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We investigate the concepts of quasi-H-closed modulo an ideal which generalizes quasi-
H-closedness and C-compactness modulo an ideal which simultaneously generalizes C-
compactness and compactness modulo an ideal. We obtain a characterization of maxi-
mal C-compactness modulo an ideal. Preservation of C-compactness modulo an ideal by
functions is also investigated.
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1. Introduction

In the present paper, we consider a topological space equipped with an ideal, a theme that
has been treated by Vaidyanathaswamy [15] and Kuratowski [6] in their classical texts. An
ideal $ on a set X is a nonempty subset of P(X), the power set of X, which is closed for
subsets and finite unions. An ideal is also called a dual filter. {¢} and P(X) are trivial
examples of ideals. Some useful ideals are (i) $ 7, the ideal of all finite subsets of X, (ii)
P, the ideal of all countable subsets of X, (iii) $,, , the ideal of all nowhere dense subsets
in a topological space (X, 1), and (iv) $s, the set of all scattered sets in (X, 7). For an ideal
$ on X and A C X, we denote theideal {INA:1 € $} by $4.

A topological space (X, 1) with an ideal $ on X is denoted by (X, 7,$). For a subset
A c X, A*(9,7) (called the adherence of A modulo an ideal $) or A*(¥) or just A* is the
set {xeX:AnU ¢ J for every open neighborhood U of x}. A*(¥,7) has been called
the local function of A with respect to .$ in [6]. It is easy to see that (i) for the ideal {¢},
A* is the closure of A, (ii) for the ideal P(X), A* is ¢, and (iii) for ideal $7, A* is the set
of all w-accumulation points of A. For general properties of the operator *, we refer the
readers to [5, 14].

Observe that the operator cl* : P(X) — P(X) defined by cl* (A)=A U A* is a Kuratowski
closure operator on X and hence generates a topology 7* (%) or just 7* on X finer than
7. As has already been observed, 7*({¢}) = 7 and 7*(P(X)) = the discrete topology. A
description of open sets in 7*($) as given in Vaidyanathaswamy [15] is given in the
following.
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2 C-compactness modulo an ideal

THEOREM 1.1. If 7 is a topology and $ is an ideal, both defined on X, then
B=p(1,9)={V—-1:V e1,Ic 3} isa base for the topology T*(¥) on X. (1.1)

Ideals have been used frequently in the fields closely related to topology, such as real
analysis, measure theory, and lattice theory. Some interesting illustrations of 7*($) are as
follows [5].

(1) If 7 is the topology generated by the partition {{2n —1,2n} : n € N} on the set N
of natural numbers, then 7% (9y) is the discrete topology.

(2) If 7 is the indiscrete topology on a set X, then 7% (% ¢) is the cofinite topology on
X, and 7*(9.) is the co-countable topology on X. If for a fixed point p € X, $
denotes the ideal {A C X : p ¢ A}, then 7%(¥) is the particular point topology
on X.

(3) For any topological space (X,7), 7*($,) is the 7* topology of Njastad [10].

(4) If 7 is the usual topology on the real line R and $ is the ideal of all subsets of
Lebesgue measure zero, then 7*-Borel sets are precisely the Lebesgue measurable
sets of R.

2. Quasi-H-closed modulo an ideal space

The concept of compactness modulo an ideal was introduced by Newcomb [9] and has
been studied among others by Rancin [11], and Hamlett and Jankovi¢ [3]. A space (X, )
is defined to be compact modulo an ideal $ on X or just ($) compact space if for every
open cover AU of X, there is a finite subfamily {U;,U,,...,U,} such that X — UL, U; €
9. In this section, we define quasi-H -closedness modulo an ideal and study some of its
properties. In the process, we get some interesting characterizations of quasi-H-closed
spaces.

Definition 2.1. Let (X,7) be a topological space and $ an ideal on X. X is quasi-H -closed
modulo $ or just ($)QHC if for every open cover U of X, there is a finite subfamily
{U1,Us,..., Uy} of AU such that X — J2, cl(U;) € . Such a subfamily is said to be proxi-
mate subcover modulo $ or just ($) proximate subcover.

A subset A of a topological space (X, ) is said to be preopen [8] if A C int(cl(A)). The
collection of all preopen sets of a space (X, 7) is denoted by PO(X). An ideal .$ of subsets
of a topological space (X,7) is said to be codense [1] if the complement of each of its
members is dense. Note that an ideal $ is codense if and only if $ N7 = {¢}. Codense
ideals are called 7-boundary ideals in [9]. An ideal $ of subsets of a topological space
(X, 7) is said to be completely codense [1] if $ N PO(X) = {¢}. Obviously, every completely
codense ideal is codense. Note that if (R, 7) is the set R of real numbers equipped with
the usual topology 7, then ¥, is codense but not completely codense ideal. It is proved in
[1] that an ideal $ is completely codense if and only if $ C $,,.

From the discussion of Section 1, the proof of the following theorem is immediate.

THEOREM 2.2. For a space (X, ), the following are equivalent:
(a) (X, 1) is quasi-H-closed;
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(b) (X,7)is ({¢}) QHC;
(c) (X,7)is ($5)QHC;
(d) (X,7) is ($,) QHC;
(e) (X,7) is ($)QHC for every codense ideal $.

The significance of condition in (e) may be seen by considering the set R of real num-
bers equipped with the usual topology 7. If A is a finite subset of R and $ is the ideal of
all subsets of R — A, then (R, 7) is ($) QHC, but not quasi-H-closed.

A family F of subsets of X is said to have the finite-intersection property modulo an ideal
9 on X or just ($)FIP if the intersection of no finite subfamily of & is a member of .§ .
Recall that a subset in a space is called regular open if it is the interior of its own closure.
The complement of a regular open set is called regular closed. It is proved in [12] that for
completely codense ideal $ on a space (X, 1), the collections of regular open sets of (X, 7)
and (X,7*) are same. The following theorem contains a number of characterizations of
($) QHC spaces. Since the proof is similar to that of a theorem in the next section, we
omit it.

THEOREM 2.3. For a space (X, ) and an ideal $ on X, the following are equivalent:

(a) (X,7) is ($)QHG;

(b) for each family F of closed sets having empty intersection, there is a finite subfamily
{F1,F,Fs,...,E,} such that N, int(F;) € ;

(¢) for each family & of closed sets such that {int(F) : F € %} has ($) FIP, one has N{F :
FeF}t+¢;

(d) every regular open cover has a finite ($) proximate subcover;

(e) for each family & of nonempty regular closed sets having empty intersection, there is
a finite subfamily {F\,F,,Fs,...,Fy} such that (\_, int(F;) € $;

(f) for each collection &F of nonempty regular closed sets such that {int(F): F € &} has
($)FIP, one has (\{F: F € F} # ¢;

(g) for each open filter base B on P (X) — %, N{cl(B) : B € B} + ¢;

(h) every open ultrafilter on P(X) — $ converges.

It follows from a result in [13] that 7 and 7*($) have the same regular open sets, where
$ is a completely codense ideal on (X,7). In particular, if U € 7*, then cl(U) = cI*(U).
Using this observation along with the previous theorem, we have the following.

THEOREM 2.4. Let $ be a completely codense ideal on a space (X, 1). Then (X, 1) is ($) QHC
if and only if (X, 7%*) is ($) QHC.

Combining this result with Theorem 2.2, we have the following.

CorOLLARY 2.5. Let (X, ) be a space and $ a completely codense ideal on X. Then the
following are equivalent:

(a) (X, 1) is quasi-H-closed;

(b) (X,7*) is quasi-H-closed;

(¢) (X,1%) is quasi-H-closed.

The last equivalence follows because 7% = 7*($,,), where $, is the ideal of nowhere
dense sets in X.



4 C-compactness modulo an ideal

3. C-compact modulo an ideal space

In this section, we generalize the concepts of C-compactness of Viglino [16] and com-
pactness modulo an ideal due to Newcomb [9] and Rancin [11]. A space (X,7) is said
to be C-compact if for each closed set A and each 7-open covering U of A, there exists a
finite subfamily {Uy, U,, Us,..., U,} such that A c U7, cl(U;).

Definition 3.1. Let (X, ) be a topological space and $ an ideal on X. (X, 7) is said to be C-
compact modulo $ or just C($)-compact if for every closed set A and every T-open cover
9 of A, there is a finite subcollection {Uj, Uy, Us,..., U,} such that A — I, cl(U;) € 4.

It follows from the definition that

compact ——— ($) compact
C-compact C(¥)-compact (3.1)
quasi-H-closed — ($) QHC

Also from the definition in Section 1, we have the following.

THEOREM 3.2. For a space (X, ), the following are equivalent:
(a) (X, ) is C-compact;
(b) (X, 1) is C({¢p})-compact;
(c) (X,1) is C(9 f)-compact.

Example 3.3. For n and m in the set N of positive integers, let Y denote the subset of the
plane consisting of all points of the form (1/n,1/m) and the points of the form (1/n,0).
Let X = Y U {oo}. Topologize X as follows: let each point of the form (1/#,1/m) be open.
Partition N into infinitely many infinite-equivalence classes, {Z;}2,. Let a neighborhood
system for the point (1/1,0) be composed of all sets of the form G U F, where

o={(La)} (b))
el men]

for some k € N. Let a neighborhood system for the point co be composed of sets of the
form X\ T, where

TZ{(;’O):HEN}UQ{G’;):mEN}U{<111’nl1) ‘me Z;, nEN} (3.3)

for some k € N. It is shown in [16] that X is a C-compact space which is not compact. In
view of Theorem 3.2, such a space is C($ y)-compact, but not ($s) compact.

(3.2)
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Example 3.4. Let X = R* U {a} U {b}, where R* denotes the set of nonnegative real num-
bers and a, b are two distinct points notin R™. Let W(a) ={V CcX:V = {a} U U;”:,,,(Zr,
2r + 1)}, where m is a nonnegative integer, be a neighborhood system for the point a.
Let W(b) = {V CcX:V ={b}ul,.,,(2r — 1,2r)}, where m is a nonnegative integer, be
a neighborhood system for the point b. Let R*, with the usual topology, be imbedded in
X. Viglino [16] has shown that the space X is not C-compact. If A is a finite subset of X,
then (X, 1) is C($)-compact, where $ is the ideal of all subsets of X — A.

In view of Examples 3.3 and 3.4, it is clear that the implications shown after Definition
3.1 are, in general, irreversible.

It is proved in [3] that if (X, ) is quasi-H-closed and . is an ideal such that $, C $,
then (X, ) is ($) compact (and hence C($)-compact).

Next, if {Uy, Us,..., U,} is a finite collection of open subsets such that X — [JIL, l(U;) €
F» then X — U, cl(U;) = ¢ because 7 N $, = {¢}. But then int(cl(X — UL, U;)) = X —
U, cl(U;) = ¢ implies that X — U}, U; € $,.. Therefore, a space (X,) is ($,) compact
if and only if it is C($,)-compact. In view of this discussion, we have the following.

THEOREM 3.5. For a space (X, ), the following are equivalent:
(a) (X, 1) is quasi-H-closed;
(b) (X,7) is ($,) QHC;
(c) (X, 1) is C($,)-compact;
(d) (X, ) is ($,) compact.

A space (X, 1) is said to be Baire if the intersection of every countable family of open
sets in (X, 7) is dense. It is noted in [5] that a space (X, 1) is Baire if and only if r 0 $,, =
{¢}, where $,, is the ideal of meager (first category) subsets of (X, 7). Thus, in view of the
above theorem, a Baire space (X, 1) is C($,,)-compact if and only if it is quasi-H -closed.

We now give some characterizations of C($)-compact spaces.

THEOREM 3.6. Let (X,7) be a space and let $ be an ideal on X. Then the following are
equivalent:

(a) (X,71) is C($)-compact;

(b) for each closed subset A of X and each family &F of closed subsets of X such that
(WFNA:F e %} = ¢, there exists a finite subfamily {F,,F,,Fs,...,F,} such that
A(int(F;))NA € 9;

(¢) for each closed set A and each family & of closed sets such that {int(F)NA:F € &}
has ($)FIP, one has "N{FNA:F € F} + ¢;

(d) for each closed set A and each regular open cover W of A, there exists a finite subcol-
lection {Uy, U, Us,..., Uy} such that A — UL, l(U;) € $;

(e) for each closed set A and each family F of regular closed sets such that ({FNA:F €
F} = ¢, there is a finite subfamily {Fy,F,,Fs,...,F,} such that N_,(int(F;)) N A €
9;

(f) for each closed set A and each family F of regular closed sets such that {int(F) N A :
F € %} has (9)FIP, one has ({FNA:F € F} + ¢;

(g) for each closed set A, each open cover WU of X — A and each open neighborhood V
of A, there exists a finite subfamily {Uy, Uy, Us,..., Uy} of W such that X — (V U
(UL, d(U))) € 9
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(h) for each closed set A and each open filter base B on X such that {BNA:B e RB} C
P(X)— 9%, onehas N{cl(B): B€ B} NA # ¢.

Proof. (a)=(b). Let (X,7) be C($)-compact, A a closed subset, and F a family of closed
subsets with "{FNA:F € &} = ¢. Then {X —F:F € F} is an open cover of A and
hence admits a finite subfamily {X — F;:i=1,2,...,n} such that A — U, (X — F;) € $.
This set in $ is easily seen to be (), {int(F;) N A}.

(b)=(c). This is easy to be established.

(c)=(a). Let A be a closed subset, let U be an open cover of A with the property
that for no finite subfamily {U;, U,, Us,..., U} of U, one has A — 7, cl(U;) € $. Then
{X—U:U €U} is a family of closed sets. Since

X -cd(U)}nA=({A-cd(U)} =A-{]d(Uy), (3.4)
i=1 i=1 i

the family {int(X — U) N A: U € U} has ($) FIP. By the hypothesis \[{(X - U)NA:U e
U} # ¢. But then A — U{U: U € U} # ¢, that is, WU is not a cover of A, a contradiction.

(d)=(a). Let A be a closed subset of X and U an open cover of A. Then {int(cl(U)) :
U € U} is a regular open cover of A. Let {int(cl(U;)) :i = 1,2,...,n} be a finite sub-
family such that A — U}, cl(int(cl(U;))) € $. Since U; is open and for each open set
U, c(int(cl(U))) = cl(U), we have A — L, cl(U;) € $, which shows that X is C($)-
compact.

(a)=(d). This is obvious.

The proofs for (d)=(e)=(f)=(d) are parallel to (a)=(b)=(c)=(a), respectively.

(a)=(g). Let A be a closed set, V an open neighborhood of A, and U an open cover of
X —A.Since X — V C X — A, AU is also an open cover of the closed set X — V.

Let {U;, Us, Us,..., Uy,} be a finite subcollection of U such that (X — V) — U, l(U;) €
$. However, the last setis X — (V. U {U~L, cl(U)}).

(g)=(a). Let A be a closed subset of X and AU an open covering of A. If H denotes the
union of members of AU, then F = X — H is a closed set and X — A is an open neighbor-
hood of F. Also AU is an open cover of X — F. By hypothesis, there is a finite subcollection
{U,, Uy, Us,...,U,} of WU such that

X((X—A)U{OCI(U,)}) €9 (3.5)

i=1

However, this set in $ is nothing but A — I, l(U;).

(a)=(h). Suppose A is a closed set and 9B is any open filter base on X with {BN A:
B e B} c P(X)—$. Suppose, if possible, N{cl(B) : B€ B} N A = ¢. Then {X —cl(B):
B € B} is an open cover of A. By the hypothesis, there exists a finite subfamily {X —
c(B;):i=1,2,3,...,n} such that A — U?:l c(X — cl(B;)) is in .$. However, this set is A N
(N, int(cl(B;))) and A N (N, B:) is a subset of it. Therefore, A N (N, B;) € $. Since
9B is a filter base, we have a B € B such that B C ()I_, B;. But then A N B € $ which
contradicts the fact that {BNA:Be B} Cc P(X) - 9.

(h)=(a). Suppose that (X, ) is not C($)-compact. Then there exist a closed subset
A of X and an open cover U of A such that for any finite subfamily {U,, Uz, Us,..., U,}
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of A, we have A — U, cl(U;) ¢ $. We may assume that AU is closed under finite unions.
Then the family B = {X — cl(U) : U € U} is an open filter base on X such that {BN A :
B e %} C P(A) — 9. So, by the hypothesis, N{cl(X — cl(U)): U €U} N A # ¢. Let x be
a point in the intersection. Then x € A and x € (X — cl(U)) = X —int(cl(U)) c X - U
for each U € . But this contradicts the fact that U is a cover of A. Hence (X, 1) is C($)-
compact. (]

Next we characterize C($)-compact spaces using some weaker forms of filter base con-
vergence.

Definition 3.7. A filter base B is said to be ($) adherent convergent if for every neighbor-
hood G of the adherent set of 9B, there exists an element B € 9B such that (X — G) N B € $.
Clearly, every adherent convergent filter base is ($) adherent convergent and a filter base
is adherent convergent if and only if it is ({¢}) adherent convergent.

THuEOREM 3.8. A space (X, 1) is C($)-compact if and only if every open filter base on P(X) —
9 is ($) adherent convergent.

Proof. Let (X,7) be C($)-compact and let 9B be an open filter base on P(X) — % with
A as its adherent set. Let G be an open neighborhood of A. Then A = ({cl(B): B €
B}, AC G, and X — G is closed. Now {X —cl(B) : B € B} is an open cover of X — G
and so by the hypothesis, it admits a finite subfamily {X — cl(B;) : i = 1,2,3,...,n} such
that (X — G) — UL, (X — cl(B;)) € $. But this implies (X — G) n (N, int(cl(B;))) € $.
However, B; C int(cl(B;)) implies (X — G) n (NiL, B;) € $. Since B is a filter base and
B; € B, there is a B € % such that B C (1!, B;. But then (X — G) N B € $ is required.
Conversely, let (X, 7) be not C($)-compact, and let A be a closed set, and U an open
cover of A such that for no finite subfamily {U,, U,, Us,...,U,} of A, one has A — J!,
c(U;) € $. Without loss of generality, we may assume that AU is closed for finite unions.
Therefore, B = {X — cl(U) : U € U} becomes an open filter base on P(X) — $. If x is
an adherent point of @, that is, if x € {(X — cl(V)) : U € U} = X — U{int(cl(U)) :
U €U}, then x ¢ A, because U is an open cover of A and for U € U, U C int(cl(U)).
Therefore, the adherent set of % is contained in X — A, which is an open set. By the
hypothesis, there exists an element B € 9B such that (X — (X — A)) N B € 4, thatis, An
B e $,thatis, An (X —cl(U)) € 9, thatis, A — l(U) € $ for some U € . This however
contradicts our assumption. This completes the proof. O

Herrington and Long [4] characterized C-compact spaces using r-convergence of fil-
ters and nets. We obtain similar results for C($)-compact spaces in the next definition.

Definition 3.9. Let X be a space, ¢ # A C X, and let 9B be a filter base on A. B is said
to r-converge to a € A if for each open set V in X containing g, there is B € B with
B c cl(V). The filter base % is said to r-accumulate to a, if for each open set V containing
a, (V)N B +# ¢ for each B € %B.

Similarly, a net ¢ : D — A C X is said to r-converge to a € A if for each open set V
containing a, thereisa b € D such that ¢(c) € cl(V) forall ¢ = b. ¢ is said to r-accumulate
to a if for each open set V containing a and each b € D, there is ¢ € D with ¢ > b and
o(c) e (V).
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It is known [4] that convergence (accumulation) for filter bases and nets implies r-
convergence (r-accumulation), but the converse is not true.

TaeoreM 3.10. For a space (X,7) and an ideal $ on X, the following are equivalent:
(a) (X,7) is C($)-compact;
(b) for each closed set A, each filter base B on P(A) — F r-accumulates to some a € A;
(¢) for each closed set A, each maximal filter base M on P(A) — 3 r-converges to some
acA;
(d) for each closed set A, each net ¢ on P(A) — 9 r-accumulates to some a € A.

Proof. (a)=(b). Suppose there exist a closed set A and a filter base % on P(A) — $ which
does not r-accumulate to any a € A. Then for each a € A, there exists an open set U(a)
containing a and a B(a) € B such that B(a) N cl(U(a)) = ¢. Then {U(a):a € A} is an
open cover of the closed set A. By (a), there exists a finite subcollection {U(a;) :i=
1,2,3,...,n} such that A — U, cl(U(a;)) € $. If B € B is such that B ¢ (., B(a;), then
Bn(A-UL, d(U(a;))) € ¥, thatis, B— Ui, cl(U(a;)) € $. But the later set is just B, be-
cause B C B(a;) and B(a;) N cl(U(a;)) = ¢ for each i. However, B € $ is a contradiction,
because B€ B and B C P(A) — $.

(b)« (c). This follows in view of parts (a), (b), and (c) of [4, Theorem 1].

(b)=(a). If possible, let X be not C($)-compact. Then by Theorem 3.6(f), there exist
a closed set A and a collection % of regular closed sets with the property that for every
finite subcollection {Fy,F,,Fs,...,F,}, N int(F;) NA & $, but {F:FeF}nA=¢.
Now the collection of sets of the form (., int(F;) N A for all possible finite subfami-
lies {Fy,F,,Fs,...,F,} of & forms a filter base on P(A) — . By (b), this filter base r-
accumulates to some a € A, that is, for each open set U(a) containing a and for each
Fe %, c(U(a)) n (int(F) N A) # ¢. However,a € Aand An {F: F € ¥} = ¢ imply that
there is some F = F(a) € & such that a ¢ F(a). Then X — F(a) is an open set containing
a such that cl(X — F(a)) n (int(F(a)) N A) = ¢. This is a contradiction.

(b)#(d). This follows using standard arguments about nets and filters. O

If in the above theorem, A is replaced by the whole space X, we get the characteriza-
tions of ($) QHC spaces. If in addition we consider completely codense ideal $, we get
the characterizations of quasi-H -closed spaces.

4. C(9¥)-compact spaces and functions

A function f:(X,7) — (Y,¢) is said to be 8-continuous [2] at a point x € X if for ev-
ery open set V of Y containing f(x), there exists an open set U of X containing x such
that f(cl(U)) c cl(V). A function f: (X,7) — (Y,¢) is said to be 0-continuous if f is 0-
continuous for every x € X. The concept of 8-continuity is weaker than that of conti-
nuity. An important property of C-compact spaces is that a continuous function from
a C-compact space to a Hausdorff space is closed. We prove the following more general
results.

Taeorem 4.1. Let f: (X, 1,9) — (Y,6,9) be a O-continuous function, (X,7,9) C($)-com-
pact, (Y,¢) Hausdorff, and f($) = 9. Then f(A) is ¢*(9)-closed for each closed set A of
X.
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Proof. Let A be any closed set in X and a & f(A). For each x € A, there exists a ¢-open
set V, containing y = f(x) such that a & cl(V,). Now because f is 6-continuous, there
exists an open set Uy containing x such that f (cl(Uy)) < cl(V,). The family {U,: x €
A} is an open cover of A. Therefore, there exists a finite subfamlly {Uy, :i=1,2,...,n}
such that A — U7, cl( x,) € 9. But then f(A UL, cl(Uy)) € f(F) <9, that is, f(A) -
FUL (Uy,)) € f(F) = 9 because f(F) is also an ideal. Hencef A) - (UL d(vy)
f($)<9. Nowa¢ cl( y;) for any i implies that a € Y — UL, cl(V,,) which is open in
(Y,¢)and (Y - U, lcl(Vy, )N f(A)=f(A)— U, 1 l(Vvy,) e f(9 C9 Hencea & (f(A))*
(0,9). Thus (f(A))*(0,9) C f(A) and so f(A)is¢ (9) closed. a

COROLLARY 4.2. Letf: (X,1,9) — (Y,¢9) be a continuous function, (X,7,$) C($)-com-
pact, (Y,¢) Hausdorff, and f($) < 9. Then f(A) is ¢*(9)-closed for each closed set A of
X.

TaeoreM 4.3. Let f:(X,7,9) — (Y,¢,9) be a continuous surjection, (X,7,9) C($)-com-
pact, and f($) € 9. Then (Y,¢,9) is C(9)-compact.

Proof. Let A be any closed subset of (Y,¢) and {V, : « € A} any open cover of A by open
setsin Y. Then { f~1(V,) : « € A} is an open cover of f~! (A) which is closed in X. Hence,

by the hypothesis, there exists a finite subcollection { f - ti=1, 2 ,n} such that
FHA) UL cd(f ! ) € $. Since f is continuous, cl( f cf! )) for every
subset B of Y. Hence we have FHA) = UL, f7H(d(Vy)) = f 1(A Ul=1cl(V )) e 9.
Since f is surjective, A — U, cl(Vy,) € f($) C 9. Hence Y is C(9)-compact. O

TaeoreM 4.4. If the product space 11X, of nonempty family of topological spaces (Xq, Ty) is
C($)-compact, then each (Xq,74) is C(pa($F))-compact, where pq, is the projection map and
S is an ideal on T1X,,.

Proof. This follows from Theorem 4.3. O

5. C($)-compact spaces and subspaces

In this section, we introduce three types of C($)-compact subsets and use them to obtain
new characterizations of C($)-compact spaces and a characterization of maximal C($)-
compact spaces.

Definition 5.1. Let (X, 7) be a space and .$ an ideal on X. A subset Y of X is said to be
C(¥)-compact if the subspace (Y, 7y) is C($)-compact.

Some useful results about such subspaces are contained in the following theorem. The
proofs are easy to establish.

THEOREM 5.2. Let (X, 1) be a space and $ an ideal on X. Then
(a) a subspace Y is C($)-compact if and only if it is C($y)-compact;
(b) a clopen subspace of a C($)-compact space is C($)-compact;
(¢c) if Y is a regular closed subset of a C($)-compact space (X,7,9) and $ is codense,
then (Y, ty) is quasi-H-closed;
(d) a finite union of C($)-compact subspaces of X is C($)-compact.
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Definition 5.3. A subset Y of (X, 1) is said to be C(¥)-compact relative to T if every T-open
cover of every relatively closed subset A of Y has a finite subfamily whose 7-closures cover
A except asetin .

Some useful properties of such spaces are contained in the following.

THEOREM 5.4. Let (X,7) be a space and $ an ideal on X. Then the following hold.
(a) A closed subspace of a C($)-compact relative to T subspace of (X, 1) is C($)-compact
relative to T.
(b) If (X, 1) is Hausdorff and Y is C($)-compact relative to 7, then Y is 7*($)-closed.
(&) If Y is a C($)-compact relative to T subspace of (X,7) and f :(X,7) — (Z,¢) is a
continuous bijection, then f(Y) is C(f($))-compact relative to .
(d) C(9)-compactness relative to T is contractive.

The following characterization of C($)-compact spaces is obtained using C($)-com-
pact relative to 7 subspaces. The proof is easy.

THEOREM 5.5. A space (X,7) with an ideal § is C($)-compact if and only if every proper
closed subset of X is C($)-compact relative to T.

Definition 5.6. A subset Y of a space (X,7) is said to be closure C($)-compact if for every
Ty-closed subset K of Y and every 7-open cover U of cl(K), there is a finite subcollection
{U;, Uy, Us,..., U,} of U such that K — U?:l Cly(Ui N Y) e 9.

It is easy to see that closure C($)-compactness is contractive.

Example 5.7. Since closed subsets of C($)-compact spaces are not necessarily ($) QHC,
a space (X, 1) which is C($)-compact relative to 7 may fail to be closure C($)-compact.
Moreover, |0, 1] as a subspace of [0, 1] is closure C($)-compact with $ = {¢}, but not
C($)-compact relative to the usual topology. Thus the concepts of C(.$)-compact relative
to 7 and closure C($)-compact are independent concepts.

We now have the following characterization of C($)-compact spaces.

THEOREM 5.8. A space (X, 1) is C($)-compact for an ideal $ on X if and only if every open
subset of X is closure C($)-compact.

Proof. Let (X,7) be C(¥)-compact and Y an open subset of X. Let K be a ty-closed
subset of Y, and let U be a 7-open cover of cl(K). Then there exists a finite subcollec-
tion {Uy, U,, Us,..., U} of AU such that clK — U, cl(U;) € $. Since Y is open, therefore,
cdy(UNY)=c(U)NY and so, by hereditary property of $, K — ., cly(U;inY) € 9.
Thus Y is closure C($)-compact.

Conversely, let all open subsets of X be closure C($)-compact. Let K be a closed and
AU an open cover of K. Choose a Uy € U. Then Y = X — cl(U)) is an open subset of X and
K NY is a ty-closed subset of Y. Moreover, U — {Uy} is an open cover of c(K N'Y). By
the hypothesis, there exists a finite subcollection {U;, U,, Us,...,U,} of U — {Up} such
that KNY — UL, cy(UinY) € $. Butthen KNY — UL, cl(U) € $ as cly(U;nY) =
c(U;) Y and ¢ is hereditary. Therefore, K — U, cl(U;) € $. Hence (X,7) is C($)-
compact.
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Finally, we obtain a characterization of a maximal C($)-compact space. Recall that a
space (X, 1) with property P is said to be maximal P if there is no topology ¢ on X which
has property P and is strictly finer than 7. For a topological space (X, 7) and a subset A
of X, 7(A) ={UU(VNA):U,V € 1} is a topology called simple extension [7] of 7 by A.
7(A) is strictly finer than 7 ifand only if A & 7. O

THEOREM 5.9. A topological space (X, 1) is maximal C($)-compact if and only if for every
subset A of X such that A is closure C($)-compact and X — A is C($)-compact relative to T,
onehas A € 1.

Proof. First we assume that (X,7) is maximal C($)-compact and that A is a subset of X
satisfying the given conditions. First, we show that (X,7(A)) is C($)-compact. Let K be
a 7(A)-closed subset of X. Then K = K; U (K, N (X — A)), where K; and K, are 7-closed
sets. Let

AU ={UyU(VyenA):U,Vy €T, a €A} (5.1)

be a 7(A)-open cover of K. Then v = {U,: « € A} is a T-open cover of KN (X — A) =
(K1 UKy) N (X — A). Since, by assumption, X — A is C($)-compact relative to 7, we have a
finite subcollection {Uy,, Uy,, Uas,. .., Uy, } of v such that K n (X — A) — UL, l(U,,) € 9.
Since 7(A) is finer than 7, this subcollection is 7(A)-open and K N (X — A) —
UL clea)(Uy) € $. Next, W = {Uy U Vo : a € A} is a T-open cover of cl(K N A) =
c(Ky nA) = clya) (K N A) and therefore by assumption on A, there exists a finite sub-
collection {Ug, U Vi, :i=1,2,...,k} of W such that

k
KinA-Jd., [(UguVg)NA] € 9. (5.2)

i=1

However, 74, the restriction of 7 to A, is nothing but 7(A) | A, the restriction of 7(A) to
A. Therefore,

k
KlﬂA—UCIT(A)\A[(U/jiUV/ji)ﬂA] e 9. (5.3)
i=1
Now {Uy U (Vo nA):i=1,2,...,n} U{Up U (Vg NA):i=12,...,k} is a finite 7(A)
($) proximate cover of K which is a subcover of AU. Thus the topology 7(A) on X is also
C(9)-compact. However, by the maximality of 7, we have 7(A) = 7. But then A € 7 as
desired.

Conversely, let (X,7) be not maximal C($)-compact. Then there is a C($)-compact
topology ¢ on X which is strictly finer than 7. Let A € 0 — 7. Then A is o-closure C($)-
compact by Theorem 5.8. Since the property of closure C(.$)-compact is carried over to
coarser topologies, A is 7-closure C($)-compact. Also X — A is C($)-compact relative to
o and hence C($)-compact relative to 7. By the hypothesis, then A € 7, a contradiction.

(I

Remark 5.10. The readers can generalize the above concepts in bitopological spaces to
unify various types of compactness.
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