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We prove that if a one-to-one mapping f : R3 → R3 preserves regular dodecahedrons,
then f is a linear isometry up to translation.
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1. Introduction

Let us begin with the properties of an isometry. For normed spaces X and Y , a mapping
f : X → Y is called an isometry if f satisfies the equality

∥∥ f (x)− f (y)
∥∥= ‖x− y‖ (1.1)

for all x, y ∈ X . A distance r > 0 is said to be preserved by a mapping f : X → Y if ‖ f (x)−
f (y)‖ = r for all x, y ∈ X whenever ‖x− y‖ = r.

If f is an isometry, then every distance r > 0 is preserved by f , and conversely. We
can now raise a question whether each mapping that preserves certain distances is an
isometry. Indeed, Aleksandrov [1] had raised a question whether a mapping f : X → X
preserving a distance r > 0 is an isometry, which is now known to us as the Aleksandrov
problem.

Beckman and Quarles [2] solved the Aleksandrov problem for finite-dimensional real
Euclidean spaces X =Rn (see also [3–6, 10, 12–17]).

Theorem 1.1 (Beckman and Quarles). If a mapping f :Rn→Rn (2≤ n <∞) preserves a
distance r > 0, then f is a linear isometry up to translation.

It is an interesting question whether the “distance r > 0” in the above theorem can
be replaced by some properties characterized by “geometrical figures” without loss of its
validity.
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In [7–9], the authors proved that if a one-to-one mapping f : Rn → Rn maps every
unit circle (or unit sphere, tetrahedron) onto a unit circle (or a unit sphere, tetrahedron,
resp.), then f is a linear isometry up to translation.

In this connection, we will extend these results to the more general three-dimensional
objects, that is, we prove in this note that if a one-to-one mapping f : R3 → R3 maps
every regular dodecahedron onto a regular dodecahedron, then f is a linear isometry up
to translation.

2. Main theorem

In the following, by a regular dodecahedron we mean a regular dodecahedron with its
side length one. We first make our terms precise as follows. In Figure 2.1, we will call the
point a a “vertex” and the line ab an “edge” and the plane bounded by the five edges ab,
bc, cd, df , f a “face abcdf ” or simply a “face.” Further by a dodecahedron we will mean
the 12 faces only and not the three-dimensional open set bounded by those 12 faces. Let
us denote the three-dimensional open set bounded by the dodecahedron A as “Inside of
A” or simply as InsA.

Now we begin with the following lemma.

Lemma 2.1. Suppose that a one-to-one mapping f : R3 → R3 maps every dodecahedron
onto a dodecahedron. Then, for any dodecahedrons A and B, if InsA∩ InsB = φ, Ins f (A)∩
Ins f (B)= φ.

Proof. First, we show that if q /∈ InsA, then f (q) /∈ Ins f (A). In other words, we show
that if f (q) ∈ Ins f (A), then q ∈ InsA. Suppose that q ∈ A. Then f (q) ∈ f (A) and so
f (q) /∈ Ins f (A). Suppose that q /∈ InsA and q /∈ A. Then choose another dodecahedron
B such that q ∈ B and B∩A= φ. Then f (B)∩ f (A)= φ and therefore f (q) /∈ Ins f (A).

Suppose now that Ins f (A)∩ Ins f (B) �= φ. Then Ins f (A)∩ f (B) �= φ, which means
that for some b ∈ B, f (b) ∈ Ins f (A). Therefore b ∈ InsA and (InsA)∩B �= φ by which
we conclude that InsA∩ InsB �= φ. �

We show now that if any one-to-one mapping preserves regular dodecahedrons, then
it is actually an isometry. More precisely, we have the following.

Theorem 2.2. If a one-to-one mapping f :R3 →R3 maps every regular dodecahedron onto
a regular dodecahedron, then f is a linear isometry up to translation.
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Proof. We show f preserves the distance 1. Then the theorem of Beckman and Quarles
implies that f is an isometry.

We will use solid angle arguments. Let A be a regular dodecahedron. For any p ∈ A,
let us denote the solid angle that InsA subtends with respect to p ∈ A as Ω(A, p). We
first find the solid angles at a vertex and at an edge point. To do so, let us choose suitable
coordinate axes so that the vertex a of Figure 2.1 is located at the origin (see Figure 2.2).
To get the coordinate of b, first we note that the ∠ f ab is a part of a regular pentagon
abcdf with side length one and therefore it is 108◦. Therefore the length of b f is 2sin54◦

and the triangle b f g is a regular triangle with side length 2sin54◦. Then the x coordinate
of b is sin54◦, the y coordinate is (1/3)×√3sin54◦, and we can find the z coordinate

−zo with the condition that the length of ab is one. Therefore zo =
√

1− (4/3)sin2 54◦. Let
e = (1/2)g which belongs to an edge of A. We find Ω(A,e) first.

Numerically these points are b = (0.809,0.467,−0.357), f = (−0.809,0.467,−0.357),
g = (0,−0.934,−0.357), e = (0,−0.467,−0.1784), zo = 0.357.

If we call C1 the pentagon abcdf , then the radius r of the circle which circumscribes
C1 satisfies 2r cos54◦ = 1 and therefore r = 1/2cos54◦ = 0.851. Now the center o1 of
C1 is the distance r = 0.851 away from the origin a and located along the direction of

( �ab + �a f )/| �ab + �a f | = (0,(1/
√

3)tan54◦,−zo/ cos54◦). Therefore o1 = r(( �ab + �a f )/| �ab +
�a f |) = (0,0.676,−0.517). Similarly the center o2 of the pentagon C2 which contains the

vertices g, a, b is located at o2 = r(( �ab+ �ag)/| �ab+ �ag|)= (0.586,−0.338,−0.517) and sim-

ilarly o3 = r(( �ag + �a f )/| �ag + �a f |)= (−0.586,−0.338,−0.517). The two pentagons C2 and
C3 meet at the edge ag and the vectors �eo2 and �eo3 are both perpendicular to ag. There-
fore, to find the (ordinary) angle between the two planes C2 and C3, we have only to find
the angle between the two vectors �eo2 and �eo3. Since �eo2 = �ao2− �ae = �ao2− (1/2) �ag and
�eo3 = �ao3− �ae = �ao3− (1/2) �ag, the angle θ between these two vectors is given by

cosθ = �eo2 · �eo3∣∣ �eo2
∣∣∣∣ �eo3

∣∣ =−0.4468 (2.1)
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and we get θ = 116.5◦ or 2.034 rad. This angle is often called the dihedral angle of the
dodecahedron. Now we are ready to find the solid angle Ω(A,e). We use the unit of the
solid angle such that the solid angle of the whole sphere with respect to its center is 4π.
Then the solid angle that InsA subtends with respect to e∈A is

Ω(A,e)= 4π
θ

2π
= 2θ = 4.068≡Ωe. (2.2)

Having found the solid angle Ωe at the edge point of the regular dodecahedron, let
us now find the solid angle that InsA subtends at the vertex a. For that we use the result
of [11], where it is shown that given any three vectors T1, T2, T3, all starting from the
origin, the solid angle Ω that these three vectors subtend with respect to the origin (i.e.,
the solid angle that the (not necessarily regular) tetrahedron whose vertices are the end
tips of these three vectors and the origin subtends with respect to the origin) is

tan
(

1
2
Ω
)
=

[
T1T2T3

]
T1T2T3 +

(
T1 ·T2

)
T3 +

(
T2 ·T3

)
T1 +

(
T3 ·T1

)
T2

. (2.3)

Here [T1T2T3] ≡ |T1 ·T2×T3| and Ti = |Ti| (i = 1,2,3). Note that this expression does
not depend on the lengths of the three vectors. For example, when T1, T2, T3 are mutually
orthogonal, we get Ω= π/2.

Now we are ready to find the solid angle that InsA subtends at the vertex a, Ω(A,a).

To find Ω, let T1 = �ag, T2 = �a f , and T3 = �ab. Then using (2.3) we can compute the solid
angle we want. We find [T1T2T3]= 0.809, T1 ·T2 = T2 ·T3 = T3 ·T1 =−0.309, and T1 =
T2 = T3 = 1. Therefore we get

Ω= 2tan−1
(

0.809
1− 3× 0.309

)
= 2tan−1 11.082,

Ω(A,a)= 2tan−1 11.082= 2.962≡Ωv.

(2.4)

Let us summarize our results above. Suppose that p ∈ A where p is a point and A is a
regular dodecahedron. If p is a vertex, say p = a, then the solid angle that InsA subtends
with respect to p is Ω(A, p) =Ωv = 2.962. If p is a point which belongs to an edge and
is not a vertex, then Ω(A, p)=Ωe = 4.068. If p ∈ A is neither a vertex nor an edge point,
then Ω(A, p)= 2π.

Suppose now that a is a vertex of a regular dodecahedron A= A1. We show then that
f (a) is a vertex of f (A) too. Or we have only to show that Ω( f (A), f (a))=Ωv. Construct
three more regular dodecahedrons Ai (i= 2,3,4) such that a is the common vertex of all
four regular dodecahedrons Ai (i= 1, . . . ,4) and InsAi∩ InsAj = φ for any i �= j (see the
appendix). Then f (a) belongs to f (Ai) for i= 1, . . . ,4 and by the above lemma Ins f (Ai)∩
Ins f (Aj)= φ for i �= j. Now the solid angle that Ins f (Ai) subtends with respect to f (a)



Byungbae Kim 5

can be Ωv, Ωe, or 2π. Further

4∑
i=1

Ω
(
f
(
Ai
)
, f (a)

)≤ 4π. (2.5)

Since

3Ωv +Ωe = 3× (2.962) + 4.068= 12.954 > 4π = 12.566, (2.6)

we conclude that Ω( f (Ai), f (a)) =Ωv (i = 1, . . . ,4) and that f (a) is a vertex of f (A) =
f (A1).

Now we prove the statement of the theorem. Given any two points a and b which are
distanced by the unit distance from each other, form two regular dodecahedrons A and B
such that the following three conditions are met. (1) Both a and b are common vertices
of A and B. (2) InsA∩ InsB = φ. (3) No other vertices are common vertices of A and
B. This means that the two dodecahedrons A and B share exactly one edge which has
end points a and b. Now it is obvious that the two dodecahedrons f (A) and f (B) also
satisfy the above three conditions with the common vertices f (a) and f (b). Therefore
the distance between f (a) and f (b) is again one too. Since f preserves the unit distance,
by the theorem of Beckman and Quarles, we conclude that f is a linear isometry up to
translation. �

Appendix

We show that we can form four regular dodecahedrons Ai (i = 1, . . . ,4) such that g ∈ Ai

is a common vertex of Ai (i= 1, . . . ,4) and InsAi∩ InsAj = φ for any i �= j (i, j = 1, . . . ,4).
Let A= A1 be a regular dodecahedron as shown in Figure 2.1. Choose a coordinate such
that g is at the origin and the pentagon containing the vertices h, g, i is contained com-
pletely in the xz plane. Then i= (sin54◦,0,−cos54◦) and h= (−sin54◦,0,−cos54◦). Fur-
ther a= (0,sin54◦

√
3− tan2 54◦,−cos108◦/ cos54◦). The coordinate of a is uniquely de-

termined by the condition that a is in the yz plane with | �ga| = 1 and | �ha| = 2sin54◦. Nu-
merically g = (0,0,0) ≡ g1, i = (0.809,0,−0.588) ≡ i1, h = (−0.809,0,−0.588) ≡ h1, and
a= (0,0.8507,0.5257)≡ a1.

Let L1 be a reflection through the xz plane, that is, L1(x, y,z)= (x,−y,z). Call L1(A1)=
A2. Let L2 be a 90◦ rotation around z axis followed by the reflection through the xy plane,
that is, L2(x, y,z)= (−y,x,−z). Call L2(A1)= A3 and L2(A2)= A4 (see Figure A.1). Note
that A4 = L2L1(A1) and L2L1(x, y,z) = (y,x,−z). Therefore a4 = L2L1(a1) = (0.8507,0,
−0.5257) and i4 = L2L1(i1) = (0,0.809,0.588). We claim that InsAi ∩ InsAj = φ for any
i �= j (i, j = 1, . . . ,4).

By symmetry we have only to check the part where x ≥ 0 and y ≥ 0. We think of z co-
ordinate as a height function. In Figure A.1, g1,2 = g3,4 = (0,0,0)≡ g. The “slope” of ga1

is a1z/a1y = 0.5257/0.8507= 0.6180, which is smaller than the slope of gi4 that is i4z/i4y =
0.588/0.809 = 0.7268. Similarly, The slope of gi1 is i1z/i1x = −0.588/0.809 = −0.7268,
which is smaller than the slope of ga4 that is a4z/a4x = −0.5257/0.8507= −0.6180. This
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means that A4 is “higher” than A1 except at the origin g. Therefore we conclude that
InsAi∩ InsAj = φ for any i �= j (i, j = 1, . . . ,4).
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