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1. Introduction

Predator-prey systems have been studied extensively. See, for instance, [1, 6, 8—10] and
the references cited therein. Most of the previous papers focused on the predator-prey
systems without stocking. Brauer and Soudack [2, 3] studied some predator-prey sys-
tems under constant rate stocking. To our knowledge, few papers have been published on
the existence of positive periodic solutions for delayed predator-prey patch systems with
periodic stocking.

In this paper, we investigate the following predator-prey system with stocking:

x1(t) = x1(t) (a1 (t) — br(0)x1(t) — c(t) y(2)) + D1 (t) (2 (t — 71 (8)) — x1(2)) + S (2),
x5 (1) = x2(t) (a2 (t) — ba(£)x2(£)) + Da(t) (x1 (t — 72(2)) — x2(2)) + S2 (1),

0
¥ () = y(©) = d(0)+ pom () = q0)y(0) = B©) | k()y(t+5)ds) +50),

(1.1)
with the initial conditions
x1(s) =¢1(s) =0, s€&[~0,0], ¢;(0) >0,
x2(s) = ¢2(s) 20, s€&[-0,0], ¢2(0) >0, (1.2)

y(s)=y(s) =0, se[-0,0], y(0)>0,

where x; and y are the population densities of prey species x and predator species y
in patch 1, and x; is the density of species x in patch 2. Predator species y is confined to

Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 63182, Pages 1-14

DOI 10.1155/IJ]MMS/2006/63182


http://dx.doi.org/10.1155/S0161171206631827
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patch 1, while the prey species x can diffuse between two patches. D;(t) (i = 1,2) are diffu-
sion coefficients of species x. S;(¢) (i = 1,2,3) denote the stocking rates. ¢;(s), ¢»(s), and
y(s) are continuous on [—0,0], 0 = max{7,sup,cg 71(t),sup,cg 72(t)}. The delay 7;(12)
represents the time that species x migrates from patch 2 to patch 1 (patch 1 to patch 2).

When S;(#) =0 (i=1,2,3), 7; =0 (i = 1,2), system (1.1) was considered by Zhang and
Wang [15], Song and Chen [11], and Chen et al. [5].

The purpose of this paper is to derive a set of easily verifiable conditions for the exis-
tence of positive periodic solutions of system (1.1). The method in this paper is different
from those of [4, 12—14].

2. Existence of positive periodic solutions

To show the existence of solutions to the considered problems, we will use an abstract
theorem developed [7]. We first state this abstract theorem.

For a fixed 0 = 0, let C:= C([—0,0];R"). If x € C([y — 0,y + 6];R") for some § >0
and y € R, then x; € Cfor t € [y,y + 6] is defined by x;(0) = x(¢t + 0) for 6 € [-0,0]. The
supremum norm in C is denoted by || - ||, that is, [|¢ll. = maxgc[—q,01 19(0)|| for ¢ € C,

where || - || denotes the norm in R”, and [lull = >/, |u;] for u = (uy,...,u,) € R™
We consider the following functional differential equation:
dx(t
A0 fiem), (2.1)

where f : R X C — R” is completely continuous, and there exists T > 0 such that for every
(t,p) € Rx C, wehave f(t+T,9) = f(t, ).
The following lemma is a simple consequence of [7, Theorem 4.7.1].

LEmMaA 2.1. Suppose that there exists a constant M > 0 such that
(i) for any A € (0,1) and any T-periodic solution x of the system

dx(t)
dt

= Af(txi), (2.2)

Ix(H)Il < M fort € R;
(ii) g(u) :== (1/T) fon(s,ﬁ)ds # 0 for u € 9By (R"), where By(R") = {u € R": [lul| <
M3, and u denotes the constant mapping from [—a,0] to R™ with the value u € R";
(iii) Brouwer degree deg(g, By (R")) # 0.
Then there exists at least one T-periodic solution of the system

d’;(tt) - f(tx) (2.3)
that satisfies sup,cg llx(£) |l < M.
In the following, we set
1 (T
g= ?L godt,  g'= min |g(®)],  g"= max |g(®)], (2.4)

where g is a continuous T-periodic function.
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In system (1.1), we always assume the following.

(Hy) ai(t), bi(t), Di(t) (i = 1,2), c(t), d(t), p(t), q(t), and (t) are positive continuous
T-periodic functions. S;(t) (i = 1,2,3), 7;(t) (i = 1,2) are nonnegative continuous
T-periodic functions. 7;(t) <1 (i = 1,2), t € R.

(Hz) k(s) = 0on [—7,0] (0 < 7 < +00); and k(s) is a piecewise continuous and normal-
ized function such that f?, k(s)ds = 1.

Set
k- 1tP
p
. alMo—D1M0+Sl)l *_(a,-MO+S,'>l o
K _( biM, - K=y ) TR
a1+\/af+4b181 " a2+wa%+4b2$2 "
My = max > >
2b1 2b2
. (Ch/C)l— (83/q)u _ - o~ a2+\/a§+4b282 :
mo—mln{ b (pla) exp[—2T(D1+b1Mo+cM0)],(2bZ) ,
o (pMo+w/p2M§+4qS3)”
0= >
2q

Ki—d/p Kif—d/p K*—d/p
K+(C/b1)u’ K ,K+(C/b1)u

i :min{ }exp[—ZT(J+qMO+BMO)].

(2.5)

THEOREM 2.2. In addition to (H;), (H,), assume further that system (1.1) satisfies one of
the following assumptions:

(Hs) (a1/c)! >/(Ss/q)*, Ki* > d/p (i = 1,2);

(Hy) (ar/c)' >/(Ss/q)¥, K* > d/p.
Then system (1.1) has at least one positive T-periodic solution, say (x(t),x5 (1), y*(£))T
such that

mo <x(t) <M, (i=1,2), my < y*(t) <My, t=0. (2.6)

Proof. Consider the following system:

uy (£) = a1 () = Di(t) = by (£)e" ™) — c(£)e?) + Dy (£)e=!! -7l 4 jl—(ftf
o - () w (-t - (r) . S2(2)
us(t) = ax(t) — Dy(t) — by(t)e™™ + Dy(t)e ton®” (2.7)
0 S3(t)
Wy(1) = —d(E) + p(£)e® — g(t)e®) — ﬂ(t)J k(e s+ =155,
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where a;(t), bi(t), Di(t) (i = 1,2), Si(t) (i = 1,2,3), c(t), d(t), p(t), q(t), and B(¢) are the
same as those in assumption (H;), and 7, 7; (i = 1,2) and k(s) are the same as those in
assumption (H,). We first show that system (2.7) has one T-periodic solution.

Let C:= C([—0,0];R3). We define the following map:

fiRXC—R’  f(to) = (filte) L(t,9), f5(£9)), ¢ = (p1,92,¢3) €C

Si(t
filtsg) = ai(0) = Di() = by (D™ — c(D)eP® + Dy (1m0 4 S,
£(6:9) = @x(t) = Da(t) = ba(D)e® + Dy(pyen -0 S

0
f(t,@) = —d(t)+ p(t)e”© — q(t)e*© — B(t) JﬁTk(s)e‘/’3(s)ds+ f;s((?).

Clearly, f: R x C — R? is completely continuous. Now, the system (2.7) becomes

=) (2.9)
Corresponding to
dz(tt) =Af(t,u), Ae(0,1), (2.10)
we have
uy(t) = A :al(t) —Di(t) = by (t)er® — c(t)e™ V) + Dy (£)e O = (® il(g]
uy(t) =4 :az(t) — Dy (1) — by(t)e>®D + Dy () (- —wa0) 4 %]
(2.11)

Suppose that (u;(t),uz(t),u3(¢))" is a T-periodic solution of system (2.11) for some A €
(0,1). Choose tM,t" € [0,T], i = 1,2,3, such that

u;(tM) = max u;(t), w;(t") = min w(t), i=1,2,3. (2.12)
te[0,T] te[0,T]

Then, it is clear that

u;(tM) =0, wi(t")=0, i=1.2,3. (2.13)



H. Fangand Z. Wang 5

From this and system (2.11), we obtain that

ar (1) =Dy (1) — by (1) e 1) — ¢ (1) e @) 4 Dy (£M) gt -1 (D)~ (1) Si ((t; ) _ -0,
el
(2.14)
Sy (¢t
az(té‘/[) - Dz(téw) - bz(téw)em(téw) +D2(f§v[)€ A -nEh)- uZ(tM) 2E(tz ) =0, (2.15)
eta(t
0 5 (2!
—d(85") + p(§) e ) — g () e — B(1)") j k(s)e 579 ds + 35(;4)) =0,
_ eus\i;
! (2.16)
m
(1) =Dy () by (7)) (1) )+ (1)) S
(2.17)
a (t’”) -D (t”‘) -b (trn)euz(té”) +D (tm)eul(t?*rz(té"))fuz(t?‘) + M =0 (2.18)
2\13 2\ 2\ 212 et (13) ' )
Next we make the following claims.
Claim 1. For u;(t") (i = 1,2), one of the following cases holds:
up (5") < i (1) < M < My, (2.19)
up (1) <up (B81) < MF < My, (2.20)
where M; := max{M;*,M;}, M]* :=In((a; + w/af +4b;S;)/2bj)¥, j = 1,2.
There are two cases to consider.
Case 1. Assume that u; (1) = uy(87); then u (1) = uy (#M — 1, (£M)).
From this and (2.14), we have
by (M) e @) < gy (£M) + S;(ffﬁ}. (2.21)
ew (]
That is,
by (£1) 20 — g (1) e @D — 5, (1) <. (2.22)
Therefore,
i £ +Jad (11 1S (6) _ (@ +af +4biS: )" (2.23)
- 2b, (t{”) B 2b, '
Hence,

2b,

[ u
ur (") < w (1) sln<al+al—+4blsl) . (2.24)
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Case 2. Assume that u; (1) < uy (£1); then uy (£ — 12 (81)) < ua (7).
From this and (2.15), we have

By a similar argument to Case 1, we have

ar ++Ja +4b, S, \*
ul(t{”)<u2(t§w)sln(2222> .

2b,

It follows from (2.24) and (2.26) that Claim 1 holds.

Claim 2.

PMoy++/p>ME +49S5\ "
M3(t§w) <In 2q
where M, = ™.
By (2.16), we have

M
(1)) < () g >+Lféw) < p(eryenet) 4 S5
6”3(t3 6“3(@4)
That is,
(e = p(dh)en en ) 5, (i) <.
Therefore,

oty _ PN+ P2 (8) e () 1 aq (ed1) S, (211
- 2q(8")

>

which implies that Claim 2 holds.
Claim 3. For u;(t{")(i = 1,2), one of the following cases holds:

mp < m]" — 2T(D1 + I;lMo +5M0) < ul(t{”) < uz(tgl),

my <my <u (1) <uy (1),
where

my := min {m* — 2T (Dy + byMo + M), m}},

(@/e)' —/(S5/g)"

m = bY/c+ (p/q)r

" a2+wa%+4b282 !

mjy :=1In — )
2

There are two cases to consider.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Case 1. Assume that u; (") < uy(£5"); then u; (") < up (87" — 71 (#")).
From this and (2.17), we have

ay (£7) < by (£7) e ) 4 c(£7) e M) < by (£7) e ) 4 (1) e B,
From (2.30), by using the inequality
(a+b)?<a”?+b"%, a>0,b>0,

we have

From this and (2.33), we have

al(tin) < [b](t{”) +
q

which implies

That is,

(ar/c)' =/(S5/q)"

M
ur (") = In Fd T (i my.

From the first equation of system (2.11), we obtain that

T8, (t)

0 e (1)

dt

T T
| s | Duwestmorno g
0 0

T T T
- [ Duwdr+ [ biweOdrs [ ewervar
0 0 0

T8 (t)

0 et (t)

T T T
[ T lde< [ e+ [ Dyoese-no-ing
0 0 0

T T T
+J Dl(t)dt+J bl(t)eul(t)dt-f—J C(t)eu3(t)dt,
0 0 0

dt

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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It follows that
T
0

JOT (o) de<2| LT Dy (Hdt+ LT b0 Odt+ [ crenar]

<2 [ LT Dy (H)dt + M JOT by (t)dt + &M LT c(t)dt]

= ZT(DI + I;IMO + C_M())

From (2.38) and (2.40), we have

T

uy (81) = uy (£M) —J | (£) | dt = m¥ = 2T (Dy + by Mo + M,).

0
Case 2. Assume that u; (t]") > up (t5"); then u) (15" — 12(£5")) > ua (£57).
From this and (2.18), we have

S:(8")

euz(tg") i

bz(tizﬂ)euz(f;‘) > az(ldzﬂ) +

which implies

ay (1) ++Ja3 (157) +4b2 (£5) S (1)

w (83")
el > .
2by(13")
That is,
s ++ak + 40,85\
N e
2
It follows from (2.41) and (2.44) that Claim 3 holds.
Claim 4.
w3 (£51) = min {m3,mj, m3} = 2T (d+GMo + BMo) := ms,
where
. . Kf-d/p mI:anz*—d/p . . K¥—=d/p

s = nK+(C/b1)u’

From the third equation of (2.11), we obtain

K s = nK+(c/b1)u'

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

T T T T T 0
J p(t)eul(t)dt+J S3(t)dt=J d(t)dt+J q(t)eus<f>dt+J B(1) J k()¢ dsd,
0 0 0 0 0 -7

ets(t)

T
20+ [ awar
el 0

T T T
J |14 (8) | dt <J p(t)e”‘(”dt+J
0 0 0

T T 0
+J q(t)e”3(t)dt+J ﬁ(t)J K(s)e™ ) dsdt.
0 0 -7

(2.47)
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It follows that

LT | (6) | dt < 2 [ JOT d(t)dt + JOTq(t)e”-‘(t)dt i LT B(H) jo k(s)e‘““*”dsdt]

T T T
< zU d(t)dt+eMZJ q(t)dt + e J ﬁ(t)dt] (2.48)
0 0 0
= ZT(CI_‘F qﬁo +‘8_M0),
[G+B]en®) > pen () — 4. (2.49)
There are two cases to consider.
Case 1. Assume that the assumption (Hj3) holds.
If uy (41") < up(85"), by (2.17), we have
way - () = c(r) et Si (")
CUETTNE T h)en®
. (2.50)
_ () —c(f)ensB) S (")
a by (1)) by (£]")eM”
Substituting this into (2.49) gives
~ o - m 541 pus (1) 5S (tm) ~
=1 Blets®) pai(#")  pe(t]')e L porti _d 251
B 1 ) Y () R A GO Pt (230
which implies
q B } ey - (') S d
=+ =4+ —— BB/ > + - . 2.52
[p 5 n () b () B e 232
Therefore,
s . d
[K+<b1> }e = Kf -5 (2.53)
That is,
K —d/p
M) = 1n—* = mj. 2.54
ua(t57) = In gy = (2.54)
It follows from (2.48) and (2.54)that
T
us (£7) = uz (£1) — J |u(t) | dt = m¥ — 2T (d+ GMo + fM). (2.55)
0
If uy (¢") > ua(£7'), by (2.42), (2.49), and (2.19), we have
_ o ” _ P m mY ,—M,; _
[q+ﬁ]eu3([3)2peuz(t2)_d2p[az(t2)+sz(t2 )e ] _d (2.56)

by (1) ’
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which implies

[q B] ey - @) + S (8)e d
=+ = |e”3 p - =
p p by (1) p
Therefore,

Kew(®) > gy -9,

p
That is,
* _ 7 -
us (81) > IHM i=mj.

K
From (2.48) and (2.59), we have

T

s (£1) = s (£1) — jo () [dt = mF —2T(d+qMo + BVE).

Case 2. Assume that the assumption (Hy4) holds.
From (2.17), we have

- w o Syt
b (1)) = an (1) ~ D (1) — e(ep) e+ 1)
Sy (¢

= ar(67) Dy (1) —e(tp)en () 4 S0

Therefore,

a1 (£") = D (") = c(t7) e ) +8, (") e
by (11") .

e (M) 5

Substituting this into (2.49) gives

sty L Plar(8) =Di(e)] _ pe()en ) - psi(er)

o t
[9+Ble b)) b)) bi()eM

which implies

[?+§+ C(tiltn) ]eus(t% - a (") *Dl(f{")m‘i'sl(t?)fM' _ é__
p P bi(t") 1 (8") p
Therefore,
[K+< ) ]e“3<fa)>1<*—é_
1 p
That is,

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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It follows from(2.48) and (2.66)that
T o~ i
I/l3(t§n) > Z/l3(t§w) - J |1/lé(t) |dt > m; - 2T(d+ qMo +ﬁM0). (267)
0

It follows from (2.55), (2.60), and (2.67) that Claim 4 holds.
Clearly, one of the following inequalities holds:
(i) My >m3,
(ii) M < mj3.
Since m{ < My and m3 < M5, (ii) implies M5 > m{. Thus, according to Claims 1-3, one
of the following four cases must hold:
(P1) my <mf —2T(Di+b: Mo+ M) < ur (£) < us (8, ua(88) < uy (18)1) < My < My;
(P2) my <= my < ur(88) <ur (1), wo(B) < (1)) < M < My
(P3) my < mf —2T(Dy + biMo + M) < ui (£') < up (), wi (M) < (1) < Mj <
M;;
(Py) my <m3 < wy(85) <u (11"), w (B1) < ux () < M < M.
From this and Claims 3 and 4, we have

[max |ui(t)| <max{|M |, |Ma],|m],|ma|}:=M*, i=1,2,3. (2.68)

Obviously, M* is independent of A.

Set
Bf i=a;++(a) +4bS, i=1,2. (2.69)
Take sufficiently large M such that

M >3max {M*, [m} |, [m; |, |m3 |, |m{ ], |m3]},

2.70
M vt |+ v |+ 133 ], 270
where
Bf B¥
Vik:lnz_él, Vik:h’lz—gz,
E— (2.71)
o _ 1 PBEHAIPBE 1 +16(5,)' 9+ BIS;
’ 4b1[g+p] .
Clearly, the condition (i) in Lemma 2.1 is satisfied by system (2.7).
Define H (u1,uz, us, 1) : R x [0,1] — R by
ay — l_vle"l + i - B _
eS”‘ Dye*>™" —ce*s — Dy

H(up,up,us,p) = | d— bye> + 6722 +u| D™D, |, (2.72)

N —d

pett — [G+Ble™ + 68733
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We show that
H(uy,uz,us,u) #0 forany u = (uy,uz,u3) € By (R?), u € [0,1]. (2.73)
Indeed, assume to the contrary, that
H(uf,u¥,uf,u*) =0 forsomeu* = (uf,uf,uf) € 0By (R?), u* €[0,1]. (2.74)
Then, there exist t; € [0,T], i = 1,2, such that

Si(t i 3
1( 1) +u* Dy (h)e uy —uf —p*c(h)e™ —u*Dy(t) =0,

S(t)

al(tl) - bl(tl) “ +—
a)(ty) —by(ta)e i p 2020 +[/l*D (ty)e™ rou —‘Ll*Dz(tz) =0, (2.75)

> 0.

—u*cf+ﬁe”f —[g+ple

By using the arguments of (2.19), (2.20), (2.27), (2.38), (2.44), (2.54), (2.59), (2.66), one
can prove that

|uf | <max |Mi|, [Ma|, [mi [, |m3 |, [mi ], |mf|,|mil, i=1,23,  (2.76)
which implies that [[u*] = |uf| + [u3| + |uf| < 3max{M*,|m]|,|m3|,|m5|,|m;l,
Im¥|} < M. This contradicts the fact that u* € dBy(R?). Therefore, H (u;,us,us,u) is
a homotopy.
Since
_ S
G — Dy — bje" — e + Dyee 1 + —
e
S,
g(u) = az—Dz—bze 2+D2€”17u2+; :H(u1)u2)u3)1)7 (2-77)

S3
—d+ pe"t — [q+Ble™ + o
g(u) # 0 for any (u1,us,u3) € 0By (R?). Thus, the condition (ii) in Lemma 2.1 is satis-
fied. Next we show that condition (iii) also holds. It is easy to see that H(u1,u,u3,0) =0
has a unique solution v* = (v{*, vy, v§), where v{*,v5,v§ are the same as those in (2.71).
Clearly, [[v¥[l = [v{| + [vF |+ [vi| < M, that is, v¥ € By(R?). According to the invariance
of homotopy, we obtain

deg(g,Bm(R%)) = deg (H(+,1),By(R?)) = deg (H(-,0),By(R%)) = -1.  (2.78)

Therefore, all of the conditions required in Lemma 2.1 hold. According to Lemma 2.1,
system (2.7) has one T-periodic solution (uj (t),us (t),u3 (¢))T. Itis easy to see that (x{ (t),
(1), y* ()T = (exp(uf (t)],expluz ()], explui (£)])T is a positive T-periodic solution
of system (1.1). By the arguments similar to Claims 1—4, one can show

my<uf(t)<M; (i=1,2), my <ui(t)<M,, t=0, (2.79)
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which implies
mo<x () <My (i=1,2), A<y (t)<M, t=0. (2.80)

The proof is complete. O

Consider the special case of system (1.1) that S;(t) =0, i = 1,2,3. In this case, by
Theorem 2.2, we have the following.

CoROLLARY 2.3. In addition to (H) and (H,), assume further that system (1.1) satisfies
one of the following conditions:

(Hs)' (ai/bi)! >d/p,i=1,2

(Hy)" (a1 = D1)/by)' > d/p.
Then system (1.1) has at least one positive T-periodic solution.

Remark 2.4. Corollary 2.3 greatly improves [15, Theorem 2.1] and [5, Theorem 1.1].
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