
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2007, Article ID 13437, 6 pages
doi:10.1155/2007/13437

Research Article
Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias Stabilities of
an Additive Functional Equation in Several Variables

Paisan Nakmahachalasint

Received 1 June 2007; Revised 12 June 2007; Accepted 24 June 2007

Recommended by Martin J. Bohner

It is well known that the concept of Hyers-Ulam-Rassias stability was originated by Th. M.
Rassias (1978) and the concept of Ulam-Gavruta-Rassias stability was originated by J. M.
Rassias (1982–1989) and by P. Găvruta (1999). In this paper, we give results concerning
these two stabilities.
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1. Introduction

In 1940, Ulam [13] proposed the Ulam stability problem of additive mappings. In the
next year, Hyers [5] considered the case of approximately additive mappings f : E→ E′,
where E and E′ are Banach spaces and f satisfies inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε
for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E
and that L is the unique additive mapping satisfying ‖ f (x)−L(x)‖ ≤ ε. In 1978, Rassias
[14] generalized the result to an approximation involving a sum of powers of norms.
In 1982–1989, Rassias [8–11] treated the Ulam-Gavruta-Rassias stability on linear and
nonlinear mappings and generalized Hyers result to the following theorem.

Theorem 1.1 (J. M. Rassias). Let f : E→ E′ be a mapping, where E is a real-normed space
and E′ is a Banach space. Assume that there exist θ > 0 such that

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ θ‖x‖p‖y‖q (1.1)

for all x, y ∈ E, where r = p+ q �= 1. Then there exists a unique additive mapping L : E→ E′
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such that

∥
∥ f (x)−L(x)

∥
∥≤ θ

∣
∣2− 2r

∣
∣
‖x‖r (1.2)

for all x ∈ E.

However, the case r = 1 in the above inequality is singular. A counterexample has been
given by Găvruta [2]. The above-mentioned stability involving a product of different
powers of norms is called Ulam-Gavruta-Rassias stability by Bouikhalene and Elqorachi
[1], Ravi and ArunKumar [12], and Nakmahachalasint [6]. In recent years, some other
authors [3, 4, 7] have investigated the stability of additive mapping in various forms.

In this paper, we propose an n-dimensional additive functional equation and investi-
gate its Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities.

2. The functional equation and the solution

Theorem 2.1. Let n > 1 be an integer and let X , Y be real vector spaces. A mapping f : X →
Y satisfies the functional equation

n f

( n
∑

i=1

xi

)

=
n
∑

i=1

f
(

xi
)

+
∑

1≤i< j≤n
f
(

xi + xj
) ∀x1,x2, . . . ,xn ∈ X (2.1)

if and only if f satisfies the Cauchy functional equation

f (x+ y)= f (x) + f (y) ∀x, y ∈ X. (2.2)

Proof. We first suppose that a mapping f : X → Y satisfies (2.2). By the additivity of the
Cauchy functional equation, we have

n
∑

i=1

f
(

xi
)

+
∑

1≤i< j≤n
f
(

xi + xj
)=

n
∑

i=1

f
(

xi
)

+
∑

1≤i< j≤n

(

f
(

xi
)

+ f
(

xj
))

= n
n
∑

i=1

f
(

xi
)= n f

( n
∑

i=1

xi

) (2.3)

for all x1,x2, . . . ,xn ∈ X . Hence, f satisfies (2.1).
Now suppose that a mapping f : X → Y satisfies (2.1). Putting x1 = x2 = ··· = xn = 0

in (2.1), we have n f (0)= n f (0) +
(
n
2

)

f (0), which leads to f (0)= 0. Putting x1 = x, x2 = y
and, if n > 2, x3 = x4 = ··· = xn = 0 in (2.1), we get

n f (x+ y)= f (x) + f (y) + (n− 2) f (x) + (n− 2) f (y) + f (x+ y) ∀x, y ∈ X , (2.4)

which simplifies to f (x+ y)= f (x) + f (y) as desired. �
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3. Hyers-Ulam-Rassias stability

The following theorem treats the Hyers-Ulam-Rassias stability of (2.1).

Theorem 3.1. Let n > 1 be an integer, let X be a real vector space, and let Y be a Banach
space. Given real numbers δ,θ ≥ 0 and p ∈ (0,1)∪ (1,∞) with δ = 0 when p > 1. If a map-
ping f : X → Y satisfies the inequality

∥
∥
∥
∥
∥
n f

( n
∑

i=1

xi

)

−
n
∑

i=1

f
(

xi
)−

∑

1≤i< j≤n
f
(

xi + xj
)

∥
∥
∥
∥
∥
≤ δ + θ

n
∑

i=1

∥
∥xi
∥
∥
p

(3.1)

for all x1,x2, . . . ,xn ∈ X , then there exists a unique additive mapping L : X → Y that satisfies
(2.1) and the inequality

∥
∥ f (x)−L(x)

∥
∥≤ 2δ

n
+

2θ
(n− 1)

∣
∣2− 2p

∣
∣
‖x‖p ∀x ∈ X. (3.2)

The mapping L is given by

L(x)=
⎧

⎪⎨

⎪⎩

lim
m→∞2−m f

(

2mx
)

if 0 < p < 1

lim
m→∞2m f

(

2−mx
)

if p > 1
∀x ∈ X. (3.3)

Proof. Putting x1 = x2 = ··· = xn = 0 in (3.1), we have ‖n f (0)− n f (0)−
(
n
2

)

f (0)‖ ≤ δ.

Thus, ‖ f (0)‖ ≤ 2δ/(n2−n). Setting x1 = x2 = x and, if n > 2, x3 = x4 = ··· = xn = 0 in
(3.1), we have

∥
∥
∥
∥
∥
n f (2x)− 2 f (x)− (n− 2) f (0)− f (2x)− 2(n− 2) f (x)−

(

n− 2
2

)

f (0)

∥
∥
∥
∥
∥
≤ δ + 2θ‖x‖p,

(3.4)

which simplifies to

(n− 1)
∥
∥
∥
∥ f (2x)− 2 f (x)− n− 2

2
f (0)

∥
∥
∥
∥≤ δ + 2θ‖x‖p. (3.5)

Therefore,

∥
∥2 f (x)− f (2x)

∥
∥≤ n− 2

2

∥
∥ f (0)

∥
∥+

δ + 2θ‖x‖p
n− 1

≤ 2δ
n

+
2θ

n− 1
‖x‖p. (3.6)

We first consider the case where 0 < p < 1. Rewrite the above inequality (3.6) as

∥
∥ f (x)− 2−1 f (2x)

∥
∥≤ δ

n
+

θ

n− 1
‖x‖p. (3.7)
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For every positive integer m,

∥
∥ f (x)− 2−m f

(

2mx
)∥
∥=

∥
∥
∥
∥
∥

m−1
∑

i=0

(

2−i f
(

2ix
)− 2−(i+1) f

(

2i+1x
))

∥
∥
∥
∥
∥

≤
m−1
∑

i=0

∥
∥2−i f

(

2ix
)− 2−(i+1) f

(

2i+1x
)∥
∥

=
m−1
∑

i=0

2−i
∥
∥ f
(

2ix
)− 2−1 f

(

2 · 2ix
)∥
∥.

(3.8)

Substituting x with x,2x,22x, . . . ,2m−1x in (3.7), the above inequality becomes

∥
∥ f (x)− 2−m f

(

2mx
)∥
∥≤ δ

n

m−1
∑

i=0

2−i +
θ

n− 1
‖x‖p

m−1
∑

i=0

2i(p−1). (3.9)

Consider the sequence {2−m f (2mx)}. For all positive integers k < l, we have

∥
∥2−k f

(

2kx
)− 2−l f

(

2lx
)∥
∥= 2−k

∥
∥ f
(

2kx
)− 2−(l−k) f

(

2l−k · 2kx
)∥
∥

≤ 2−k
(

δ

n

l−k−1
∑

i=0

2−i +
θ

n− 1

∥
∥2kx

∥
∥
p
l−k−1
∑

i=0

2i(p−1)

)

≤ 2−kδ
n

∞
∑

i=0

2−i +
θ

n− 1
2−k(1−p)‖x‖p

∞
∑

i=0

2i(p−1).

(3.10)

The right-hand side of the above inequality approaches 0 as k →∞. Therefore, L(x) =
limm→∞ 2−m f (2mx) is well defined. Taking the limit of (3.9) as m→∞, we have

∥
∥ f (x)−L(x)

∥
∥≤ δ

n

∞
∑

i=0

2−i +
θ

n− 1
‖x‖p

∞
∑

i=0

2i(p−1) = 2δ
n

+
2θ

(n− 1)
(

2− 2p
)‖x‖p ∀x ∈ X.

(3.11)

To show that L satisfies (2.1), replace each xi in (3.1) with 2mxi. This results in

∥
∥
∥
∥
∥
n f

( n
∑

i=1

2mxi

)

−
n
∑

i=1

f
(

2mxi
)−

∑

1≤i< j≤n
f
(

2mxi + 2mxj
)

∥
∥
∥
∥
∥
≤
(

δ + θ
n
∑

i=1

∥
∥2mxi

∥
∥
p

)

.

(3.12)

Dividing the above inequality by 2m and taking the limit as m→∞, we obtain

∥
∥
∥
∥
∥
nL

( n
∑

i=1

xi

)

−
n
∑

i=1

L
(

xi
)−

∑

1≤i< j≤n
f
(

xi + xj
)

∥
∥
∥
∥
∥
≤ lim

m→∞

(

δ

2m
+

θ

2m(1−p)

n
∑

i=1

∥
∥xi
∥
∥
p

)

= 0,

(3.13)

which verifies that L indeed satisfies (2.1).
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To prove the uniqueness of L, suppose there is a mapping L′ : X → Y such that L′

satisfies (2.1) and (3.2). The additivity of L and L′ is asserted by Theorem 2.1; hence,

∥
∥L(x)−L′(x)

∥
∥= 2−m

∥
∥L
(

2mx
)−L′

(

2mx
)∥
∥

≤ 2−m
(∥
∥L
(

2mx
)− f

(

2mx
)∥
∥+

∥
∥L′

(

2mx
)− f

(

2mx
)∥
∥
)

≤ 2−m · 2

(

2δ
n

+
2θ

(n− 1)(2− 2p)

∥
∥2mx

∥
∥
p

)

−→
m→∞ 0.

(3.14)

Thus, L(x)= L′(x) for all x ∈ X .
For the case p > 1, δ = 0 and (3.7) must be replaced by

∥
∥ f (x)− 2 f

(

2−1x
)∥
∥≤ 2θ

n− 1

∥
∥2−1x

∥
∥
p
. (3.15)

The rest of the proof can be done in the same fashion as that of the case 0 < p < 1. �

4. Ulam-Gavruta-Rassias stability

The following theorem treats the Ulam-Gavruta-Rassias stability of (2.1).

Theorem 4.1. Let n > 1 be an integer, let X be a real vector space, and let Y be a Banach
space. Given real numbers δ,θ ≥ 0 and p ∈ (0,1)∪ (1,∞) with δ = 0 when p > 1. If a map-
ping f : X → Y satisfies the inequality

∥
∥
∥
∥
∥
n f

( n
∑

i=1

xi

)

−
n
∑

i=1

f
(

xi
)−

∑

1≤i< j≤n
f
(

xi + xj
)

∥
∥
∥
∥
∥
≤ δ + θ

∑

1≤i< j≤n

∥
∥xi
∥
∥
p/2∥
∥xj

∥
∥
p/2

(4.1)

for all x1,x2, . . . ,xn ∈ X , then there exists a unique additive mapping L : X → Y that satisfies
(2.1) and the inequality

∥
∥ f (x)−L(x)

∥
∥≤ 2δ

n
+

θ

(n− 1)
∣
∣2− 2p

∣
∣
‖x‖p ∀x ∈ X. (4.2)

The mapping L is given by (3.3).

Proof. We make the same substitution as in the proof of Theorem 3.1 and obtain instead
of (3.5) the following inequality:

(n− 1)
∥
∥
∥
∥ f (2x)− 2 f (x)− n− 2

2
f (0)

∥
∥
∥
∥≤ δ + θ‖x‖p ∀x ∈ X. (4.3)

The rest of the proof, apart from a multiplicative factor of 2 appears before θ, can be
carried over from that of Theorem 3.1. �

It should be remarked that in the case where n= 2, functional equation (2.1) reduces
to the Cauchy functional equation, and the Ulam-Gavruta-Rassias stability of this prob-
lem has been treated by J. M. Rassias, and the result has been restated in Theorem 1.1.
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