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1. Introduction

Let X be a Banach space.

Definition 1.1. A series
∞∑

k=1

fk, fk ∈ X , (1.1)

is said to be universal in X with respect to rearrangements, if for any f ∈ X the members
of (1.1) can be rearranged so that the obtained series

∑∞
k=1 fσ(k) converges to f by norm

of X .

Definition 1.2. The series (1.1) is said to be universal (in X) in the usual sense, if for any
f ∈ X there exists a growing sequence of natural numbers nk such that the sequence of
partial sums with numbers nk of the series (1.1) converges to f by norm of X .

Definition 1.3. The series (1.1) is said to be universal (in X) concerning partial series, if
for any f ∈ X it is possible to choose a partial series

∑∞
k=1 fnk from (1.1), which converges

to the f by norm of X .

Note that many papers are devoted (see [1–10]) to the question on existence of various
types of universal series in the sense of convergence almost everywhere and on a measure.

The first usual universal in the sense of convergence almost everywhere trigonometric
series were constructed by Menshov [6] and Kozlov [5]. The series of the form

1
2

+
∞∑

k=1

akcoskx+ bksinkx (1.2)
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2 Universal series by trigonometric system

was constructed just by them such that for any measurable-on-[0,2π] function f (x) there
exists the growing sequence of natural numbers nk such that the series (1.2) having the se-
quence of partial sums with numbers nk converges to f (x) almost everywhere on [0,2π].
(Note here that in this result, when f (x)∈ L1

[0,2π], it is impossible to replace convergence
almost everywhere by convergence in the metric L1

[0,2π]).
This result was distributed by Talaljan on arbitrary orthonormal complete systems

(see [8]). He also established (see [9]) that if {φn(x)}∞n=1—the normalized basis of space
L
p
[0,1], p > 1, then there exists a series of the form

∞∑

k=1

akφk(x), ak −→ 0, (1.3)

which has property: for any measurable function f (x) the members of series (1.3) can be
rearranged so that the again received series converge on a measure on [0,1] to f (x).

Orlicz [7] observed the fact that there exist functional series that are universal with
respect to rearrangements in the sense of a.e. convergence in the class of a.e. finite mea-
surable functions.

It is also useful to note that even Riemann proved that every convergent numerical
series which is not absolutely convergent is universal with respect to rearrangements in
the class of all real numbers.

Let μ(x) be a measurable-on-[0,2π] function with 0 < μ(x) ≤ 1, x ∈ [0,2π], and let
L1
μ[0,2π] be a space of measurable functions f (x), x ∈ [0,2π], with

∫ 2π

0

∣∣ f (x)
∣∣μ(x)dx <∞. (1.4)

Grigorian constructed a series of the form (see [3])

∞∑

k=−∞
Cke

ikx with
∞∑

k=−∞

∣∣Ck

∣∣q <∞∀q > 2, (1.5)

which is universal in L1
μ[0,2π] concerning partial series for some weighted function μ(x),

0 < μ(x)≤ 1, x ∈ [0,2π].
In [2] it is proved that for any given sequence of natural numbers {λm}∞m=1 with λm ↗∞

there exists a series by trigonometric system of the form

∞∑

k=1

Cke
ikx, C−k = Ck, (1.6)

with
∣∣∣∣∣

m∑

k=1

Cke
ikx

∣∣∣∣∣≤ λm, x ∈ [0,2π], m= 1,2, . . . , (1.7)

so that for each ε > 0 a weighted function μ(x),

0 < μ(x)≤ 1,
∣∣{x ∈ [0,2π] : μ(x) �= 1

}∣∣ < ε, (1.8)
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can be constructed so that the series (1.6) is universal in the weighted space L1
μ[0,2π] with

respect simultaneously to rearrangements as well as to subseries.
In this paper, we prove the following results.

Theorem 1.4. There exists a series of the form

∞∑

k=−∞
Cke

ikx with
∞∑

k=−∞

∣∣Ck

∣∣q <∞∀q > 2 (1.9)

such that for any number ε > 0 a weighted function μ(x), 0 < μ(x)≤ 1, with
∣∣{x ∈ [0,2π] : μ(x) �= 1

}∣∣ < ε (1.10)

can be constructed so that the series (1.9) is universal in L1
μ[0,2π] with respect to rearrange-

ments.

Theorem 1.5. There exists a series of the form (1.9) such that for any number ε > 0 a
weighted function μ(x) with (1.10) can be constructed so that the series (1.9) is universal in
L1
μ[0,2π] in the usual sense.

2. Basic lemma

Lemma 2.1. For any given numbers 0 < ε < 1/2, N0 > 2, and a step function

f (x)=
q∑

s=1

γs · χΔs(x), (2.1)

where Δs is an interval of the form Δ(i)
m = [(i− 1)/2m, i/2m

]
, 1≤ i≤ 2m, and

∣∣γs
∣∣ ·
√∣∣Δs

∣∣ < ε3 ·
(

8 ·
∫ 2π

0
f 2(x)dx

)−1

, s= 1,2, . . . ,q, (2.2)

there exists a measurable set E ⊂ [0,2π] and a polynomial P(x) of the form

P(x)=
∑

N0≤|k|<N
Cke

ikx, (2.3)

which satisfy the conditions

|E| > 2π− ε, (2.4a)
∫

E

∣∣P(x)− f (x)
∣∣dx < ε, (2.4b)

∑

N0≤|k|<N

∣∣Ck

∣∣2+ε
< ε, C−k = Ck, (2.4c)

max
N0≤m<N

[∫

e

∣∣∣∣∣
∑

N0≤|k|≤m
Cke

ikx

∣∣∣∣∣dx
]
< ε+

∫

e

∣∣ f(x)
∣∣dx (2.4d)

for every measurable subset e of E.
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Proof. Let 0 < ε < 1/2 be an arbitrary number.
Set

g(x)= 1 if x ∈ [0,2π] \
[
ε ·π

2
,
3ε ·π

2

]
, (2.5)

g(x)= 1− 2
ε

if x ∈
[
ε ·π

2
,
3ε ·π

2

]
. (2.6)

We choose natural numbers ν1 and N1 so large that the following inequalities be satisfied:

1
2π

∣∣∣∣
∫ 2π

0
g1(t)e−iktdt

∣∣∣∣ <
ε

16 ·√N0
, |k| < N0, (2.7)

where

g1(x)= γ1 · g
(
ν1 · x

) · χΔ1 (x). (2.8)

(By χE(x) we denote the characteristic function of the set E.) We put

E1 =
{
x ∈ Δs : gs(x)= γs

}
. (2.9)

By (2.5), (2.8), and (2.9) we have

∣∣E1
∣∣ > 2π · (1− ε) ·∣∣Δ1

∣∣, g1(x)= 0, x �∈ Δ1, (2.10)

∫ 2π

0
g2

1 (x)dx <
2
ε
·∣∣γ1

∣∣2 ·∣∣Δ1
∣∣. (2.11)

Since the trigonometric system {eikx}∞k=−∞ is complete in L2[0,2π], we can choose a nat-
ural number N1 > N0 so large that

∫ 2π

0

∣∣∣∣∣
∑

0≤|k|<N1

C(1)
k eikx − g1(x)

∣∣∣∣∣dx ≤
ε

8
, (2.12)

where

C(1)
k = 1

2π

∫ 2π

0
g1(t)e−iktdt. (2.13)

Hence by (2.7), (2.8), and (2.12) we obtain

∫ 2π

0

∣∣∣∣∣
∑

N0≤|k|<N1

C(1)
k eikx − g1(x)

∣∣∣∣∣dx ≤
ε

8
+

[
∑

0≤|k|<N0

∣∣∣C(1)
k

∣∣∣
2
]1/2

<
ε

4
. (2.14)

Now assume that the numbers ν1 < ν2 < ···νs−1, N1 < N2 < ··· < Ns−1, functions g1(x),
g2(x), . . . ,gs−1(x), and the sets E1,E2, . . . ,Es−1 are defined. We take sufficiently large natural
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numbers νs > νs−1 and Ns > Ns−1 to satisfy

1
2π

∣∣∣∣∣

∫ 2π

0
gs(t)e−iktdt

∣∣∣∣∣ <
ε

16 ·√Ns−1
, 1≤ s≤ q, |k| < Ns−1, (2.15)

∫ 2π

0

∣∣∣∣∣
∑

0≤|k|<Ns

C(s)
k eikx − gs(x)

∣∣∣∣∣dx ≤
ε

4s+1
, (2.16)

where

gs(x)= γs · g(νs · x) · χΔs(x), C(s)
k = 1

2π

∫ 2π

0
gs(t)e−iktdt. (2.17)

Set

Es =
{
x ∈ Δs : gs(x)= γs

}
. (2.18)

Using the above arguments (see (2.19)–(2.21)), we conclude that the function gs(x) and
the set Es satisfy the conditions

∣∣Es
∣∣ > 2π · (1− ε) ·∣∣Δs

∣∣;gs(x)= 0, x �∈ Δs, (2.19)

∫ 2π

0
g2
s (x)dx <

2
ε
·∣∣γs

∣∣2 ·∣∣Δs

∣∣, (2.20)

∫ 2π

0

∣∣∣∣∣
∑

Ns−1≤|k|<Ns

C(s)
k eikx − g1(x)

∣∣∣∣∣dx <
ε

2s+1
. (2.21)

Thus, by induction, we can define natural numbers ν1 < ν2 < ···νq, N1 < N2 < ··· < Nq,
functions g1(x),g2(x), . . . ,gq(x), and sets E1,E2, . . . ,Eq such that conditions (2.17)–(2.19)
are satisfied for all s, 1≤ s≤ q. We define a set E and a polynomial P(x) as follows:

E =
q⋃

s=1

Es, (2.22)

P(x)=
∑

N0≤|k|<N
Cke

ikx =
q∑

s=1

[
∑

Ns−1≤|k|<Ns

C(s)
k eikx

]
, C−k = Ck, (2.23)

where

Ck = C(s)
k for Ns−1 ≤ |k| < Ns, s= 1,2, . . . ,q, N =Nq− 1. (2.24)

By Bessel’s inequality and (2.5), (2.17) for all s∈ [1,q] we get

[
∑

Ns−1≤|k|<Ns

∣∣∣C(s)
k

∣∣∣
2
]1/2

≤
[∫ 2π

o
g2
s (x)dx

]1/2

≤ 2√
ε
·∣∣γs

∣∣ ·
√∣∣Δs

∣∣, s= 1,2, . . . ,q.

(2.25)



6 Universal series by trigonometric system

From (2.5), (2.15), and (2.16), it follows that

|E| > 2π− ε. (2.26)

Taking relations (2.1), (2.5), (2.13), (2.15), (2.21)–(2.24), we obtain

∫

E

∣∣P(x)− f (x)
∣∣dx ≤

q∑

s=1

[∫

E

∣∣∣∣∣
∑

Ns−1≤|k|<Ns

C(s)
k eikx − gs(x)

∣∣∣∣∣dx
]
< ε. (2.27)

By (2.1), (2.2), (2.23)-(2.24) for any k ∈ [N0,N], we have

∑

N0≤|k|<N

∣∣Ck

∣∣2+ε ≤ max
N0≤k≤N

∣∣Ck

∣∣ε ·
N∑

k=N0

∣∣Ck

∣∣2

≤ max
1≤s≤q

[√
8
ε
·∣∣γs

∣∣ ·
√∣∣Δs

∣∣
]
·

q∑

s=1

[
∑

Ns−1≤|k|<Ns

∣∣∣C(s)
k

∣∣∣
2
]

≤ max
1≤s≤q

[√
8
ε
·∣∣γs

∣∣ ·
√∣∣Δs

∣∣
]
· 8
ε
·

q∑

s=1

∣∣γs
∣∣2 ·∣∣Δs

∣∣

≤ max
1≤s≤q

[√
8
ε
·∣∣γs

∣∣ ·
√∣∣Δs

∣∣
]
· 8
ε
·
[∫ 1

0
f 2(x)dx

]
< ε;

(2.28)

that is, the statements (2.4a)–(2.4c) of Lemma 2.1 are satisfied. Now we will check the
fulfillment of statement (2.4d) of Lemma 2.1. Let N0 ≤m<N , then for some s0,1≤ s0 ≤
q, (Ns0 ≤m<Ns0+1) we will have (see (2.23) and (2.24))

∑

N0≤|k|≤m
Cke

ikx =
s0∑

s=1

[
∑

Ns−1≤|k|<Ns

C(s)
k eikx

]
+

∑

Ns0−1≤|k|≤m
C(s0+1)
k eikx. (2.29)

Hence and from (2.1), (2.2), (2.5), (2.21), (2.22), and (2.25) for any measurable set e ⊂ E,
we obtain

∫

e

∣∣∣∣∣
∑

Ns−1≤|k|≤m
Cke

ikx

∣∣∣∣∣dx

≤
s0∑

s=1

[∫

e

∣∣∣∣∣
∑

Ns−1≤|k|<Ns

C(s)
k eikx − gs(x)

∣∣∣∣∣dx
]

+
s0∑

s=1

∫

e

∣∣gs(x)
∣∣dx+

∫

e

∣∣∣∣∣
∑

Ns0−1≤|k|≤m
C(s0+1)
k eikx

∣∣∣∣∣dx

<
s0∑

s=1

ε

2s+1
+
∫

e

∣∣ f (x)
∣∣dx+

2√
ε
·∣∣γs0+1

∣∣ ·
√∣∣Δs0+1

∣∣ <
∫

e

∣∣ f (x)
∣∣dx+ ε.

(2.30)

�
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3. Proof of theorems

Proof of Theorem 1.5. Let

f1(x), f2(x), . . . , fn(x), x ∈ [0,2π], (3.1)

be a sequence of all step functions, values, and constancy interval endpoints of which are
rational numbers. Applying lemma consecutively, we can find a sequence {Es}∞s=1 of sets
and a sequence of polynomials

Ps(x)=
∑

Ns−1≤|k|<Ns

C(s)
k eikx,

1=N0 < N1 < ··· < Ns < ··· , s= 1,2, . . . ,

(3.2)

which satisfy the conditions

∣∣Es
∣∣ > 1− 2−2(s+1), Es ⊂ [0,2π], (3.3)
∫

Es

∣∣Ps(x)− fs(x)
∣∣dx < 2−2(s+1), (3.4)

∑

Ns−1≤|k|<Ns

∣∣C(s)
k

∣∣2+2−2s

< 2−2s, C(s)
−k = C

(s)
k , (3.5)

max
Ns−1≤p<Ns

[∫

e

∣∣∣∣∣
∑

Ns−1≤|k|≤p
Cke

ikx

∣∣∣∣∣dx
]
< 2−2(s+1) +

∫

e

∣∣ fs(x)
∣∣dx (3.6)

for every measurable subset e of Es.
Denote

∞∑

k=−∞
Cke

ikx =
∞∑

s=1

[
∑

Ns−1≤|k|<Ns

C(s)
k eikx

]
, (3.7)

where Ck = C(s)
k for Ns−1 ≤ |k| < Ns, s= 1,2, . . ..

Let ε be an arbitrary positive number. Setting

Ωn =
∞⋂

s=n
Es, n= 1,2, . . . , (3.8)

E =Ωn0 =
∞⋂

s=n0

Es, n0 =
[

log1/2 ε
]

+ 1, (3.9)

B =
∞⋃

n=n0

Ωn =Ωn0

⋃
( ∞⋃

n=n0+1

Ωn \Ωn−1

)
. (3.10)

It is clear (see (3.3)) that |B| = 2π and |E| > 2π− ε.
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We define a function μ(x) in the following way:

μ(x)= 1 for x ∈ E∪ ([0,2π] \B),
μ(x)= μn for x ∈Ωn \Ωn−1, n≥ n0 + 1,

(3.11)

where

μn =
[

24n ·
n∏

s=1

hs

]−1

, (3.12)

hs =
∥∥ fs(x)

∥∥
C + max

Ns−1≤p<Ns

∥∥∥∥∥
∑

Ns−1≤|k|≤p
C(s)
k eikx

∥∥∥∥∥
C

+ 1, (3.13)

where

∥∥g(x)
∥∥
C = max

x∈[0,2π]

∣∣g(x)
∣∣, (3.14)

g(x) is a continuous function on [0,2π].
From (3.5), (3.7)–(3.12), we obtain the following.

(A) 0 < μ(x)≤ 1, μ(x) is a measurable function and

∣∣{x ∈ [0,2π] : μ(x) �= 1
}∣∣ < ε. (3.15)

(B)
∑∞

k=1 |Ck|q <∞ for all q > 2.
Hence, obviously, we have

lim
k→∞

Ck = 0. (3.16)

It follows from (3.9)–(3.12) that for all s≥ n0 and p ∈ [Ns−1,Ns),

∫

[0,2π]\Ωs

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣μ(x)dx =
∞∑

n=s+1

[∫

Ωn\Ωn−1

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣μndx
]

≤
∞∑

n=s+1

2−4n

[∫ 2π

0

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣h
−1
s dx

]
< 2−4s.

(3.17)

By (3.4), (3.9)–(3.12) for all s≥ n0, we have

∫ 2π

0

∣∣Ps(x)− fs(x)
∣∣μ(x)dx

=
∫

Ωs

∣∣Ps(x)− fs(x)
∣∣μ(x)dx +

∫

[0,2π]\Ωs

∣∣Ps(x)− fs(x)
∣∣μ(x)dx

= 2−2(s+1) +
∞∑

n=s+1

[∫

Ωn\Ωn−1

∣∣Ps(x)− fs(x)
∣∣μndx

]
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≤ 2−2(s+1) +
∞∑

n=s+1

2−4s

[∫ 2π

0

(
∣∣ fs(x)

∣∣+

∣∣∣∣∣
∑

Ns−1≤|k|<Ns

C(s)
k eikx

∣∣∣∣∣

)
h−1
s dx

]

< 2−2(s+1) + 2−4s < 2−2s.

(3.18)

Taking relations (3.6), (3.9)–(3.12), and (3.17) into account we obtain that for all p∈[
Ns−1,Ns

)
and s≥ n0 + 1,

∫ 2π

0

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣μ(x)dx

=
∫

Ωs

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣μ(x)dx+
∫

[0,2π]\Ωs

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣μ(x)dx

<
s∑

n=n0+1

[∫

Ωn\Ωn−1

∣∣∣∣∣
∑

Ns−1≤|k|≤p
C(s)
k eikx

∣∣∣∣∣dx
]
·μn + 2−4s

<
s∑

n=n0+1

(
2−2(s+1) +

∫

Ωn\Ωn−1

∣∣ fs(x)
∣∣dx

)
μn + 2−4s

= 2−2(s+1) ·
s∑

n=n0+1

μn +
∫

Ωs

∣∣ fs(x)
∣∣μ(x)dx+ 2−4s

<
∫ 2π

0

∣∣ fs(x)
∣∣μ(x)dx+ 2−4s.

(3.19)

Let f (x)∈ L1
μ[0,2π], that is,

∫ 2π
0 | f (x)|μ(x)dx <∞.

It is easy to see that we can choose a function fν1 (x) from the sequence (3.1) such that

∫ 2π

0

∣∣ f (x)− fν1 (x)
∣∣μ(x)dx < 2−2, ν1 > n0 + 1. (3.20)

Hence, we have

∫ 2π

0

∣∣ fν1 (x)
∣∣μ(x)dx < 2−2 +

∫ 2π

0

∣∣ f (x)
∣∣μ(x)dx. (3.21)

From (2.1), (A), (3.18), and (3.20), we obtain with m1 = 1,

∫ 2π

0

∣∣ f (x)− [Pν1 (x) +Cm1e
im1x

]∣∣μ(x)dx

≤
∫ 2π

0

∣∣ f (x)− fν1 (x)
∣∣μ(x)dx+

∫ 2π

0

∣∣ fν1 (x)−Pν1 (x)
∣∣μ(x)dx

+
∫ 2π

0

∣∣Cm1e
im1x

∣∣μ(x)dx < 2 · 2−2 + 2π ·∣∣Cm1

∣∣.

(3.22)



10 Universal series by trigonometric system

Assume that numbers ν1 < ν2 < ··· < νq−1, m1 < m2 < ··· < mq−1 are chosen in such a
way that the following condition is satisfied:

∫ 2π

0

∣∣∣∣∣ f (x)−
j∑

s=1

[
Pνs(x) +Cmse

imsx
]
∣∣∣∣∣μ(x)dx < 2 · 2−2 j + 2π ·∣∣Cmj

∣∣, 1≤ j ≤ q− 1.

(3.23)

We choose a function fνq(x) from the sequence (3.1) such that

∫ 2π

0

∣∣∣∣∣

(
f (x)−

q−1∑

s=1

[
Pνs(x) +Cmse

imsx
]
)
− fnq(x)

∣∣∣∣∣μ(x)dx < 2−2q, (3.24)

where νq > νq−1; νq > mq−1

This, with (3.23), implies

∫ 2π

0

∣∣ fνq(x)
∣∣μ(x)dx < 2−2q + 2 · 2−2(q−1) + 2π ·∣∣Cmq−1

∣∣= 9 · 2−2q + 2π ·∣∣CMq−1

∣∣.

(3.25)

By (3.18), (3.19), and (3.25) we obtain

∫ 2π

0

∣∣ fνq(x)−Pνq(x)
∣∣μ(x)dx < 2−2νq ,

Pνq(x)=
∑

Nνq−1≤|k|<Nνq

C
(νq)
k eikx,

(3.26)

max
Nνq−1≤p<Nνq

∫ 2π

0

∣∣∣∣∣

p∑

k=Nνq−1

C
(νq)
k eikx

∣∣∣∣∣μ(x)dx < 10 · 2−2q + 2π ·∣∣Cmq−1

∣∣. (3.27)

Denote

mq =min

{
n∈N : n �∈

{{
{k}Nνs−1

k=Nνs−1

}q

s=1
∪ {ms

}q−1
s=1

}}
. (3.28)

From (2.1), (A), (3.24), and (3.26), we have

∫ 2π

0

∣∣∣∣∣ f (x)−
q∑

s=1

[
Pνs(x) +Cmse

imsx
]
∣∣∣∣∣μ(x)dx

≤
∫ 2π

0

∣∣∣∣∣

(
f (x)−

q−1∑

s=1

[
Pνs(x) +Cmse

imsx
]
)
− fνq(x)

∣∣∣∣∣μ(x)dx
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+
∫ 2π

0

∣∣ fνq(x)−Pνq(x)
∣∣μ(x)dx

+
∫ 2π

0

∣∣Cmqe
imqx

∣∣μ(x)dx < 2 · 2−2q + 2π ·∣∣Cmq

∣∣.

(3.29)

Thus, by induction we, on q, can choose from series (3.7) a sequence of members

Cmqe
imqx, q = 1,2, . . . , (3.30)

and a sequence of polynomials

Pνq(x)=
∑

Nνq−1≤|k|<Nνq

C
(νq)
k eikx, Nnq−1 > Nnq−1 , q = 1,2, . . . (3.31)

such that conditions (3.27)–(3.29) are satisfied for all q ≥ 1.
Taking account the choice of Pνq(x) and Cmqe

imqx (see (3.28) and (3.31)), we conclude
that the series

∞∑

q=1

[
∑

Nνq−1≤|k|<Nνq

C
(νq)
k eikx +Cmqe

iqx

]
(3.32)

is obtained from the series (3.7) by rearrangement of members. Denote this series by∑
Cσ(k)eiσ(k)x.
It follows from (3.16), (3.27), and (3.29) that the series

∑
Cσ(k)eiσ(k)x converges to the

function f (x) in the metric L1
μ[0,2π], that is, the series (3.7) is universal with respect to

rearrangements (see Definition 1.1). �

Proof of Theorem 1.5. Applying Lemma 2.1 consecutively, we can find a sequence {Es}∞s=1

of sets and a sequence of polynomials

Ps(x)=
∑

Ns−1≤|k|<Ns

C(s)
k eikx, C(s)

−k = C
(s)
k ,

1=N0 < N1 < ··· < Ns < ··· , s= 1,2, . . . ,

(3.33)

which satisfy the conditions

∣∣Es
∣∣ > 1− 2−2(s+1), Es ⊂ [0,2π], (3.34)

∑

Ns−1≤|k|<Ns

∣∣C(s)
k

∣∣2+2−2s

< 2−2s, (3.35)

∫

En

∣∣∣∣∣ fn(x)−
n∑

s=1

Ps(x)

∣∣∣∣∣dx < 2−n, n= 1,2, . . . , (3.36)

where { fn(x)}∞n=1, x ∈ [0,2π], is a sequence of all step functions, values, and constancy
interval endpoints of which are rational numbers.
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Denote

∞∑

k=−∞
Cke

ikx =
∞∑

s=1

[
∑

Ns−1≤|k|<Ns

C(s)
k eikx

]
, (3.37)

where Ck = C(s)
k for Ns−1 ≤ |k| < Ns, s= 1,2, . . . .

It is clear (see (3.35)) that

∞∑

k=1

∣∣Ck

∣∣q <∞ ∀q > 2. (3.38)

Repeating reasoning of Theorem 1.4, a weighted function μ(x), 0 < μ(x) ≤ 1, can be
constructed so that the following condition is satisfied:

∫ 2π

0

∣∣∣∣∣ fn(x)−
n∑

s=1

Ps(x)

∣∣∣∣∣ ·μ(x)dx < 2−2n, n= 1,2, . . . . (3.39)

For any function f (x) ∈ L1
μ[0,1], we can choose a subsystem { fnν (x)}∞ν=1 from the se-

quence (3.1) such that

∫ 2π

0

∣∣ f (x)− fnν (x)
∣∣μ(x)dx < 2−2ν. (3.40)

From (3.37)–(3.40), we conclude

∫ 2π

0

∣∣∣∣∣ f (x)−
∑

|k|≤Mν

Cke
ikx

∣∣∣∣∣μ(x)dx =
∫ 2π

0

∣∣∣∣∣ f (x)−
nν∑

s=1

[
∑

Ns−1≤|k|<Ns

C(s)
k eikx

]∣∣∣∣∣μ(x)dx

≤
∫ 2π

0

∣∣ f (x)− fνk (x)
∣∣ ·μ(x)dx

+
∫ 2π

0

∣∣∣∣∣ fνk (x)−
νk∑

s=1

Ps(x)

∣∣∣∣∣ ·μ(x)dx < 2−2k + 2−2νk ,

(3.41)

where Mν =Nnν − 1.
Thus, the series (3.37) is universal in L1

μ[0,1] in the sense of usual (see Definition 1.2).
Theorem 1.5 is proved. �
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