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Let A,B,D,E € [—1,1] and let p(z) be an analytic function defined on the open unit
disk, p(0) = 1. Conditions on A, B, D, and E are determined so that 1 + $zp’(z) being
subordinated to (1 + Dz)/(1 + Ez) implies that p(z) is subordinated to (1+Az)/(1 + Bz).
Similar results are obtained by considering the expressions 1 + (zp’(z)/p(z)) and 1+
B(zp’ (2)/p*(z)). These results are then applied to obtain sufficient conditions for analytic
functions to be Janowski starlike.
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1. Introduction

Let s be the class of all analytic functions f(z) defined in the open unit disk U := {z €
C:|z| < 1} and normalized by the conditions f(0) = 0= f'(0) — 1. Let S*[A, B] denote
the class of functions f € o satisfying the subordination

zf'(z) - 1+Az
f(z) 1+Bz’

(-1<B<A<1). (1.1)

Functions in S*[A,B] are called the Janowski starlike functions ([1, 2]). Certain well-
known subclasses of starlike functions are special cases of the class S*[A, B] for suitable
choices of the parameters A and B. For example, when 0 < o < 1, S*[1 — 2a,—1] =: S}
is the familiar class of starlike functions of order @ and S*[1 —«,0] = {f € A : |zf'(2)/
flz)—1ll<l-a (zeU)} =S§"(a). For0<a=<1,let S*[a,—a] ={f esd:|zf (z)/
f@)—1ll<alzf (2)/f(z)+1] (z€U)} =:8"[a].

Silverman [3], Obradowi¢ and Tuneski [4], and many others (see [5-9]) have studied
properties of functions defined in terms of the quotient (1 +zf " (2)/ f'(2))/(zf' (2)/ f (2)).
In fact, Silverman [3] has obtained the order of starlikeness for the functions in the class
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Gy defined by

1+zf"(2)/f'(2)
Gb—{f A: 'W—l <b,0<bsl,zeU} (1.2)

and Obradowi¢ and Tuneski [4] improved the result of Silverman [3] by showing
Gp C S*[0,—b] € S*(2/(1++/1+8Db)). Later, Tuneski [10] obtained conditions for the in-
clusion G, C S*[A,B] to hold. If we let zf'(2)/ f (z) =: p(z), then G}, C $*[A, B] becomes

zp'(z) 1+Az
1+ ()2 <1+bz= p(z) < [+ Bz (1.3)
Let f € sl and 0 < « < 1. Frasin and Darus [11] have shown that
(2f(2)"  2zf'(2) 2f'(2) '
- < -1 <1l-a 1.4
f@  f@ C2-a 1@ 4
Again by writing 22 f'(z)/(f (z))?* as p(z), we see that the above implication is special case
of
zp’ z) 1+Dz 1+ Az
By p(z) S 1+vEz = p@) < 1+Bz (15)

Another special case of the above implications was considered by Ponnusamy and Ra-
jasekaran [12].

Nunokawa et al. [13] have shown that if p(z) is analytic in U, p(0) =1 and 1+
zp'(z) < 1+z, then p(z) < 1 +z. Using this, they have obtained a criterion for a nor-
malized analytic function to be univalent. In this paper, we extend the result by replacing
the subordinate function 1 + z by a function of the form (1 + Dz)/(1 + Ez). In fact, we
determine conditions on A,B,D,E € [—1,1] so that

Dz — p(2) < 1+Az
p 1+Bz’

1+Bzp'(z) < Lt

1.
1+Ez (1.6)

Similar results are obtained by considering the expressions 1+ f(zp’(z)/p?(2)),
1+ B(zp'(2)/p(z)). These results are then applied to obtain sufficient conditions for ana-
lytic functions to be Janowski starlike.

2. Differential subordination

LemMA 2.1. Let -1 <B<A<1,-1<E<D<1,andf; +0. Assume that

(A-B)|Bl = (D-E)(1+B*) + |2B(D - E) — EB(A-B)|. (2.1)
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If p(z) is analytic in U with p(0) = 1 and

, 1+Dz
1+pzp'(2) < 52’ (2.2)
then
1+Az
(&) <15, (2.3)
Proof. Define the function P(z) by
P(z):=1+Bzp'(z), (2.4)
and the function w(z) by
_ P -1
w(z) := A-Bp(a)’ (2.5)
or equivalently by
_1+Aw(z)
P& = By (2.6)

Then w(z) is meromorphic in U and w(0) = 0. We need to show that |w(z)| < 1 in U. By
a computation, we get

(1+Bw(z))’ + (A - B)Bzw'(2)

P(z) = 1B’ 2.7)
Therefore
P(z) -1 _ (A - B)zw'(z) ‘ (2.8)
D-EP(z) (D-E)(1+Bw(z))’ —E(A—B)Bzw'(2)
Assume that there exists a point zy € U such that
max [w(z)| = [w(z)| = 1. (2.9)

|z| <]zl

Then by [14, Lemma 1.3, page 28], there exists k > 1 such that zow'(z9) = kw(z). Let
w(zp) = €. For this zy, we have

P(Zo) -1
D — EP(z)

_ (A—B)kIpI
[I24+(H-])2+4HJt2 + 4I(H +))t]

1/2

(2.10)
(A - B)k|pl

max_y<1 (12 + (H - ])? + 4HJ 2 +4I(H+])t]”2}’

=



4 International Journal of Mathematics and Mathematical Sciences

where I := 2B(D - E) —kBE(A—-B),] := (D—E)B*,H:= (D —E),and t := cosf. A com-
putation shows that

P(Z()) -1

_ (A-B)IBIk
D — EP(z)

T HA+I|I|+]

(2.11)

Yet another calculation shows that the function y(k) := (A — B)IBIk/(H + |I| +]) is an
increasing function of k. Since k > 1, we have y/(k) = y(1) and therefore

P(Zo) -1
D — EP(z)

(A-B)IfI
= (D—E)(1+B?)+ |2B(D—E)—EB(A—B)|’

(2.12)

which by (2.1) is greater than or equal to 1. This contradicts P(z) < (1+ Dz)/(1 + Ez) and
completes the proof. O

Remark 2.2. Whenf=1,E=0=B,and D =1 = A, Lemma 2.1 reduces to [13, Lemma
1, page 1035]. Further if p(z) = 2% f'(z)/f(2)?, Lemma 2.1 reduces to [13, Theorem 1,
page 1036].

By taking p(z) = zf'(2)/ f (z) in Lemma 2.1, we have the following result.
THEOREM 2.3. Let the conditions of Lemma 2.1 hold. If f € A satisfies

zf'(z) <1+ zf"(2) zf’(z)> . 1+Dz
f(2) f'(z) f(z) 1+Ez’

1+p (2.13)

then f € S*[A,B].

By takingf=1,A=a=—-B,and D= -E =0 (0<a,d < 1) in Theorem 2.3, we have
the following result.

COROLLARY 2.4. LetO0<a <1andd =a/(1+a)> If f € A satisfies

zf'(2) <1+Z '(z) Zf’(2)> ‘ cs5lr @ (HZf”(Z) B Zf’(Z))

2+

f(@) @  f f(2) o fo ) W

then f(z) € $*[a].

Bytakingf=1A=1-20,B=-1,D=(1—-«a)/2,and E=0 (0 < « < 1) in Theorem
2.3, we have the following result.

CoroLLARY 2.5. If f € 9 satisfies

zf'(2) (1 . zf"(z)  zf'(2)
f(2) f'z)  f(2)

)'<1;“ O<a<l), (2.15)

then f(z) € I%.

By replacing p(z) by 1/p(z), B = —1, A by —B, and B by —A in Lemma 2.1, we have
the following result.
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LEMMA 2.6. Let -1 <B<A <1, —-1<E<D < 1. Assume that
(A-B)=(D-E)(1+A?)+ |E(A-B)-2A(D-E)]|. (2.16)

If p(2) is analytic in U with p(0) = 1 and

zp'(z) 14Dz
P2(2) = 1+Ez’ (2.17)
then
1+A
p(z) < 1132' (2.18)

When p(z) = zf'(z)/ f (z), in Lemma 2.6, we have the following theorem.
THEOREM 2.7. Let -1 <B<A <1, -1 < E<D < 1. Assume that (2.16) holds. If f € s

satisfies

Ltzf"(2)/f'(2) 14Dz
f @)/ f@)  1+Ez’

(2.19)
then f € S*[A,B].
Example 2.8. If f € Gi1_g/(2-a2 (0 =< 1), then f € S*(a). If f € o satisfies

zf" (z) zf zf" zf'(z) B o -
) /3‘ " (ﬁ_l+3oc+oc2’0<a_l>’
(2.20)

then f € $*[a]. Similarly if (2.20) holds with 8 = (1 — &)/[1+ (1 — 2a)? + [5a — 3]] (0 <
a<1),then f € SF.

Remark 2.9. When E=0and D =b (0 < b < 1), Corollary 2.5 reduces to [10, Corollary
2.6, page 203]. When A=0=Eand D= -B =10 (0< b < 1), Corollary 2.5 reduces to
[4, Theorem 1, page 61]. When A = 0 = E and D = —B = 1, Corollary 2.5 reduces to [3,
Corollary 1, page 76].

LEmMMA 2.10. Let -1 <B<A<1,-1<E<D <1, AB >0, and 5 + 0. Assume that
IBI(A-B)>(D—E)(1+AB)+ |(D—E)(A+B)—EB(A—B)]|. (2.21)

Let p(z) be analytic in U with p(0) = 1 and

zp'(z) 1+Dz
+ o2 < B2 (2.22)
then
1+Az
p(z) < [+ Bz (2.23)

Proof. The proof is similar to the proof of Lemma 2.1. O
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Remark 2.11. When Ef <0, AB < 0, Lemma 2.10 is valid provided the following condi-
tions hold:

(1-AB)*{2EB(A+B)(D ~ E) — (A~ B)[(D — E)* + (EP)*]} = 4B*(A - B)AB
(2.24)

instead of (2.21).

Remark 2.12. When f=—-1,A=A=E,and D = B =0(|A| < 1), Lemma 2.10 reduces to
[12, Theorem 1(iii), page 195].

Example 2.13. By taking3=1,B=0,D =A/(1+A), and E = 0 in Lemma 2.10, we have
the following result. Let 0 < A < 1. Let p(z) be analyticin U with p(0) = 1. If |[zp’ (2)/p(2)|
<A/(1+A),then p(z) < 1+ Az. When p(z) = zf'(2)/ f(z), A = 1 — &, we have the follow-
ing result.

If f(z) € o satisfies

+zf”(z)_zf’(z) 1-

1 < «
f'(z) f(z) 2—«

(0=<a<1), (2.25)

then f(z) € $*(«).
By taking p(z) = 22 f'(z)/ f*(z) in Lemma 2.10, we have the following result.
THEOREM 2.14. Let the conditions of Lemma 2.10 hold. If f € s satisfies

(zf(2)" 2zf'()\ 14Dz
1+[3( flz)  fl» )< 1+Ez’ (2.26)

then

22 f'(2) - 1+Az
() “1+Bz

(2.27)

Remark 2.15. When f=1,A=a, B=0,E=0,and D=(1-a)/2—-a) (0 <a< 1),
Theorem 2.14 reduces to [11, Theorem 2.4, page 307].
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