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We establish an analytical method leading to a more general form of the exact solution
of a nonlinear ODE of the second order due to Gambier. The treatment is based on the
introduction and determination of a new function, by means of which the solution of the
original equation is expressed. This treatment is applied to another nonlinear equation,
subjected to the same general class as that of Gambier, by constructing step by step an
appropriate analytical technique. The developed procedure yields a general exact closed
form solution of this equation, valid for specific values of the parameters involved and
containing two arbitrary (free) parameters evaluated by the relevant initial conditions.
We finally verify this technique by applying it to two specific sets of parameter values of
the equation under consideration.
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1. Introduction

The class of equations solved by elliptic functions, like (2.1) we first examine here
(Section 2), triggered off the problem of the classification of the general nonlinear dif-
ferential equation to special categories with respect to the character of the singular points
of the solutions. The investigation was undertaken by E. Picard, P. Painlevé, B. Gambier,
and their associates around the beginning of the 20th century, and led to the production
of a large number of memoirs, listed by Davis in [1, Bibliography]. We refer here to [2–9].
The problem was also extensively presented in 1927 by Ince in [10].

The French analysts mentioned above adopted in their study the polynomial form
of a second-order nonlinear differential equation [1, Chapter 8, Section 1, equation (1);
Section 5, equation (3)] and tried to establish conditions under which the critical points
of a solution, that is to say branch points and essential singularities, would be fixed points,
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while the functions representing the solutions of these equations would have only poles
as movable singularities. Their work resulted in the discovery of 50 types of equations
(recorded by Davis in [1, Appendix 1]) possessing the above property. Of these, all but 6
are integrable in terms of classical and (or) transcendental functions. The remaining six
equations, known as Painlevé equations (due to both Painlevé and Gambier), require the
introduction of new transcendental functions for their solution, the so-called Painlevé
transcendents.

In addition, many nonlinear ODEs of the second- as well as of the first-order, gov-
erning various problems in Mechanics and Physics, do not accept analytical solutions in
terms of known functions. As an example, we mention the nonlinear oscillator equations
(Rayleigh, Van der Pol, Duffing) which have been investigated thoroughly in the literature
(also by the present author, see [11]), as well as the most cases of Abel equations of the
second kind (the few solvable cases are presented by Polyanin and Zaitsev [12]). Thus,
the establishment of methods leading to the construction of new functions, by means of
which exact analytical solutions can be extracted, would be a desirable advance in the
theory of nonlinear differential equations.

In this work, aiming at this target, in Section 2 we treat a nonlinear equation due
to Gambier (equation (2.1)), which under a specific functional transformation can be
reduced to a form included in the group of 50 equations mentioned above. Then, in
Section 3 we consider a method leading to a more general analytical solution for this
specific equation, and in Section 4 we develop a general analytical technique applicable
to another nonlinear ODE (equation (4.1)) not included in the above list of 50 equations.
This technique is based on the introduction of a new function, called �, by which we
obtain an exact closed form solution depending on the parameters of the equation and
containing two arbitrary constants which yield a special solution in the case of an initial
value problem. In Section 5 we investigate the determination of the function �. Finally,
in Section 6 we apply the obtained results to two special cases of (4.1) (equations (6.1)
and (6.2)) and extract their exact solutions’ formulas, while in Section 7 we present the
expressions and graphics concerning the new functions involved in the above obtained
solutions.

We note that (2.1) and (4.1) (see later in this work) are special cases of a more general
class of nonlinear ODEs of the form

y′′xx− q(x)y′x + f (y)y′2x = g(x, y), (1.1)

where f (y) is a rational function of y, namely,

f (y)= Γmym +Γm−1ym−1 + ···+Γ0

yn +An−1yn−1 + ···+A0
, m,n∈ Z+, (1.2)

q(x) is an arbitrary function of x, while y′x and y′′xx denote the first and the second deriva-
tives of the function y(x) with respect to x, that is, dy/dx and d2y/dx2, respectively. Fur-
thermore, Ai, i = 0, . . . ,n− 1, and Γ j , j = 0, . . . ,m, in (1.2) are real constants and g(x, y)
in (1.1) is a function possessing continuous partial derivatives with respect to x and y.
In their work, Polyanin and Zaitsev [12] present several equations subjected to the form
(1.1) and give their solutions or basic transformations and the resulted reductions of the
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Table 1.1. Cases of the function f (equation (1.1)).

f (y) Equations in [12]

−1 (2.8.1.41)

a= arbitrary constant (2.6.4.3-4), (2.8.1.48), (2.9.3.23), (2.9.3.32), (2.9.4.2)

∓ 1
y

(2.8.1.65), (2.9.3.6-7)

a

y
, a= arbitrary constant (2.6.4.6), (2.6.4.8-9), (2.6.4.12), (2.8.1.60), (2.9.3.10)

aym, a= arbitrary constant, m �= −1 (2.6.4.5), (2.6.4.7), (2.6.4.13)

considered equations. In most of them, the function f (y) has a rather simple form, as
shown in Table 1.1 (all the equations cited in this table refer to [12]).

We also mention Langmuir’s equation [1, Chapter 7, Section 2, equation (9)] with
f (y)= (1/3)(1/y). In most of the above equations g(x, y) is equal to 0, while in the others
is a polynomial of y, the coefficients of which are constants or functions of x. Moreover,
q(x) has a specific form in all equations except in [12, equations (2.9.3.6-7), (2.9.3.10),
(2.9.4.2)], where it is arbitrary. On the other hand, studying equations where f (y) is an
arbitrary function of y [12, equations (2.9.3.38), (2.9.4.13), (2.9.4.18)] with g = 0 and
[12, equations (2.9.3.26), (2.9.3.31), (2.9.4.19)] with g an arbitrary function of y (mul-
tiplied by ex in [12, equation (2.9.3.26)]), we see that the proposed analytical methods
result in integral equations, where even all the involved integrals can be determined, we
may not derive a function y = y(x).

Furthermore, as far as (2.1) (Gambier’s) as well as the 5th Painlevé transcendent [12,
equation (2.8.2.16)] are concerned (both of the form (1.1)), we have

f (y)=−3
4

2y− 1
y2− y

, q(x) arbitrary, g(x, y)= 0 (1.3)

(equation (2.1)),

f (y)= 1
2

3y− 1
y− y2

, q(x)=−1
x

,

g(x, y)= (y− 1)2
(
ay2 +β

)

x2y
+
γ(1− y) + δxy(y + 1)

x(1− y)

(1.4)

(5th Painlevé transcendent).
We also refer to [12, equation (2.8.1.67)] with

f (y)=− y

y2− b2
, q(x)= x

a2− x2
, g(x, y)= 0. (1.5)

In this paper we treat analytically the constrained case (equation (4.1))

f (y)= Γ1y +Γ0

y2− b2
, q(x) arbitrary, g(x, y)= 0, (1.6)

with b, Γ1, Γ0 arbitrary real parameters (b > 0, Γ2
1 +Γ2

0 �= 0).
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2. Existence of an analytical solution of an equation due to Gambier

Developing the theory of second-order differential equations, Davis [1, Chapter 7, Sec-
tion 3] presents a solution for the following equation:

(
y2− y

)
y′′xx− q(x)

(
y2− y

)
y′x−

3
4

(2y− 1)y′2x = 0, q arbitrary. (2.1)

The above equation is due to B. Gambier; and the solution is obtained by means of the
transformation (see [1])

y(x)= h
[
ξ(x)

]
, (2.2)

where ξ(x) is a solution of the equation

ξ′′xx = q(x)ξ′x. (2.3)

Successive integrations of the latter equation furnishe

ξ(x)= c1

∫

e
∫
q(x)dxdx+ c2, (2.4)

with c1, c2 being integration constants (we can perfectly take the values 1 and 0 for c1 and
c2, resp.). Thus, by differentiating twice (2.2) with respect to x, substituting the obtained
expressions together with (2.2) into (2.1), and finally making use of (2.3), we manage to
eliminate the first derivative and bring (2.1) under the form

h′′ξξ −
3
4

(
1
h

+
1

h− 1

)
h′2ξ = 0, (2.5)

where h′ξ and h′′ξξ denote the first and second derivatives of h(ξ) with respect to ξ.
Moreover, the specific treatment presented in [1] introduces the substitution

h(ξ)= [1−Q2(ξ)
]−1

, (2.6)

where Q(ξ) = Q(ξ,−a1,−a0) is the elliptic function of Weierstrass, which possesses the
property (see [1])

u=Q(ξ)=⇒ ξ =Q−1(u)=
∫ +∞

u

ds
√

4s3 + a1s+ a0
. (2.7)

By use of (2.7) we easily derive the following relations:

Q′2ξ = 4Q3 + a1Q+ a0, (2.8a)

Q′′ξξ = 6Q2 +
1
2
a1. (2.8b)
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Then, by differentiating successively (2.6) with respect to ξ and making use of the ob-
tained expressions for h′ξ and h′′ξξ , together with (2.6), (2.5) is reduced to

2
(
Q−Q3)Q′′ξξ +

(
3Q2− 1

)
Q′2ξ = 0. (2.9)

Furthermore, introduction of (2.8) into the latter equation returns the polynomial form

2
(
4 + a1

)
Q3 + 3a0Q

2− a0 = 0. (2.10)

Finally, by requiring that (2.10) holds true for every value of Q(ξ), we extract the values
a1 = −4, a0 = 0. Thus, taking into account (2.2), (2.4), and (2.6), we obtain the explicit
solution of (2.1), namely,

y(x)= 1
1−Q2(ξ,4,0)

, ξ(x)= c1

∫

e
∫
q(x)dxdx+ c2. (2.11)

3. Generalization of the analytical treatment: development of
a constructive technique

The idea is to set

h(ξ)= 1
ε2P2(ξ) + ε1P(ξ) + ε0

, κ �= 0, (3.1)

instead of (2.6), where ε2, ε1, ε0 are parameters and P(ξ) is a function of ξ, the first deriv-
ative of which is assumed to satisfy the relation

P′2ξ = anP
n + an−2P

n−2 + ···+ a0, ai = constants, an �= 0. (3.2)

The latter equation yields

P′′ξξ =
nan

2
Pn−1 +

(n− 2)an−2

2
Pn−3 + ···+

a1

2
. (3.3)

Thus, evaluating h′ξ and h′′ξξ by means of (3.1), introducing the results together with (3.1)
into (2.5), and finally substituting (3.2) and (3.3), after some algebra, we obtain a poly-
nomial of P in a more general form than that presented in (2.10), namely,

4(3−n)ε3
2anP

n+4 + (24− 10n)ε2
2ε1anP

n+3 + ··· = 0. (3.4)
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In addition, the requirement that (3.4) holds true for every value of P(ξ) inside an interval
P(J), with J being the domain of ξ(x), results in a system of equations, formed by setting
the coefficients of Pm, m = n+ 4,n+ 3, . . . ,0, equal to zero. Thus, by means of the Pn+4

equation (an, ε2 �= 0) we determine n:

n= 3. (3.5)

For this specific value of n, (3.2) and (3.3) become

P′2ξ = a3P
3 + a1P + a0, a3 �= 0, (3.6a)

P′′ξξ =
3
2
a3P

2 +
a1

2
. (3.6b)

Therefore, the function P(ξ)= u can be defined as the inverse function of the generalized
integral

ξ = P−1(u)=
∫ +∞

u

ds
√
a3s3 + a1s+ a0

, (3.7a)

on condition that the integral converges, or can be defined as the inverse function of the
indefinite integral

ξ = P−1(u)=
∫

du
√
a3u3 + a1u+ a0

. (3.7b)

Note that P(ξ) must be a continuous function inside the domain of ξ(x).
Furthermore, after substituting n= 3 into the set of equations furnished from the co-

efficients of the P polynomial (3.4), then by using the P6 equation

−6a3ε
2
2ε1 = 0, (3.8)

we obtain (a3, ε2 �= 0)

ε1 = 0. (3.9)

Moreover, taking into account (3.9), the P4 equation

12a0ε
3
2 = 0 (3.10)

results in

a0 = 0. (3.11)

Finally, after the obtained values ε1 = a0 = 0 have been substituted into all the equations
of the system (n= 3), then the remaining equations corresponding to the odd powers of
P become

ε0a1
(
ε0− 1

)= 0,
(
a1ε2 + 5a3ε0

)(
ε0− 1

)= 0,

2a1ε2 + a3
(
3− 5ε0

)= 0.

(3.12)
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The system of the above equations yields the following four cases of solution.

Case 1.

ε0 = a1 = a3 = 0. (3.13)

Case 2.

a1 = a3 = 0. (3.14)

Case 3.

ε0 = 1, a3 = ε2a1. (3.15)

Case 4.

ε0 = 1, a1 = a3 = 0. (3.16)

It is obvious that Cases 1, 2, and 4 have to be rejected (a3 �= 0) and thus the solution of
the system (3.12) is provided by Case 3 together with (3.9) and (3.11), namely,

ε1 = a0 = 0, ε0 = 1, a3 = ε2a1. (3.17)

Therefore, the solution of (2.1) is constructed by means of (2.2) and (3.1), where the
parameters included in (3.1) and (3.6a) are as in (3.17). We write

y(x)0= 1
ε2P2

[
ξ(x)

]
+ 1

, ξ(x)=
∫

e
∫
q(x)dxdx (3.18a)

P′2ξ = a1P
(
ε2P

2 + 1
)
, P′′ξξ =

a1

2

(
3ε2P

2 + 1
)
. (3.18b)

Differentiating twice the above expression of y(x), then introducing y, y′x, y′′xx into (2.1)
and taking into account the equation giving ξ(x), that is,

ξ′′xx − q(x)ξ′x = 0, (3.19)

as well as the expressions (3.18b), we see that (2.1) is verified. Thus, the developed tech-
nique is able to construct an exact analytical solution of (2.1).

We note here that the solution (3.18a) has a general form yielding to (2.11) as a special
case, since if we take a3 = 4 and assume that (3.7a) holds true, then P(ξ) becomes the
elliptic function of Weierstrass:

P(ξ)=Q
(
ξ,−a1,−a0

)=Q
(
ξ,− 4

ε2
,0
)
. (3.20)

Moreover, by setting ε2 =−1 we obtain solution (2.11).
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4. Use of the technique for another nonlinear ODE

We apply now the technique developed above, in order to solve analytically the following
equation:

(
y2− b2)y′′xx− q(x)

(
y2− b2)y′x +

(
Γ1y +Γ0

)
y′2x = 0, (4.1)

where q(x) is an arbitrary function of x and b, Γ1, Γ0 are parameters taking real values,
with b > 0 and Γ2

1 +Γ2
0 �= 0. We observe that if in the nonlinear terms yy′′xx and yy′x of (2.1)

we replace y with b2 and take the values −3/2 and 3/4 for Γ1 and Γ0, respectively, then we
obtain (4.1). Moreover, (4.1) is subjected to appropriate initial conditions, namely,

y
(
x0
)= y0, y′

(
x0
)= y′0. (4.2)

Thus, we simply follow the steps of the above procedure, as it was generalized in Section 3.
More precisely we perform the following steps.

(1) We use the transformation

y(x)= h
[
ξ(x)

]
. (4.3)

Successive differentiations of (4.3) yield

y′x = h′ξξ
′
x, y′′xx = h′′ξξξ

′2
x +h′ξξ

′′
xx. (4.4)

(2) Similarly to the treatment of (2.1) (see Section 2), we require that

ξ′′xx = q(x)ξ′x, (4.5a)

by means of which we compute

ξ(x)= c1

∫

e
∫
q(x)dxdx+ c2, (4.5b)

with c1, c2 being constants of integration.
(3) By using (4.4) and (4.5a), we reduce (4.1) to

h′′ξξ +
1

2b

(
Γ

h− b
+

Γ

h+ b

)
h′2ξ = 0, (4.6)

with Γ= bΓ1 +Γ0 and Γ= bΓ1−Γ0.
(4) We introduce a new function �(ξ) by setting

h(ξ)= 1
κ�2(ξ) + λ�(ξ) +μ

, κ �= 0, (4.7)

with κ, λ, μ being real parameters, while we assume that �′
ξ satisfies

�′2
ξ = bn�n + bn−2�n−2 + ···+ b0, bi = constants, bn �= 0. (4.8)
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Differentiation of (4.8) with respect to ξ yields

�′′
ξξ =

nbn
2

�n−1 +
(n− 2)bn−2

2
�n−3 + ···+

b1

2
. (4.9)

(5) By using (4.7), (4.8), and (4.9), after some algebra, we finally transform (4.6) to
a polynomial of �, namely,

(n− 6)κ4bn�n+6 +
(

7
2
n− 18

)
κ3λbn�n+5 + ··· = 0. (4.10)

(6) We form a system of equations by setting the coefficients of the � polynomial
(4.10) equal to zero. Thus, by means of the �n+6 equation (bn, κ �= 0) we deter-
mine n:

n= 6. (4.11)

For this specific value of n, (4.8) and (4.9) take the form

�′2
ξ = b6�6 + b4�4 + b3�3 + b2�2 + b1� + b0, b6 �= 0 (4.12a)

�′′
ξξ = 3b6�5 + 2b4�3 +

3
2
b3�2 + b2� +

b1

2
. (4.12b)

(7) We define the function �(ξ)= u, as the inverse function of the indefinite integral

ξ =�−1(u)= S=
∫

du
√
b6u6 + b4u4 + b3u3 + b2u2 + b1u+ b0

. (4.13)

�(ξ) should be a continuous function inside the interval J in which ξ(x) is taking
values. Further, an investigation with respect to the determination of �(ξ) is
presented below (Section 5).

(8) By making use of the set of equations established in step (6), we proceed to the
evaluation of the constants and parameters involved in (4.7) and (4.12a). Thus,
after substitution of n= 6 into all the equations of the system, the �11 equation

3b6κ
3λ= 0 (4.14)

yields (b6, κ �= 0)

λ= 0. (4.15)

Taking now into account (4.15), the �9 equation

−3b3κ
4 = 0 (4.16)

furnishes (κ �= 0)

b3 = 0. (4.17)
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Furthermore, after substituting (4.15) and (4.17) into the equations of the sys-
tem, then, by means of the resulted �7 equation

−5b1κ
4 = 0, (4.18)

we have (κ �= 0)

b1 = 0. (4.19)

Finally, after all the obtained results, that is, λ = b3 = b1 = 0, have been substituted into
the original system (n = 6), then the remaining equations corresponding to the zeroth
and even powers of � take the following form:

b0μ
(
μ2− r2)= 0,

b0κ
[(

2Γ1 + 3
)
r2 + 2Γ0r

2μ−μ2]+ 2b2μ
(
μ2− r2)= 0,

b0κ
(
2Γ0r

2− 5μ
)

+ 2b2κ
[(
Γ1 + 1

)
r2 +Γ0r

2μ+μ2]+ 3b4μ
(
μ2− r2)= 0,

− 3b0κ
3 + 2b2κ

2(Γ0r
2−μ

)
+ b4κ

[
2r2(Γ0μ+Γ1

)
+ r2 + 5μ2]+ 4b6μ

(
μ2− r2)= 0,

− 2b2κ
2 + b4κ

(
2Γ0r

2 +μ
)

+ 2b6
[
r2(Γ0μ+Γ1

)
+ 4μ2]= 0,

− b4κ+ 2b6
(
Γ0r

2 + 2μ
)= 0,

(4.20)

where

r = 1
b
. (4.21)

After performing algebraic manipulations, the system of six equations (4.20) results in
the cases of solution listed in Table 4.1, where

Γ0 = Γ0

b
. (4.22)

We can see that these solutions refer to specific values of Γ0 and Γ1. We must also note
here that κ and one of b0, b2, b4, b6 (in most cases b0 or b2) play the role of the “free”
parameters involved in the final solution, the evaluation of which will be achieved by
means of the initial conditions referring to (4.1).

5. Determination of the function �(ξ)

In step (7) of the analytical procedure developed in Section 4, we have considered the
function �(ξ)= u as the inverse function of the indefinite integral S (ξ = S(u), expression
(4.13)). Thus, after the determination of S (by elementary or special functions) we should
solve explicitly or implicitly the obtained relation with respect to u, thus determining the
function �(ξ), that is,

ξ =�−1(u)= S(u)=⇒ u=�(ξ). (5.1)
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Table 4.1. Solutions of the system (4.20).

μ
(
Γ0,Γ1

)
b6 b4 b2 b0

0
(
± 1

2
,
−3
2

)
∓b3κ3b0 −b2κ2b0 ±bκb0 —

0
(
± 3

2
,
−3
2

)
±b3κ3b0 3b2κ2b0 ±3bκb0 —

±1
b

(0,−1) ±b3

2
κ3b0 2b2κ2b0 ±5b

2
κb0 —

±1
b

(±1,−2) ±b3

8
κ3b0

3b2

4
κ2b0 ±3b

2
κb0 —

±1
b

(
± 1

2
,−3

2

)
±b3

4
κ3b0

5b2

4
κ2b0 ±2bκb0 —

±1
b

(
∓ 1

2
,−1

2

)
±b3κ3b0 3b2κ2b0 ±3bκb0 —

0
(
± 1

2
,−1

2

)
±bκb4 — 0 0

0 (0,−1) −b2κ2b2 0 — 0

0 (±1,−1) b2κ2b2 ±2bκb2 — 0

±1
b

(∓2,−2) — 0 0 0

±1
b

(∓1,−2) ±b

2
κb4 — 0 0

±1
b

(
∓ 3

2
,−3

2

)
±bκb4 — 0 0

±1
b

(0,−2)
b2

4
κ2b2 ±bκb2 — 0

±1
b

(∓1,−1) b2κ2b2 ±2bκb2 — 0

±1
b

(
∓ 1

2
,−3

2

)
b2

2
κ2b2 ±3b

2
κb2 — 0

If an explicit expression (unique or not) u(ξ) cannot be obtained, then it should be
investigated if a function u(ξ) can be determined implicitly by means of the equation
ξ − S(u)= 0. This means that we should examine the well-known conditions of the im-
plicit function theorem (for this we need to locate a point (ξ0,u0) such that ξ0 = S(u0) and
then study the existence and continuity of the derivative S′(u) inside an interval contain-
ing u0 and evaluate S′(u0)). If the conditions of the theorem are satisfied, then a unique
implicit smooth function u =�(ξ) is defined inside a certain area of (ξ0,u0). Note that,
in case of a singular point, a nonunique function may be defined. In any case of solution
of (5.1), the formula (4.7) (with λ= 0) combined with (4.5b) (with c1 = 1, c2 = 0) as well
as with the results given by Table 4.1 represents an exact solution of (4.1) inside a certain
domain of x, where the free parameters are evaluated by the use of initial conditions (4.2).

Technically, by making use of the substitution (see [13, equation (2.291.2)])

u2 = z, (5.2)
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the integral S ((4.13), b1 = b3 = 0),

S=
∫

du
√
b6u6 + b4u4 + b2u2 + b0

, (5.3)

is transformed to

S= 1
2

∫
dz

√
z
(
b6z3 + b4z2 + b2z+ b0

) , u > 0, (5.4)

where we have considered u to take positive values (in the opposite case (u < 0), a sign
“−” appears in the right-hand side of (5.4)). Moreover, the integral (5.4) is determined
in dependence on the case of solution (Table 4.1). Thus, as far as the cases with b0 = 0 are
concerned, S becomes

S= S0 = 1
2

∫
dz

z
√
R2(z)

, R2(z)= b6z
2 + b4z+ b2, (5.5)

the various types of which (depending on the sign of b2 (or b6) and the discriminant Δ2

of the quadratic R2) are provided by [13, equation (2.266)], while for the cases where
b0 �= 0, the integral S takes the form

S= S1 = 1

2
√±b6

∫
dξ

√±zR3(z)
, b6 ≷ 0, (5.6)

with

R3(z)= z3 + c4z
2 + c2z+ c0, (5.7a)

ci = bi
b6

, i= 0,2,4. (5.7b)

The sign “±” in (5.6) corresponds to the positive and negative signs of b6, respectively. By
using now the substitution

z = ω− c4

3
, (5.8)

the cubic form R3 can be written as

R3(ω)= ω3 + pω+ q, (5.9)

with

p =− c3
4

3
+ c2, q = 2

27
c3

4 −
c4c2

3
+ c0. (5.10)

As it is well-known [14, Cardan solution], the roots of R3(ω) depend on the sign of the
discriminant

Δ3 = p3

27
+
q2

4
. (5.11)
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Furthermore, by introducing (5.7b) and (5.10) into (5.11), we find that Δ3 is equal to zero
in all cases of solution recorded in Table 4.1. Therefore, according to the Cardan solution,
R3(z) has three real roots (two of them are equal), provided by

ρi = ei− c4

3
, i= 1,2,

e1 = 2 3

√

−q

2
, e2 =− 3

√

−q

2
,

(5.12)

where the relation (5.8) has been taken into account. Here ρ2 is the root of double multi-
plicity. Thus, the integral S (formula (5.6)) becomes

S1 = 1

2
√±b6

∫
dz

(
z− ρ2

)√±z2∓ ρ1z
. (5.13)

By introducing now the substitution (see [13, equation (2.281)] with n= 1)

t = 1
z− ρ2

, z > ρ2, (5.14)

the integral (5.13) is transformed to

S1 =− 1

2
√±b6

∫
dt

√
γt2 +βt+ a

, (5.15)

with

γ =∓ρ2
(
ρ1− ρ2

)
,

β =∓(ρ1− 2ρ2
)
,

a=±1.

(5.16)

Finally, the latter integral can be computed by means of [13, equation (2.261)] (the for-
mulas by means of which the integral (5.15) is expressed depend on the sign of γ and
the discriminant Δ2 of the quadratic γt2 + βt + a). It must be noted here that all the ex-
pressions concerning both integrals, ξ = S0(u) (formula (5.5)) and ξ = S1(u) (formula
(5.15)), can be solved explicitly with respect to z = u2. Thus, the function u =�(ξ) can
be determined by taking the positive square root of the obtained expressions, since we
have considered u to be positive (see the integral (5.4) above).

A question emerging here concerns the form of the integral S when Δ3 �= 0. Obviously,
this is not the case of (4.1) but it is quite possible to occur in this step of the followed
procedure in case that it is applied to another nonlinear equation. Thus, when the sign of
the discriminant Δ3 is positive (R3(z) has one real and two conjugate complex roots) or
negative (R3(z) has three distinct real roots), then by developing the expression ±R3(z)
and taking into account the integral (5.6), we deduce that only generalized integrals of
the second kind of the form

∫ b

a

dt
√
tR3(t)

(5.17)
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can be determined by explicit formulas. In the above integral either, a (or b) represents
z = u2 and b (or a) is equal to one of the real roots of R3. More precisely, the integral
(5.17) is expressed by means of elliptic integrals of the first kind

F
[
f
(
z, p,q,c4

)
,κ
(
p,q,c4

)]
, (5.18)

where c4 and p, q are as in (5.7b) and (5.10), respectively. As it is well known, F can
be solved with respect to z by means of the Jacobi elliptic sine function. Therefore, in
order to finally obtain an integral of the kind (5.17), the integral S should be defined as a
definite integral of the form

S=
∫ b0

a0

ds
√
b6s6 + b4s4 + b2s2 + b0

, (5.19)

with either a0 (or b0) being equal to u and b0 (or a0) being equal to the square root of one
of the real roots of R3.

6. Application of the method to special cases of (4.1)

We now consider two special cases of (4.1), for which the parameters of the solution are
provided by Table 4.1. More precisely, we apply the analysis developed in Section 5 to the
cases

(i) Γ0 = 0, Γ1 =−1:

(
y2− b2)y′′xx − q(x)

(
y2− b2)y′x− yy′2x = 0, (6.1)

(ii) Γ0 = (3/2)b, Γ1 =−3/2:

(
y2− b2)y′′xx − q(x)

(
y2− b2)y′x −

3
2

(y− b)y′2x = 0. (6.2)

Equation (6.1). Here, two possible solutions are recorded in Table 4.1.

Case 1. (We consider the “+” case)

μ= 1
b

, b6 = b3

2
κ3b0, b4 = 2b2κ2b0, b2 = 5b

2
κb0. (6.3)

Since b0 �= 0, by making use of the above relations and combining (5.7b) with (5.10), we
obtain the roots of R3(z) (Δ3 = 0), namely,

ρ1 =− 2
bκ

, ρ2 =− 1
bκ

, ρ2 is double. (6.4)

Then, by substituting (6.4) into (5.16), the integral S (S = S1) given by formula (5.15)
becomes

ξ = S1 =− 1

2
√±b6

∫
dt

√
∓ρ2

2t2± 1
, t = 1

z− ρ2
> 0. (6.5)
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The signs in (6.5) correspond to the cases b6 > 0 and b6 < 0, respectively. According to
[13, equation (2.261)], S1 is determined as

ξ =− 1

2
√
b6ρ2

arcsin
ρ2

z− ρ2
, b6 > 0 (6.6a)

ξ =− 1

2
√−b6ρ2

ln

⎛

⎝
2ρ2

√
−z(z− 2ρ2

)
+ 2ρ2

2

z− ρ2

⎞

⎠ , b6 < 0, ρ2 > 0. (6.6b)

Moreover, solution of (6.6) with respect to z = u2, respectively, results in

u2 = ρ2 +
ρ2

sin
(− 2

√
b6ρ2ξ

) , b6 > 0, (6.7a)

u2 = ρ2 +
4ρ2

2e
−2
√
−b6ρ2ξ

e−4
√
−b6ρ2ξ + 4ρ2

2

, b6 < 0. (6.7b)

Since �(ξ)= u can be determined (as the positive square root of the right-hand side
of (6.7)), the relations (4.3) and (4.7) (λ= 0, μ= 1/b) yield

y(x)= b sin
[

2
√
b6ρ2ξ(x)

]
, b6 > 0, (6.8a)

y(x)=−be
−4
√
−b6ρ2ξ(x) + 4ρ2

2

4ρ2e−2
√
−b6ρ2ξ(x)

, b6 < 0, (6.8b)

where the expression of ρ2 (equation (6.4)) has been taken into account. Differentiating
twice (6.8) with respect to x, introducing the obtained expressions into (6.1), and taking
into account (4.5a), we see that (6.1) is satisfied in both cases. Therefore, (6.8) represent
an exact explicit solution of (6.1), where b6 and ρ2 stand for the free parameters instead
of κ, b0 (see relations (6.3), (6.4)). We now examine the second case.

Case 2.

μ= 0, b6 =−b2κ2b2, b4 = 0, b0 = 0. (6.9)

Since in this case we have that b0 = 0, the corresponding integral S (S= S0) given now by
(5.5) becomes

ξ = S0 = 1
2

∫
dz

z
√
b6z2 + b2

. (6.10)

According to [13, equation (2.266)], we have the following two cases:

ξ =∓ 1

2
√−b2

arcsin
1
bκz

, b2 < 0, (6.11a)
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where the signs correspond to κ > 0 and κ < 0, respectively (b6 has been substituted from
(6.9)), and

ξ =− 1

2
√
b2

ln
2
√
b2
(
b6z2 + b2

)
+ 2b2

z
, b2 > 0. (6.11b)

Furthermore, by solving (6.11) with respect to z = u2 and substituting b6 from (6.9), we
obtain

u2 =− 1

b|κ|sin
(
2
√−b2ξ

) , b2 < 0, (6.12a)

u2 = 4b2e−2
√

b2ξ

e−4
√

b2ξ + 4b2κ2b2
2

, b2 > 0. (6.12b)

Thus, substituting the above expressions of �(ξ) = u into (4.7) (λ = μ = 0), then by
(4.3), we extract

y(x)=∓b sin
[

2
√
−b2ξ(x)

]
, b2 < 0, (6.13a)

y(x)= e−4
√

b2ξ(x) + 4b2κ2b2
2

4κb2e−2
√

b2ξ(x)
, b2 > 0. (6.13b)

The sign “−” in (6.13a) holds true when κ > 0, while the sign “+” holds true when κ < 0.
Moreover, introducing y as well as its derivatives (with respect to x) into (6.1) and taking
into account (4.5a), we deduce that (6.1) is also verified in both cases. Comparing with
the expressions (6.8) obtained in Case 1, we see that the explicit forms of the obtained
solutions are qualitatively the same. We mention that ξ(x) is given from (4.5b), namely,

ξ(x)= c1

∫

e
∫
q(x)dxdx+ c2 (6.14)

(we can take c1 = 1, c2 = 0). Moreover, the respective to the case under consideration, free
parameters (b6, ρ2 or κ, b2) can be evaluated by means of the initial conditions referring
to original equation (6.1) (relations (4.2)). These conditions will also be responsible for
the kind of solution ((6.13a) or (6.13b), (6.8a) or (6.8b)) that (6.1) will accept.

It is worth to be noted here that solution (6.13a) (or (6.8a)) is in perfect agreement
with the solution of the same equation with q(x) = x/(a2− x2) given by Polyanin and
Zaitsev [12, equation (2.8.1.67)], namely,

y(x)= b sin
(
A1 arcsin

x

a
+A2

)
, A1, A2 = constants. (6.15)

In fact, for this specific form of q(x), (6.14) yields

ξ(x)= c1 arcsin
x

a
+ c2, (6.16)
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and therefore (6.13a) becomes

y(x)=∓b sin
(

2
√
−b2c1 arcsin

x

a
+ 2
√
−b2c2

)
, (6.17)

or setting Bi =∓2
√−b2ci, i= 1,2,

y(x)= b sin
(
B1 arcsin

x

a
+B2

)
, (6.18)

which is identical to (6.15).

Equation (6.2). Table 4.1 also provides two possible solutions concerning this equation,
namely, the following.

Case 1.

μ= 0, b6 = b3κ3b0, b4 = 3b2κ2b0, b2 = 3bκb0. (6.19)

This case (b0 �= 0), as the case (i) of (6.1), corresponds to the integral S (S= S1) (expres-
sion (5.6)), involving the cubic form R3(ξ). By means now of (5.7b) and (5.10), the roots
of R3 (Δ3 = 0) are found:

ρ1 = ρ2 =− 1
bκ

, ρ2 is double, (6.20)

and moreover combining (6.20) with (5.16), the obtained above integral (5.15) takes the
form

ξ = S1 =− 1

2
√±b6

∫
dt

√±ρ2t± 1
, t = 1

z− ρ2
> 0,

=∓ 1

ρ2
√±b6

√

± z

z− ρ2
,

(6.21)

where the signs correspond to the positive and negative signs of b6, respectively. Since
z/(z− ρ2) is positive, we reject the case b6 < 0, writing

ξ =− 1

ρ2
√
b6

√
z

z− ρ2
, (6.22)

and therefore,

z = u2 = b0ξ2

1− bκb0ξ2
, κb0 > 0, (6.23)

where b6 and ρ2 have been substituted from (6.19) and (6.20). Thus proceeding as in the
previous case, we derive

y(x)=−b+
1

κb0ξ2(x)
, κb0 > 0. (6.24)
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Moreover, (6.2) is satisfied by formula (6.24), where κ and b0 represent here the free pa-
rameters.

Case 2.

μ= 1
b

, b6 =−bκb4, b2 = b0 = 0. (6.25)

Here, the integral S is given by formula (5.5) (b0 = 0). More precisely, we write

ξ = S0 = 1
2

∫
dz

z
√
b6z2 + b4z

. (6.26)

Therefore, according to [13, equation (2.266)], we have

ξ =−
√
b6z2 + b4z

b4z
, (6.27)

and moreover,

z = u2 = 1
b4ξ2 + bκ

, (6.28)

where b6 has been substituted from (6.25). Then, similarly as before, y(x) is obtained:

y(x)=−b− κb2

b4ξ2(x)
. (6.29)

The latter formula also verifies (6.2). As in (6.1), the function ξ(x) is provided by (6.14)
(c1 = 1, c2 = 0), while the free parameters (κ, b0 or κ, b4) corresponding to Cases 1 and 2
are evaluated by the associated initial conditions. Finally, we also observe here the quali-
tative similarity between the expressions giving y(x) in Cases 1 and 2.

7. The functions �(x)

According to the developed technique, the determination of the function � is achieved
through the inversion of the integral (4.13), which in turn can be determined by means
of classical procedures (Section 5). Considering now the functions �(x) involved in the
obtained exact solutions of (6.1) and (6.2) (with ξ(x) as independent variable), provided
by the expressions (6.12), (6.7) and (6.28), (6.23), respectively (we take the positive square
roots of the right-hand sides), we observe that their form is simply a specific combination
of transcendental or (and) classical functions. On the other hand, we can see that they
share the fundamental property of elliptic functions, that their only movable singularities
are poles.

More specifically, taking arbitrary values for the respective free parameters, we have
(b > 0).
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(a) The function �11 (b= 1, κ=±1, b2 =−1)
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(b) The function �11 (b= 1, ρ2 =−1, b6 = 1)

Figure 7.1

Equation (6.1). Formula (6.12a), b2 < 0:
Function �11 (Figure 7.1(a))

�11(x)=
[
− 1
b|κ| csc

(
2
√
−b2x

)]1/2

, (7.1)

where x ∈ (((2λ+ 1)/2
√−b2)π, ((2λ+ 2)/2

√−b2)π), λ∈ Z. �11 possesses obvious poles at

x = λπ

2
√−b2

, λ∈ Z. (7.2)
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Formula (6.7a), b6 > 0:
Function �11

�11(x)=
[
ρ2

(
1− csc

(
2
√
b6ρ2x

))]1/2
, ρ2 =− 1

bκ
, (7.3)

where x ∈ (((2λ+ 1)/2
√
b6|ρ2|)π, ((2λ+ 2)/2

√
b6|ρ2|)π), λ ∈ Z. �11 possesses obvious

poles at

x = λπ

2
√
b6
∣
∣ρ2

∣
∣ , λ∈ Z. (7.4)

For ρ2 > 0, �11 presents a qualitatively similar graph to that of �11 in Figure 7.1(a)
(displaced upwards), while for ρ2 < 0 we obtain Figure 7.1(b). We observe that in this
case, �11 is not a smooth function inside its domain, since it accepts different values for
its right-side and left-side derivatives at x0 = ((2λ+ 1)/2

√
b6|ρ2|)π + π/4

√
b6|ρ2|, λ ∈ Z,

equal to
√
b0 and −√b0, respectively (in Figure 7.1(b), b0 = 2). This result can also be

derived from (4.12a) by setting �(x0)=�11(x0)= 0.
Formula (6.12b), b2 > 0:
Function �12 (Figures 7.2(a), 7.2(b)),

�12(x)= 2
√
b2e−

√
b2x

(
e−4
√

b2x + 4b2κ2b2
2

)1/2 , x ∈R. (7.5)

�12 possesses no poles.
The function � corresponding to formula (6.7b) (defined everywhere inR, possessing

no poles, and valid only for ρ2 > 0) presents also qualitatively similar graphs to that of
�12, displaced upwards and stretched or compressed along x and y axes, depending on
the values of parameters b6, ρ2.

Equation (6.2). Formula (6.28):
Function �2 (Figures 7.3, 7.4, 7.5)

�2(x)=
(

1
b4x2 + bκ

)1/2

. (7.6)

We have the following three cases:
(i) b4 > 0 κ > 0:

�2(x)=�21(x), x ∈R (which possesses no poles) (7.7)

(ii) b4 > 0, κ < 0:

�2(x)=�22(x), x ∈
(
−∞,−

√
−bκ/b4

)
∪
(√
−bκ/b4,+∞

)
, (7.8)

(iii) b4 < 0, κ > 0:

�2(x)=�23(x), x ∈
(
−
√
−bκ/b4,

√
−bκ/b4

)
. (7.9)
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(a) The function �12 (b = 1, κ=±1, b2 = 1)
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(b) The function �12 (b = 1, κ=±10, b2 = 1)

Figure 7.2

Both �22 and �23 possess two poles at

x =−
√

−bκ

b4
,

√

−bκ

b4
. (7.10)

Finally, in the case b4 < 0, κ < 0, �2 does not accept real values for any x ∈R.
Formula (6.23):

Function �2

�2(x)=
(

b0x2

1− bκb0x2

)1/2

, κb0 > 0. (7.11)
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Figure 7.3. The function �21 (b = 1, κ= 1, b4 = 1).
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Figure 7.4. The function �22 (b= 1, κ=−1, b4 = 1).

We have the following two cases:
(i) b0 < 0:

�2(x)=�22(x), x ∈
(

−∞,−
√

1
bκb0

)
⋃
(√

1
bκb0

,∞
)

, (7.12)

(ii) b0 > 0:

�2(x)=�23(x), x ∈
(

−
√

1
bκb0

,

√
1

bκb0

)

. (7.13)
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Figure 7.5. The function �23 (b= 1, κ= 1, b4 =−1).
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Figure 7.6. The function �23 (b = 1, κ= 1, b0 = 1).

Both �22 and �23 possess two poles at

x =−
√

1
bκb0

,

√
1

bκb0
. (7.14)

The graph of �22 is similar to that of �22 in Figure 7.4, while the respective graph to �23

is presented in Figure 7.6. We see that �23, as �11 (ρ2 < 0), is also a nonsmooth function
since the right-side and the left-side derivatives at x = 0 take different values, equal to

√
b0

and −√b0, respectively.
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8. Summary: conclusion

By the developed analytical procedure, we first obtained a more general form of the so-
lution of Gambier’s equation (2.1) than the existed explicit one. We then applied this
method to another nonlinear ODE (equation (4.1)) extracting specific sets of values of
the parameters involved, for which a closed form solution can be obtained. This solution
is constructed through the inverse function of the integral S of the (algebraic) inverse
of the square root of a polynomial of the 6th degree, the specific form of which allows
the determination of S (Section 5). Thus, by inverting the extracted relations we deter-
mined explicitly or implicitly the function � introduced into the analysis and derived
the respesctive (explicit or implicit) formula of the solution. Two arbitrary parameters
contained in the obtained expressions provide special solutions in case of an initial value
problem.

Furthermore, we note that in the special cases of (4.1) solved in this work as an appli-
cation of the developed technique (Section 6), the corresponding functions �i j and �i j

(Section 7) as well as the corresponding (explicit) formulas of the function y (Section 6)
represent specific combinations of elementary functions. Moreover, the most of the ob-
tained functions � possess movable poles. We should also note the perfect agreement
between the obtained solution and that given in [12] in case of (6.2). More generally
speaking, we believe that the establishment of analytical techniques in the sense of con-
structing successive appropriate steps, as in the present work, can achieve the derivation
of analytical solutions for several nonsolved analytically up today nonlinear ODEs or sys-
tems of ODEs.
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