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The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization
of the notion of fuzzy sets. In this paper, we apply the concept of intuitionistic fuzzy
sets to Hv-rings. We introduce the notion of an intuitionistic fuzzy Hv-ideal of an Hv-
ring and then some related properties are investigated. We state some characterizations
of intuitionistic fuzzy Hv-ideals. Also we investigate some natural equivalence relations
on the set of all intuitionistic fuzzy Hv-ideals of an Hv-ring.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

Hyperstructure theory was born in 1934 when Marty [11] defined hypergroups as a gen-
eralization of groups. This theory has been studied in the following decades and nowadays
by many mathematicians. A recent book [3] contains a wealth of applications. There are
applications to the following subjects: geometry, hypergraphs, binary relations, lattices,
fuzzy sets and rough sets, automata, cryptography, combinatorics, codes, artificial intelli-
gence, and probabilities. Vougiouklis in the fourth Algebraic Hyperstructures and Appli-
cations Congress (1990) [15] introduced the notion of Hv-structures. The Hv-structures
are hyperstructures where the equality is replaced by the nonempty intersection. The
main tool in the study ofHv-structure is the fundamental structure which is the same as in
the classical hyperstructures. In this paper, we deal with Hv-rings. Hv-rings are the largest
class of algebraic systems that satisfy ring-like axioms. In [4], Darafsheh and Davvaz de-
fined the Hv-ring of fractions of a commutative hyperring which is a generalization of
the concept of ring of fractions. For the notion of an Hv-near-ring module, you can see
[7]. In [13], Spartalis studied a wide class of Hv-rings resulting from an arbitrary ring
by using the P-hyperoperations. In [18], Vougiouklis introduced the classes of Hv-rings
useful in the theory of representations.

A hyperstructure is a nonempty set H together with a map ∗ : H ×H →�∗(H) called
hyperoperation, where �∗(H) denotes the set of all nonempty subsets of H . The image of
the pair (x, y) is denoted by x∗ y. If x ∈H and A,B ⊆H , then by A∗B, A∗ x, and x∗B,
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we mean

A∗B =
⋃

a∈A,b∈B
a∗ b, A∗ x = A∗{x}, x∗B = {x}∗B. (1.1)

A hyperstructure (H ,∗) is called an Hv-semigroup if

(
x∗ (y∗ z)

)∩ ((x∗ y)∗ z
) �=∅ ∀x, y,z ∈H. (1.2)

Defintion 1.1. An Hv-ring is a system (R,+,·) with two hyperoperations satisfying the
following ring-like axioms:

(i) (R,+,·) is an Hv-group, that is,

(
(x+ y) + z

)∩ (x+ (y + z)
) �=∅ ∀ x, y ∈ R,

a+R= R+ a= R ∀ a∈ R;
(1.3)

(ii) (R,·) is an Hv-semigroup;
(iii) (·) is weak distributive with respect to (+), that is, for all x, y,z ∈ R,

(
x · (y + z)

)∩ (x · y + x · z) �=∅,
(
(x+ y) · z)∩ (x · z+ y · z) �=∅.

(1.4)

An Hv-ring (R,+,·) is called dual Hv-ring if (R,·,+) is an Hv-ring. If both operations (+)
and (·) are weak commutative, then R is called a weak commutative dual Hv-ring.

We see that Hv-rings are a nice generalization of rings. For more definitions, results,
and applications on Hv-rings, see [4, 5, 7, 8, 13–15, 17, 18].

Example 1.2 (cf. Vougiouklis [18]). Let (H ,∗) be an Hv-group, then for every hyperop-
eration (◦) such that {x, y} ⊆ x ◦ y for all x, y ∈H , the hyperstructure (H ,∗,◦) is a dual
Hv-ring.

Example 1.3 (cf. Dramalidis [8]). On the set Rn, where R is the set of real numbers, we
define three hyperoperations:

x
 y = {r(x+ y) | r ∈ [0,1]
}

,

x⊗ y = {x+ r(y− x) | r ∈ [0,1]
}

,

x�y = {x+ r y | r ∈ [0,1]
}
.

(1.5)

Then the hyperstructure (Rn,∗,◦), where ∗,◦ ∈ {
,⊗,�}, is a weak commutative dual
Hv-ring.

Defintion 1.4. Let R be an Hv-ring. A nonempty subset I of R is called a left (resp., right)
Hv-ideal if the following axioms hold:

(i) (I ,+) is an Hv-subgroup of (R,+),
(ii) R · I ⊆ I (resp., I ·R⊆ I).
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2. Fuzzy sets and intuitionistic fuzzy sets

The concept of a fuzzy subset of a nonempty set was first introduced by Zadeh [19].
Let X be a nonempty set, a mapping μ : X → [0,1] is called a fuzzy subset of X . The

complement of μ, denoted by μc, is the fuzzy set of X given by μc(x) = 1− μ(x) for all
x ∈ X .

Note that using fuzzy subsets, we can introduce on any ring the structure of Hv-ring.

Example 2.1 (cf. Davvaz [5]). Let (R,+,·) be an ordinary ring and let μ be a fuzzy subset
of R. We define hyperoperations 
, ⊗, ∗ on R as follows:

x
 y = {t | μ(t)= μ(x+ y)
}

,

x⊗ y = {t | μ(t)= μ(x · y)
}

,

x∗ y = y∗ x = {t | μ(x)≤ μ(t)≤ μ(y)
} (

if μ(x)≤ μ(y)
)
.

(2.1)

Then (R,∗,∗), (R,∗,⊗), (R,∗,
), (R,
,∗), and (R,
,⊗) are Hv-rings.

Rosenfeld [12] applied the concept of fuzzy sets to the theory of groups and defined the
concept of fuzzy subgroups of a group. Since then, many papers concerning various fuzzy
algebraic structures have appeared in the literature. In [5–7], Davvaz applied the concept
of fuzzy set theory in the algebraic hyperstructures, in particular in [5] he defined the
concept of fuzzy Hv-ideal of an Hv-ring which is a generalization of the concept of fuzzy
ideal.

Defintion 2.2. Let (R,+,·) be an Hv-ring and μ a fuzzy subset of R. Then μ is said to be a
left (resp., right) fuzzy Hv-ideal of R if the following axioms hold:

(1) min{μ(x),μ(y)} ≤ inf{μ(z) | z ∈ x+ y} for all x, y ∈ R,
(2) for all x,a∈ R, there exists y ∈ R such that x ∈ a+ y and

min
{
μ(a),μ(x)

}≤ μ(y), (2.2)

(3) for all x,a∈ R there exists z ∈ R such that x ∈ z+ a and

min
{
μ(a),μ(x)

}≤ μ(z), (2.3)

(4) μ(y)≤ inf{μ(z) | z ∈ x · y} (resp., μ(x)≤ inf{μ(z) | z ∈ x · y}) for all x, y ∈ R.

Example 2.3 (cf. Davvaz [5]). Let (R,+,·) be an ordinary ring and let μ be a fuzzy ideal
of R. We consider the Hv-ring (R,
,⊗) defined in Example 2.1. Then μ is a left fuzzy
Hv-ideal of (R,
,⊗).

The concept of intuitionistic fuzzy set was introduced by Atanassov [1] as a general-
ization of the notion of fuzzy set. Some fundamental operations on intuitionistic fuzzy
sets are defined by Atanassov in [2]. In [9], Kim et al. introduced the notion of an intu-
itionistic fuzzy subquasigroup of a quasigroup. Also in [10], Kim and Jun introduced the
concept of intuitionistic fuzzy ideals of semirings.
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Defintion 2.4. An intuitionistic fuzzy set A of a nonempty set X is an object having the
form

A= {(x,μA(x),λA(x)) | x ∈ X
}

, (2.4)

where the functions μA : X → [0,1] and λA : X → [0,1] denote the degree of membership
(namely, μA(x)) and the degree of nonmembership (namely, λA(x)) of each element x ∈
X to the set A, respectively, and 0≤ μA(x) + λA(x)≤ 1 for all x ∈ X .

Defintion 2.5. For every two intuitionistic fuzzy sets A and B, define the following oper-
ations:

(1) A⊆ B if and only if μA(x)≤ μB(x) and λA(x)≥ λB(x) for all x ∈ X ,
(2) Ac = {(x,λA(x),μA(x)) | x ∈ X},
(3) A∩B = {(x,min{μA(x),μB(x)},max{λA(x),λB(x)}) | x ∈ X},
(4) A∪B = {x,max{μA(x),μB(x)},min{λA(x),λB(x)}) | x ∈ X},
(5) �A= {(x,μA(x),μcA(x)) | x ∈ X},
(6) ♦A= {(x,λcA(x),λA(x)) | x ∈ X}.

For the sake of simplicity, we will use the symbol A = (μA,λA) for the intuitionistic
fuzzy set A= {(x,μA(x),λA(x) | x ∈ X}.
Defintion 2.6. Let (R,+,·) be an ordinary ring. An intuitionistic fuzzy set A= (μA,λA) in
R is called a left (resp., right) intuitionistic fuzzy ideal of R if

(1) min{μA(x),μA(y)} ≤ μA(x− y) for all x, y ∈ R,
(2) μA(y)≤ μA(x · y) (resp., μA(x)≤ μA(x · y)) for all x, y ∈ R,
(3) λA(x− y)≤max{λA(x),λA(y)} for all x, y ∈ R,
(4) λA(x · y)≤ λA(y) (resp., λA(x · y)≤ λA(x)) for all x, y ∈ R.

3. Intuitionistic fuzzy Hv-ideals

In what follows, let R denote an Hv-ring, and we start by defining the notion of intuition-
istic fuzzy Hv-ideals.

Defintion 3.1. An intuitionistic fuzzy set A = (μA,λA) in R is called a left (resp., right)
intuitionistic fuzzy Hv-ideal of R if

(1) min{μA(x),μA(y)} ≤ inf{μA(z) | z ∈ x+ y} for all x, y ∈ R,
(2) for all x,a∈ R, there exist y,z ∈ R such that x ∈ (a+ y)∩ (z+ a) and

min
{
μA(a),μA(x)

}≤min
{
μA(y),μA(z)

}
, (3.1)

(3) μA(y)≤ inf{μA(z) | z∈x · y} (resp., μA(x)≤ inf{μA(z) | z ∈ x · y}) for all x, y ∈ R,
(4) sup{λA(z) | z ∈ x+ y} ≤max{λA(x),λA(y)} for all x, y ∈ R,
(5) for all x,a∈ R, there exist y,z ∈ R such that x ∈ (a+ y)∩ (z+ a) and

max
{
λA(y),λA(z)

}≤max
{
λA(a),λA(x)

}
, (3.2)

(6) sup{λA(z) | z∈x · y}≤λA(y) (resp., sup{λA(z) | z∈x · y}≤λA(x)) for all x, y∈R.
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Example 3.2. Let μ be a left fuzzy Hv-ideal of (R,
,⊗) defined in Example 2.3. Then, as
it is not difficult to see, A= (μA,μcA) is a left intuitionistic fuzzy Hv-ideal of (R,
,⊗).

Here we present all the proofs for left Hv-ideals. For right Hv-ideals, similar results
hold as well.

Lemma 3.3. If A = (μA,λA) is a left intuitionistic fuzzy Hv-ideal of R, then so is �A =
(μA,μcA).

Proof. It is sufficient to show that μcA satisfies the conditions (4), (5), (6) of Definition 3.1.
For x, y ∈ R, we have

min
{
μA(x),μA(y)

}≤ inf
{
μA(z) | z ∈ x+ y

}
, (3.3)

and so

min
{

1−μcA(x),1−μcA(y)
}≤ inf

{
1−μcA(z) | z ∈ x+ y

}
. (3.4)

Hence

min
{

1−μcA(x),1−μcA(y)
}≤ 1− sup

{
μcA(z) | z ∈ x+ y

}
, (3.5)

which implies that

sup
{
μcA(z) | z ∈ x+ y

}≤ 1−min
{

1−μcA(x),1−μcA(y)
}
. (3.6)

Therefore

sup
{
μcA(z) | z ∈ x+ y

}≤max
{
μcA(x),μcA(y)

}
, (3.7)

in this way, Definition 3.1(4) is verified.
Now, let a,x ∈ R, then there exist y,z ∈ R such that x ∈ (a+ y)∩ (z+ a) and

min
{
μA(a),μA(x)

}≤min
{
μA(y),μA(z)

}
. (3.8)

So

min
{

1−μcA(a),1−μcA(x)
}≤min

{
1−μcA(y),1−μcA(z)

}
. (3.9)

Hence

max
{
μcA(y),μcA(z)

}≤max
{
μcA(a),μcA(x)

}
, (3.10)

and Definition 3.1(5) is satisfied.
For the condition (6), let x, y ∈ R, then since μA is a left fuzzy Hv-ideal of R, we have

μA(y)≤ inf
{
μA(z) | z ∈ x · y}, (3.11)

and so

1−μcA(y)≤ inf
{

1−μcA(z) | z ∈ x · y}, (3.12)
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which implies that

sup
{
μcA(z) | z ∈ x · y}≤ μcA(y). (3.13)

Therefore Definition 3.1(6) is satisfied. �

Lemma 3.4. If A = (μA,λA) is a left intuitionistic fuzzy Hv-ideal of R, then so is ♦A =
(λcA,λA).

The proof is similar to the proof of Lemma 3.3.
Combining the above two lemmas, it is not difficult to see that the following theorem

is valid.

Theorem 3.5. A= (μA,λA) is a left intuitionistic fuzzy Hv-ideal of R if and only if �A and
♦A are left intuitionistic fuzzy Hv-ideals of R.

Corollary 3.6. A= (μA,λA) is a left intuitionistic fuzzy Hv-ideal of R if and only if μA and
λcA are left fuzzy Hv-ideals of R.

Defintion 3.7. For any t ∈ [0,1] and fuzzy set μ of R, the set

U(μ; t)= {x ∈ R | μ(x)≥ t
} (

resp., L(μ; t)= {x ∈ R | μ(x)≤ t
})

(3.14)

is called an upper (resp., lower) t-level cut of μ.

Theorem 3.8. If A = (μA,λA) is an intuitionistic fuzzy Hv-ideal of R, then for every t ∈
Im(μA)∩ Im(λA), the sets U(μA; t) and L(λA; t) are Hv-ideals of R.

Proof. Let t∈Im(μA)∩Im(λA)⊆[0,1] and let x, y∈U(μA; t). Then μA(x)≥ t and μA(y)≥
t, and so min{μA(x),μA(y)} ≥ t. It follows from Definition 3.1(1) that inf{μA(z) | z ∈
x+ y} ≥ t. Therefore for all z ∈ x+ y, we have z ∈U(μA; t), so x+ y ⊆U(μA; t). Hence for
all a∈U(μA; t), we have a+U(μA; t)⊆U(μA; t) and U(μA; t) + a⊆U(μA; t). Now, let x ∈
U(μA; t), then there exist y,z ∈ R such that x ∈ (a+ y)∩ (z+ a) and min{μA(x),μA(a)} ≤
min{μ(y),μ(z)}. Since x,a∈U(μA; t), we have t≤min{μA(x),μA(a)}, and so t≤min{μA(y),
μA(z)}, which implies that y ∈ U(μA; t) and z ∈ U(μA; t). This proves that U(μA; t) ⊆
a+U(μA; t) and U(μA; t)⊆U(μA; t) + a.

Now, for every x ∈ R and y ∈U(μA; t), we show that x · y ⊆U(μA; t). Since A is a left
intuitionistic fuzzy Hv-ideal of R, we have

t ≤ μA(y)≤ inf
{
μA(z) | z ∈ x · y}. (3.15)

Therefore, for every z ∈ x · y, we get μA(z)≥ t, which implies that z ∈U(μA; t), so x · y ⊆
U(μA; t).

If x, y ∈ L(λA; t), then max{λA(x),λA(y)} ≤ t. It follows from Definition 3.1(4) that
sup{λA(z) | z ∈ x + y} ≤ t. Therefore for all z ∈ x + y, we have z ∈ L(λA; t), so x + y ⊆
L(λA; t). Hence for all a∈L(λA; t), we have a+L(λA; t)⊆ L(λA; t) and L(λA; t) + a⊆ L(λA; t).
Now, let x∈L(λA; t), then there exist y,z∈R such that x∈(a+y)∩(z+a) and max{λA(y),
λA(z)} ≤ max{λ(a),λ(x)}. Since x,a ∈ L(λA; t), we have max{λA(a),λA(x)} ≤ t, and so
max{λA(y),λA(z)} ≤ t. Thus y ∈ L(λA; t) and z ∈ L(λA; t). Hence L(λA; t) ⊆ a+ L(λA; t)
and L(λA; t)⊆ L(λA; t) + a.
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Now, we show that x · y ⊆ L(λA; t) for every x ∈ R and y ∈ L(λA; t). Since A is a left
intuitionistic fuzzy Hv-ideal of R, we have

sup
{
λA(z) | z ∈ x · y}≤ λA(y)≤ t. (3.16)

Therefore, for every z ∈ x · y, we get λA(z)≤ t, which implies that z ∈ L(λA; t), so x · y ⊆
L(λA; t). �

Theorem 3.9. If A= (μA,λA) is an intuitionistic fuzzy set of R such that all nonempty levels
U(μA; t) and L(λA; t) are Hv-ideals of R, then A= (μA,λA) is an intuitionistic fuzzy Hv-ideal
of R.

Proof. Assume that all nonempty levels U(μA; t) and L(λA; t) are Hv-ideals of R. If t0 =
min{μA(x),μA(y)} and t1 = max{λA(x),λA(y)} for x, y ∈ R, then x, y ∈ U(μA; t0) and
x, y ∈ L(λA; t1). So x + y ⊆U(μA; t0) and x + y ⊆ L(λA; t1). Therefore for all z ∈ x + y, we
have μA(z)≥ t0 and λA(z)≤ t1, that is,

inf
{
μA(z) | z ∈ x+ y

}≥min
{
μA(x),μA(y)

}
,

sup
{
λA(z) | z ∈ x+ y

}≤max
{
λA(x),λA(y)

}
,

(3.17)

which verifies the conditions (1) and (4) of Definition 3.1.
Now, if t2 =min{μA(a),μA(x)} for x,a∈ R, then a,x ∈U(μA; t2). So there exist y1,z1 ∈

U(μA; t2) such that x ∈ a + y1 and x ∈ z1 + a. Also we have t2 ≤ min{μA(y1),μA(z1)}.
Therefore, Definition 3.1(2) is verified. If we put t3 = max{λA(a),λA(x)}, then a,x ∈
L(λA; t3). So there exist y2,z2 ∈ L(λA; t3) such that x ∈ a+ y2 and x ∈ z2 + a, and we have
max{λA(y2),λA(y2)} ≤ t3, and so Definition 3.1(5) is verified.

Now, we verify the conditions (3) and (6). Let t4 = μA(y) and t5 = λA(y) for some
x, y ∈ R. Then y ∈ U(μA; t4), y ∈ L(λA, t5). Since U(μa; t4) and L(λA, t5) are Hv-ideals of
R, then x · y ⊆ U(μA; t4) and x · y ∈ L(λA, t5). Therefore for every z ∈ x · y, we have z ∈
U(μA; t4) and z ∈ L(λA, t5) which imply that μA(z)≥ t4 and λA(z)≤ t5. Hence

inf
{
μA(z) | z ∈ x · y}≥ t4 = μA(y),

sup
{
λA(z) | z ∈ x · y}≤ t5 = λA(y).

(3.18)

This completes the proof. �

Corollary 3.10. Let I be a left Hv-ideal of an Hv-ring R. If fuzzy sets μ and λ are defined
on R by

μ(x)=
⎧
⎨
⎩
α0 if x ∈ I ,

α1 if x ∈ R \ I , λ(x)=
⎧
⎨
⎩
β0 if x ∈ I ,

β1 if x ∈ R \ I , (3.19)

where 0≤ α1 < α0, 0≤ β0 < β1, and αi +βi ≤ 1 for i= 0,1, then A= (μ,λ) is an intuitionistic
fuzzy Hv-ideal of R and U(μ;α0)= I = L(λ;β0).

Corollary 3.11. Let χS be the characteristic function of a left Hv-ideal I of R. Then A =
(χI ,χ

c
I
) is a left intuitionistic fuzzy Hv-ideal of R.
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Theorem 3.12. If A= (μA,λA) is a left intuitionistic fuzzy Hv-ideal of R, then for all x ∈ R,

μA(x)= sup
{
α∈ [0,1] | x ∈U

(
μA;α

)}
,

λA(x)= inf
{
α∈ [0,1] | x ∈ L

(
λA;α

)}
.

(3.20)

Proof. Let δ = sup{α ∈ [0,1] | x ∈ U(μA;α)} and let ε > 0 be given. Then δ − ε < α for
some α ∈ [0,1] such that x ∈ U(μA;α). This means that δ − ε < μA(x) so that δ ≤ μA(x)
since ε is arbitrary.

We now show that μA(x)≤ δ. If μA(x)= β, then x ∈U(μA;β), and so

β ∈ {α∈ [0,1] | x ∈U
(
μA;α

)}
. (3.21)

Hence

μA(x)= β ≤ sup
{
α∈ [0,1] | x ∈U

(
μA;α

)}= δ. (3.22)

Therefore

μA(x)= δ = sup
{
α∈ [0,1] | x ∈U

(
μA;α

)}
. (3.23)

Now let η = inf{α∈ [0,1] | x ∈ L(λA;α)}. Then

inf
{
α∈ [0,1] | x ∈ L

(
λA;α

)}
< η+ ε (3.24)

for any ε > 0, and so α < η+ ε for some α∈ [0,1] with x ∈ L(λA;α). Since λA(x)≤ α and ε
is arbitrary, it follows that λA(x)≤ η.

To prove that λA(x)≥ η, let λA(x)= ζ . Then x ∈ L(λA;ζ), and thus ζ ∈ {α∈ [0,1] | x ∈
L(λA;α)}. Hence

inf
{
α∈ [0,1] | x ∈ L

(
λA;α

)}≤ ζ , (3.25)

that is, η≤ ζ = λA(x). Consequently

λA(x)= η = inf
{
α∈ [0,1] | x ∈ L

(
λA;α

)}
, (3.26)

which completes the proof. �

4. Relations

Let α∈ [0,1] be fixed and let IF(R) be the family of all intuitionistic fuzzy left Hv-ideals
of an Hv-ring R. For any A= (μA,λA) and B = (μB,λB) from IF(R), we define two binary
relations Uα and Lα on IF(R) as follows:

(A,B)∈ Uα⇐⇒U
(
μA;α

)=U
(
μB;α

)
,

(A,B)∈ Lα⇐⇒ L
(
λA;α

)= L
(
λB;α

)
.

(4.1)

These two relations Uα and Lα are equivalence relations. Hence IF(R) can be divided into
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the equivalence classes of Uα and Lα, denoted by [A]Uα and [A]Lα for any A= (μA,λA)∈
IF(R), respectively. The corresponding quotient sets will be denoted as IF(R)/Uα and
IF(R)/Lα, respectively.

For the family LI(R) of all left Hv-ideals of R, we define two maps Uα and Lα from
IF(R) to LI(R)∪{∅} putting

Uα(A)=U
(
μA;α

)
, Lα(A)= L

(
λA;α

)
(4.2)

for each A= (μA,λA)∈ IF(R).
It is not difficult to see that these maps are well defined.

Lemma 4.1. For any α∈ (0,1), the maps Uα and Lα are surjective.

Proof. Let 0 and 1 be fuzzy sets on R defined by 0(x)= 0 and 1(x)= 1 for all x ∈ R. Then
0∼ = (0,1) ∈ IF(R) and Uα(0∼) = Lα(0∼) =∅ for any α ∈ (0,1). Moreover, for any K ∈
LI(R), we have I∼ = (χK ,χc

K
)∈ IF(R), Uα(I∼)=U(χK ;α)= K , and Lα(I∼)= L(χc

K
;α)= K .

Hence Uα and Lα are surjective. �

Theorem 4.2. For any α∈ (0,1), the sets IF(R)/Uα and IF(R)/Lα are equipotent to LI(R)∪
{∅}.
Proof. Let α ∈ (0,1). Putting U∗

α ([A]Uα) = Uα(A) and L∗α ([A]Lα) = Lα(A) for any A =
(μA,λA)∈ IF(R), we obtain two maps:

U∗
α : IF(R)/Uα −→ LI(R)∪{∅}, L∗α : IF(R)/Lα −→ LI(R)∪{∅}. (4.3)

If U(μA;α)= U(μB;α) and L(λA;α)= L(λB;α) for some A= (μA,λA) and B = (μB,λB)
from IF(R), then (A,B)∈ Uα and (A,B)∈ Lα, whence [A]Uα = [B]Uα and [A]Lα = [B]Lα ,
which means that U∗α and L∗α are injective.

To show that the mapsU∗
α and Lα are surjective, letK ∈ LI(R). Then for I∼ = (χK ,χc

K
)∈

IF(R), we have U∗
α ([I∼]Uα) = U(χK ;α) = K and L∗α ([I∼]Lα) = L(χc

K
;α) = K . Also 0∼ =

(0,1)∈IF(R). Moreover, U∗
α ([0∼]Uα)=U(0;α)=∅ and L∗α ([0∼]Lα)= L(1;α)=∅. Hence

U∗
α and L∗α are surjective. �

Now for any α∈ [0,1], we have the new relation Rα on IF(R) putting

(A,B)∈Rα⇐⇒U
(
μA;α

)∩L
(
λA;α

)=U
(
μB;α

)∩L
(
λB;α

)
, (4.4)

where A= (μA,λA) and B = (μB,λB). Obviously, Rα is an equivalence relation.

Lemma 4.3. The map Iα : IF(R)→ LI(R)∪{∅} defined by

Iα(A)=U
(
μA;α

)∩L
(
λA;α

)
, (4.5)

where A= (μA,λA), is surjective for any α∈ (0,1).

Proof. Indeed, if α∈ (0,1) is fixed, then for 0∼ = (0,1)∈ IF(R), we have

Iα
(

0∼
)=U(0;α)∩L(1;α)=∅, (4.6)
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and for any K ∈ LI(R), there exists I∼ = (χK ,χc
K

) ∈ IF(R) such that Iα(I∼) = U(χK ;α)∩
L(χc

K
;α)= K . �

Theorem 4.4. For any α∈ (0,1), the quotient set IF(R)/Rα is equipotent to LI(R)∪{∅}.
Proof. Let I∗α : IF(R)/Rα→ LI(R)∪{∅}, where α∈ (0,1), be defined by the formula

I∗α
(
[A]Rα

)= Iα(A) for each [A]Rα ∈ IF(R)/Rα. (4.7)

If I∗α ([A]Rα)= I∗α ([B]Rα) for some [A]Rα , [B]Rα ∈ IF(R)/Rα, then

U
(
μA;α

)∩L
(
λA;α

)=U
(
μB;α

)∩L
(
λB;α

)
, (4.8)

which implies that (A,B)∈Rα and, in the consequence, [A]Rα = [B]Rα . Thus I∗α is injec-
tive.

It is also onto because I∗α (0∼) = Iα(0∼) = ∅ for 0∼ = (0,1) ∈ IF(R), and I∗α (I∼) =
Iα(K)= K for K ∈ LI(R) and I∼ = (χK ,χc

K
)∈ IF(R). �

The relation γ∗ is the smallest equivalence relation on R such that the quotient R/γ∗

is a ring. γ∗ is called the fundamental equivalence relation on R and R/γ∗ is called the
fundamental ring, see [16].

According to [16], if � denotes the set of all finite polynomials of elements of R over
N, then a relation γ can be defined on R as follows:

xγy iff {x, y} ⊆ u for some u∈�. (4.9)

According to [16], the transitive closure of γ is the fundamental relation γ∗, that is, aγ∗b
if and only if there exist x1, . . . ,xm+1 ∈ R; u1, . . . ,um ∈� with x1 = a, xm+1 = b such that

{
xi,xi+1

}⊆ ui, i= 1, . . . ,m. (4.10)

Suppose that γ∗(a) is the equivalence class containing a ∈ R. Then both the sum ⊕
and the product � on R/γ∗ are defined as follows:

γ∗(a)⊕ γ∗(b)= γ∗(c) ∀c ∈ γ∗(a) + γ∗(b),

γ∗(a)� γ∗(b)= γ∗(d) ∀c ∈ γ∗(a) · γ∗(b).
(4.11)

We denote the unit of the group (R/γ∗,⊕) by ωR.

Defintion 4.5. Let R be an Hv-ring and μ a fuzzy subset of R. The fuzzy subset μγ∗ on
R/γ∗ is defined as follows:

μγ∗ : R/γ∗ −→ [0,1],

μγ∗
(
γ∗(x)

)= sup
{
μ(a) | a∈ γ∗(x)

}
.

(4.12)

Theorem 4.6. Let R be an Hv-ring and A= (μA,λA) a left intuitionistic fuzzy Hv-ideal of
R. Then A/γ∗ = (μγ∗ ,λγ∗) is a left intuitionistic fuzzy ideal of the fundamental ring R/γ∗.
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