ) +

31
2
T(r,g)

+N(r,g) +N
(
r,

1
g′

)
+ 10logr + S(r,g).

(3.12)

From n≥ 15 and (2.23), (2.24), we can get a contradiction.
By Lemma 2.6, we obtain F = ((b+ 1)G+ (a− b− 1))/(bG+ (a− b)), where a( �= 0),b

are two constants. Then by Lemma 2.8, we can prove Theorem 1.12. �
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Proof of Theorem 1.13. Similarly, we get

N
(
r,

1
F − 1

)
+N

(
r,

1
G− 1

)
−N11

(
r,

1
F − 1

)
≤ 1

2
N
(
r,

1
F − 1

)
+

1
2
N
(
r,

1
G− 1

)

≤ 1
2
T(r,F) +

1
2
T(r,G) + S(r, f ) + S(r,g).

(3.13)

Then (i) in Lemma 2.6 becomes

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

+N (2

(
r,

1
F − 1

)
+N (2

(
r,

1
G− 1

)}
+ S(r, f ) + S(r,g).

(3.14)

Consider

N (2

(
r,

1
F − 1

)
≤N

(
r,

F

F′

)
=N

(
r,
F′

F

)
+ S(r, f )

≤N(r,F) +N
(
r,

1
F

)
+ S(r, f )

≤ 5T(r, f ) + 2logr + S(r, f ).

(3.15)

Similarly, we have

N (2

(
r,

1
G− 1

)
≤ 5T(r,g) + 2logr + S(r,g). (3.16)

Suppose that

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

+N (2

(
r,

1
F − 1

)
+N (2

(
r,

1
G− 1

)}
+ S(r, f ) + S(r,g).

(3.17)

Considering (3.3), (3.4), (3.6), and (3.15)–(3.17), we know

T(r,F) +T(r,G)≤ 23T(r, f ) +N(r, f ) +N
(
r,

1
f ′

)
+ S(r, f ) + 23T(r,g)

+N(r,g) +N
(
r,

1
g′

)
+ 12logr + S(r,g).

(3.18)

By n≥ 23 and (2.23), (2.24), we get a contradiction.
Applying Lemma 2.6, we know F = ((b+ 1)G+ (a− b− 1))/(bG+ (a− b)), where a( �=

0),b are two constants. Then by Lemma 2.8, we can prove Theorem 1.13. �
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Proof of Theorem 1.14. Since

NL

(
r,

1
F − 1

)
≤N

(
r,

F

F′

)
=N

(
r,
F′

F

)
+ S(r, f )

≤N(r,F) +N
(
r,

1
F

)
+ S(r, f )

≤ 5T(r, f ) + 2logr + S(r, f ).

(3.19)

Similarly, we have

NL

(
r,

1
G− 1

)
≤ 5T(r,g) + 2logr + S(r,g). (3.20)

Suppose that F and G satisfied (i) in Lemma 2.7, then we get

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2(r,F) +N2

(
r,

1
G

)
+N2(r,G)

}

+ 3NL

(
r,

1
F − 1

)
+ 3NL

(
r,

1
G− 1

)
+ S(r, f ) + S(r,g).

(3.21)

Considering (3.3), (3.4), (3.6), and (3.19)–(3.21), we have

T(r,F) +T(r,G)≤ 28T(r, f ) +N(r, f ) +N
(
r,

1
f ′

)
+ S(r, f ) + 28T(r,g)

+N(r,g) +N
(
r,

1
g′

)
+ 20logr + S(r,g).

(3.22)

From n≥ 28 and (2.23), (2.24), we get a contradiction.
Applying Lemma 2.7, we know F = ((b+ 1)G+ (a− b− 1))/(bG+ (a− b)), where a( �=

0),b are two constants. Then by Lemma 2.8, we can prove Theorem 1.14. �

4. Remarks

It follows from the proof of Theorems 1.11–1.14 that if “z” is replaced by “a(z)” in The-
orems 1.11–1.14, where a(z) is a meromorphic function such that a �≡ 0,∞ and T(r,a)=
o{T(r, f ),T(r,g)}, then the conclusions of Theorems 1.11–1.14 still hold. So we obtain
the following results.

Theorem 4.1. Let f and g be two transcendental meromorphic functions and let n ≥ 13,
k ≥ 3 be two positive integers. If Ek)(a(z), f n( f − 1)2 f ′) = Ek)(a(z),gn(g − 1)2g′), then
f ≡ g.

Theorem 4.2. Let f and g be two transcendental meromorphic functions and let n(≥ 15) be
a positive integer. If E2)(a(z), f n( f − 1)2 f ′) = E2)(a(z),gn(g − 1)2g′), then the conclusion
of Theorem 4.1 still holds.

Theorem 4.3. Let f and g be two transcendental meromorphic functions and let n(≥ 23) be
a positive integer. If E1)(a(z), f n( f − 1)2 f ′) = E1)(a(z),gn(g − 1)2g′), then the conclusion
of Theorem 4.1 still holds.
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Theorem 4.4. Let f and g be two transcendental meromorphic functions and let n(≥ 28)
be a positive integer. If f n( f − 1)2 f ′ and gn(g − 1)2g′ share a(z)IM, then the conclusion of
Theorem 4.1 still holds.

Obviously, we can use the analog method of Theorems 1.11–1.14 to prove Theorems
4.1–4.4 easily. Here, we omit them.
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