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1. Introduction

Variational inequality theory has become a rich source of inspiration in the pure and ap-
plied mathematics. Variational inequalities not only have stimulated new results dealing
with nonlinear partial differential equations, but also have been used in a large variety
of problems arising in mechanics, physics, optimization and control nonlinear program-
ming, economics and transportation equilibrium and engineering sciences, and so forth.
In recent years variational inequalities have been generalized and applied in various di-
rections. For details we refer to [2, 5, 6, 20].

Recently Huang [10, 11] constructed some new perturbed Ishikawa and Mann iterative
algorithms to approximate the solution of some generalized implicit quasivariational in-
clusions (inequalities), which includes many iterative algorithms for variational and qua-
sivariational inequality problems as special cases.

On the other hand, Xu [19] revised the definition of Ishikawa and Mann iterative pro-
cesses with errors and studied the convergence problem of Ishikawa and Mann iterative
processes with errors for approximating the solutions of the generative strongly accretive
operator equations.

Inspired and motivated by recent research works [4, 7, 12, 14–16], in this paper we
initiate and construct some perturbed three-step approximation processes with errors
for solving a class of generalized implicit nonlinear quasivariational inclusions. We also
discuss the convergence and stability of the iterative sequences generated by algorithms.
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2. Preliminaries

Let H be a real Hilbert space endowed with a norm ‖ · ‖ and an inner product 〈·,·〉, re-
spectively. For a given maximal monotone mapping A(·,·) : H ×H → 2H with respect to
the first argument, a nonlinear mapping N(·,·) : H ×H →H , three single-valued map-
pings, V ,G,g : H →H , find u∈H such that g(u)∈ domA(·,u) and

0∈ g(u)−N(Vu,Gu) +A
(
g(u),u

)
, (2.1)

where 2H denote the power subsets of H . This variational inclusions is called the gener-
alized implicit nonlinear quasivariational inclusions.

Remark 2.1. (1) We note that A(g(u),u)≡ A(g(u)) for all u∈H , then the problem (2.1)
is equivalent to finding u∈H such that

0∈ g(u)−N(Vu,Gu) +A
(
g(u)

)
(2.2)

is called general implicit nonlinear quasivariational inclusions.
(2) If V and G are identity mappings, then (2.2) is equivalent to finding u ∈H such

that

0∈ g(u)−N(u,u) +A
(
g(u)

)
. (2.3)

(3) We note that N(u,u) ≡ 0, zero mapping, then (2.3) is equivalent to the finding
u∈H such that g(u)∈ domA,

0∈ g(u) +A
(
g(u)

)
(2.4)

is called general variational inclusions considered by Huang et al. [11].
(4) We again note that g ≡ I , an identity mapping, then (2.4) is equivalent to the clas-

sical variational inclusions, for finding u∈H such that

0∈ u+A(u). (2.5)

(5) If A(·,u) ≡ ∂ϕ(·,u) is the subdifferential of ϕ(·,u), where ϕ(·,u) : H ×H → R∪
{+∞} is a proper convex lower semicontinuous functional with respect to the first argu-
ment, then the problem (2.1) is equivalent to finding u∈H such that g(u)∈ dom∂ϕ(·,u)
and

〈
g(u)−N(Vu,Gu),v− g(u)

〉≥ ϕ
(
g(u),u

)−ϕ(v,u), ∀v ∈H , (2.6)

is called generalized nonlinear quasivariational inclusion problems, which is the variant
form of Ahmad et al. [1].
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(6) If N(Vu,Gu) = V(u)−Gu, then (2.6) is equivalent to finding u ∈ H such that
g(u)∈ dom∂ϕ(·,u),

〈
g(u)− (Vu−Gu),v− g(u)

〉≥ ϕ
(
g(u),u

)−ϕ(v,u), ∀v ∈H , (2.7)

is called general strongly nonlinear quasivariational inclusions.
(7) If ∂ϕ(·,u) = ∂ϕ(u), then (2.7) is equivalent to finding u ∈ H such that g(u) ∈

domA and

〈
g(u)−N(Vu−Gu),v− g(u)

〉≥ ϕ
(
g(u)

)−ϕ(v), ∀v ∈H , (2.8)

is called a variant form of general strongly nonlinear quasivariational inclusions, which
is the variant form of that of Khan et al. [13].

(8) If V and G are identity mappings, then (2.6) is equivalent to finding u ∈H such
that g(u)∈ dom∂ϕ(·,u),

〈
g(u)−N(u,u),v− g(u)

〉≥ ϕ
(
g(u),u

)−ϕ(v,u), ∀v ∈H , (2.9)

is called generalized strongly nonlinear implicit quasivariational inclusions.
(9) If g(u)−N(u,u) ≡ T(u)−A(u) and ϕ(·,u) = ϕ(u), then (2.9) reduces to the fol-

lowing problem of finding u∈H such that g(u)∈ dom∂ϕ and

〈
Tu−Au,v− g(u)

〉≥ ϕ
(
g(u)

)−ϕ(v), ∀v ∈H , (2.10)

which is considered by Hassouni and Moudafi [9].
(10) If K is a given closed convex subset of H and ϕ= IK is the indicator function of

K , defined by

IK (x)=
⎧
⎨

⎩
0, x ∈ K ,

+∞, otherwise,
(2.11)

then, problem (2.3) reduces to the following problem of finding u∈H such that

〈
g(u)−N(Vu,Gu),v− g(u)

〉≥ 0, ∀v ∈H , (2.12)

which is variant form of that of Verma [17].
(11) If V and G are identity mappings, then (2.12) is equivalent to finding u∈H such

that

〈
g(u)−N(u,u),v− g(u)

〉≥ 0, ∀v ∈H. (2.13)

(12) If g(u)−N(u,u) = u−N(u,u), then (2.13) is equivalent to finding u ∈ H such
that

〈
u−N(u,u),v− g(u)

〉≥ 0, ∀v ∈H , (2.14)

is called generalized strongly nonlinear implicit quasivariational inequality problem, con-
sidered by Cho et al. [3].
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(13) If g ≡ I identity mapping, N(u,u)= T(u) for all u∈H , and T : H →H is a single
valued mapping, then (2.14) is equivalent to finding u∈H such that

〈u−Tu,v−u〉 ≥ 0, ∀v ∈H , (2.15)

which is nonlinear variational inequality, considered by Verma [18].
(14) If u−N(u,u)= T(u), then (2.13) reduces to finding u∈H such that

〈
Tu,v− g(u)

〉≥ 0, ∀v ∈H , (2.16)

which is another classical variational inequality introduced by Hartman and Stampacchia
[8].

(15) If g ≡ I , then (2.15) reduces to finding u∈H such that

〈Tu,v−u〉 ≥ 0, ∀v ∈H , (2.17)

which is called classical variational inequality, considered by Hartman and Stampacchia
[8].

Definition 2.2. A mapping g : H →H is said to be α-strongly monotone if there exists a
constant α > 0 such that

〈
g(u)− g(v),u− v

〉≥ α‖u− v‖2, ∀u,v ∈H. (2.18)

Definition 2.3. A mapping g : H →H is said to be β-Lipschitz continuous if there exists a
constant β > 0 such that

∥
∥g(u)− g(v)

∥
∥≤ β‖u− v‖, ∀u,v ∈H. (2.19)

Definition 2.4. Let V : H →H and N : H ×H →H be the mappings, N is said to be the
following.

(i) σ-Lipschitz continuous in the first argument if there exists a constant σ > 0 such
that

∥
∥N(u,w)−N(v,w)

∥
∥≤ σ‖u− v‖, ∀u,v,w ∈H. (2.20)

Similarly the Lipschitz continuity of N can be defined with respect to the second
argument.

(ii) η-relaxed monotone with respect to V in the first argument if there exists a con-
stant η > 0 such that

〈
N(Vu,w)−N(Vv,w),u− v

〉≥−η‖u− v‖2, ∀u,v,w ∈H. (2.21)

Definition 2.5. Let G : H →H and N : H ×H →H be the mappings. The mapping N is
said to be κ-relaxed Lipschitz continuous with respect to G in the second argument if
there exists a constant κ≥ 0 such that

〈
N(w,Gu)−N(w,Gv),u− v

〉≤−κ‖u− v‖2, ∀u,v,w ∈H. (2.22)
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Definition 2.6. Let H be a Hilbert space and let A : H → 2H be a maximal monotone
mapping. For any fixed λ > 0, the mapping JAλ : H →H defined by

JAλ (u)= (I + λA)−1(u), ∀u∈H , (2.23)

is said to be the resolvent operator of A, where I is an identity mapping on H .

Lemma 2.7. Let A : H → 2H be a maximal monotone mapping. Then the resolvent operator
JAλ : H →H is nonexpansive, that is,

∥
∥JAλ (u)− JAλ (v)

∥
∥≤ ‖u− v‖, ∀u,v ∈H. (2.24)

Definition 2.8. Let {An} and A be the maximal monotone mappings from H into the
power set of H for n= 0,1,2, . . .. The sequence {An} is said to be graph-convergence of A

(write An G−→A) if the following property holds.
For every (u,v) ∈ Graph(A), there exists a sequence (un,vn) ∈ Graph(An) such that

un→ u and vn→ v as n→∞.

Lemma 2.9 [2]. Let {An} and A be the maximal monotone mappings from H into the power

set of H for n= 0,1,2, . . .. Then An G−→A if and only if

JA
n

λ (u)→ JAλ (u), (2.25)

for every u∈H and λ > 0.

Lemma 2.10 [15]. Let {an}, {bn}, and {cn} be three sequences of nonnegative numbers
satisfying the following conditions: there exists a positive integer n0 such that

an+1 ≤ (1− tn)an + bntn + cn, n≥ n0, (2.26)

where

tn ∈ [0,1],
∞∑

n=0

tn = +∞, lim
n→∞bn = 0,

∞∑

n=0

cn < +∞. (2.27)

Then limn→∞ an = 0.

Lemma 2.11. For a given u∈H , u is a solution of the problem (2.1) if and only if

g(u)≡ JA(·,u)
λ

[
g(u)− λ

(
g(u)−N(Vu,Gu)

)]
, (2.28)

where λ > 0, a constant, JA(·,u)
λ (w) ≡ (I + λA(·,u))−1(w), where I is an identity operator,

and w ∈H .
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Proof. Let u∈H be a solution of problem (2.1) if and only if for given λ > 0, a constant,

0∈ g(u)−N(Vu,Gu) +A
(
g(u),u

)

⇐⇒ 0∈ λg(u)− λN(Vu,Gu) + λA
(
g(u),u

)

⇐⇒ 0∈−(g(u)− λ
(
g(u)−N(Vu,Gu)

))
+
(
I + λA(·,u)

)
g(u)

⇐⇒ g(u)− λ
(
g(u)−N(Vu,Gu)

)∈ (I + λA(·,u)
)
g(u)

⇐⇒ g(u)≡ (I + λA(·,u)
)−1

[g(u)− λ
(
g(u)−N(Vu,Gu)

)]

⇐⇒ g(u)≡ JA(·,u)
λ

[
g(u)− λ

(
g(u)−N(Vu,Gu)

)]
,

(2.29)

which completes the proof. �

3. The main results

Theorem 3.1. Let g : H →H be the α-strongly monotone and β-Lipschitz continuous map-
pings with constants α > 0 and β > 0, respectively. Let V ,G : H →H be the two ξ-Lipschitz
and μ-Lipschitz continuous mappings with constants ξ > 0 and μ > 0, respectively. Let bimap-
ping N : H ×H →H be the σ-Lipschitz continuous with respect to the first argument with
constant σ > 0 and δ-Lipschitz continuous with respect to the second argument with con-
stant δ > 0. Let N be the η-relaxed monotone with respect to V in the first argument with
constant η > 0 and κ-relaxed Lipschitz continuous with respect to G in the second argument
with constant κ≥ 0. Let A : H ×H → 2H be the maximal monotone with respect to the first
argument. It assume that for all u,v,w ∈H ,

∥
∥
∥JA(·,u)

λ (w)− JA(·,v)
λ (w)

∥
∥
∥≤ ρ‖u− v‖, (3.1)

where ρ > 0 is a constant. If

∣
∣
∣
∣λ−

η− p(1− k)
σ2ξ2− p2

∣
∣
∣
∣ <

√(
η− p(1− k)

)2− (σ2ξ2− p2
)
k(2− k)

σ2ξ2− p2
,

η > p(1− k) +
√(

σ2ξ2− p2
)
k(2− k), k < 1, p < σξ, η > p,

(3.2)

where

θ = k+
√

1− 2λη+ λ2σ2ξ2 + λp < 1,

k = 2Ω+ ρ, p =Ω+ω, Ω=
√

1− 2α+β2, ω =
√

1 + 2κ+ δ2μ2.
(3.3)

Then the problem (2.1) has a unique solution u∈H .

Proof. Define a mapping F : H →H as

F(u)= u− g(u) + JA(·,u)
λ

[
g(u)− λ

(
g(u)−N(Vu,Gu)

)]
, u∈H. (3.4)
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By Lemmas 2.11 and 2.7, it is enough to show that F is a contraction mapping. It
follows from (3.4) that
∥
∥F(u)−F(v)

∥
∥= ∥∥u− v− (g(u)− g(v)

)∥∥

+
∥
∥
∥JA(·,u)

λ

[
g(u)− λ

(
g(u)−N(Vu,Gu)

)]

− JA(·,u)
λ

[
g(v)− λ

(
g(v)−N(Vv,Gv)

)]∥∥
∥

+
∥
∥
∥JA(·,u)

λ

[
g(v)− λ

(
g(v)−N(Vv,Gv)

)]

− JA(·,v)
λ

[
g(v)− λ

(
g(v)−N(Vv,Gv)

)]∥∥
∥

≤ ∥∥u− v− (g(u)− g(v)
)∥∥

+
∥
∥g(u)− g(v)− λ

(
g(u)−N(Vu,Gu)

)
+ λ
(
g(v)−N(Vv,Gv)

)∥∥

+ ρ‖u− v‖
≤ 2
∥
∥u− v− (g(u)− g(v)

)∥∥

+
∥
∥u− v+ λ

(
N(Vu,Gu)−N(Vv,Gu)

)∥∥

+ λ
∥
∥g(u)− g(v)− (N(Vv,Gu)−N(Vv,Gv)

)∥∥

+ ρ‖u− v‖
≤ 2
∥
∥u− v− (g(u)− g(v)

)∥∥

+
∥
∥u− v+ λ

(
N(Vu,Gu)−N(Vv,Gu)

)∥∥

+ λ
∥
∥u− v− (g(u)− g(v)

)∥∥

+ λ
∥
∥u− v− (N(Vv,Gu)−N(Vv,Gv)

)∥∥+ ρ‖u− v‖.

(3.5)

Since g is α-strongly monotone and β-Lipschitz continuous, we have

∥
∥u− v− (g(u)− g(v)

)∥∥2 ≤ (1− 2α+β2)∥∥u− v‖2. (3.6)

Since N is σ-Lipschitz continuous with respect to first argument, V is ξ-Lipschitz con-
tinuous, and N is η-relaxed monotone with respect to V in the first argument with con-
stant η > 0, we have

∥
∥u− v+ λ

(
N(Vu,Gu)−N(Vv,Gu)

)∥∥2

≤ ‖u− v‖2 + 2λ
〈
N(Vu,Gu)−N(Vv,Gu),u− v

〉

+ λ2
∥
∥N(Vu,Gu)−N(Vv,Gu)

∥
∥2

≤ ‖u− v‖2− 2λη‖u− v‖2 + λ2σ2ξ2‖u− v‖2

≤ (1− 2λη+ λ2σ2ξ2)‖u− v‖2.

(3.7)

Since N is δ-Lipschitz continuous with respect to the second argument, G is μ-Lip-
schitz continuous, andN is κ-relaxed Lipschitz continuous with respect toG in the second
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argument with constant κ≥ 0, we get

∥
∥u− v− (N(Vv,Gu)−N(Vv,Gu)

)∥∥2

≤ ‖u− v‖2− 2
〈
N(Vv,Gu)−N(Vv,Gv),u− v

〉

+
∥
∥N(Vv,Gu)−N(Vv,Gv)

∥
∥2

≤ ‖u− v‖2 + 2κ‖u− v‖2 + δ2μ2‖u− v‖2

≤ (1 + 2κ+ δ2μ2)‖u− v‖2.

(3.8)

It follows from (3.5)–(3.8) that we have

∥
∥F(u)−F(v)

∥
∥

≤ 2
√

1− 2α+β2‖u− v‖+
√

1− 2λη+ λ2σ2ξ2‖u− v‖

+ λ
√

1− 2α+β2‖u− v‖+ λ
√

1 + 2κ+ δ2μ2‖u− v‖+ ρ‖u− v‖

≤
[

2
√

1− 2α+β2 + ρ+
√

1− 2λη+ λ2σ2ξ2 + λ
√

1− 2α+β2

+ λ
√

1 + 2κ+ δ2μ2
]
‖u− v‖

≤
[

2Ω+ ρ+
√

1− 2λη+ λ2σ2ξ2 + λΩ+ λω
]
‖u− v‖

≤
[
k+
√

1− 2λη+ λ2σ2ξ2 + λ(Ω+ω)
]
‖u− v‖

≤
[
k+
√

1− 2λη+ λ2σ2ξ2 + λp
]
‖u− v‖

≤ θ‖u− v‖,

(3.9)

where

θ = k+
√

1− 2λη+ λ2σ2ξ2 + λp,

k = 2Ω+ ρ, p =Ω+ω, Ω=
√

1− 2α+β2, ω =
√

1 + 2κ+ δ2μ2.
(3.10)

It is easy to verify that (3.3) means 0 < θ < 1. Hence F is a contraction mapping and has
a fixed point u ∈H . It follows from Lemma 2.11 that u is a unique solution of problem
(2.1). This completes the proof. �

Now we suggest the following perturbed iterative approximation process with errors
for solving (2.1).
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Algorithm 3.2. For any given u0 ∈ H , compute the approximate solution {un} by the
perturbed iterative process with errors:

un+1=
(
1−αn

)
un+αn

[
vn−g

(
vn
)

+JAn(·,vn)
λ

{
g
(
vn
)−λ(g(vn

)−N
(
Vvn,Gvn

))}]
+αnen + ln,

vn =
(
1−βn

)
un +βn

[
wn− g

(
wn
)

+ JAn(·,wn)
λ

{
g
(
wn
)− λ

(
g
(
wn
)−N

(
Vwn,Gwn

))}]
+ fn,

wn =
(
1− γn

)
un + γn

[
un− g

(
un
)

+ JAn(·,un)
λ

{
g
(
un
)− λ

(
g
(
un
)−N

(
Vun,Gun

))}]
+hn,

(3.11)

for all n≥ 0, where {αn}, {βn}, and {γn} are sequences in [0,1]; and {en}, { fn}, {ln}, and
{hn} are bounded sequences in H , satisfying suitable conditions:

n∑

n=0

αn = +∞,
n∑

n=0

∥
∥ln
∥
∥ < +∞, lim

n→∞
∥
∥en
∥
∥= lim

n→∞
∥
∥ fn
∥
∥= lim

n→∞
∥
∥hn

∥
∥= 0, (3.12)

and λ > 0 is a constant.

If we remark that γn = 0 and hn = 0, for n ≥ 0, then Algorithm 3.2 reduces to the
following.

Algorithm 3.3. For any given u0 ∈ H , compute the approximate solution {un} by the
perturbed Ishikawa iterative process with errors:

un+1=
(
1−αn

)
un+αn

[
vn−g

(
vn
)

+JAn(·,vn)
λ

{
g
(
vn
)−λ(g(vn

)−N(Vvn,Gvn
))}]

+enαn + ln,

vn =
(
1−βn

)
un +βn

[
un− g

(
un
)

+ JAn(·,un)
λ

{
g
(
un
)− λ

(
g
(
un
)−N

(
Vun,Gun

))}]
+ fn,
(3.13)

where {αn}, {βn}, {en}, { fn}, and {ln} are the same as in Algorithm 3.2.

If βn = 0 and fn = 0 for n≥ 0, then Algorithm 3.3 reduces to the following.

Algorithm 3.4. For any given u0 ∈ H , compute the approximate solution {un} by the
perturbed Mann iterative process with errors:

un+1 =
(
1−αn

)
un +αn

[
un− g

(
un
)

+ JAn(·,un)
λ

{
g
(
un
)− λ

(
g
(
un
)−N

(
Vun,Gun

))}]

+ enαn + ln,
(3.14)

where {αn}, {en}, and {ln} are the same as in Algorithm 3.2.

If en = fn = hn = ln = 0, n≥ 0, then Algorithm 3.2 reduces to the following.
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Algorithm 3.5. For any given u0 ∈ H , compute the approximate solution {un} by the
iterative process:

un+1 =
(
1−αn

)
un +αn

[
vn− g

(
vn
)

+ JAn(·,vn)
λ

{
g(vn)− λ

(
g
(
vn
)−N

(
Vvn,Gvn

))}]
,

vn =
(
1−βn

)
un +βn

[
wn− g

(
wn
)

+ JAn(·,wn)
λ

{
g
(
wn
)− λ

(
g
(
wn
)−N

(
Vwn,Gwn

))}]
,

wn =
(
1− γn

)
un + γn

[
un− g

(
un
)

+ JAn(·,un)
λ

{
g
(
un
)− λ

(
g
(
un
)−N

(
Vun,Gun

))}]
,

(3.15)

where αn, βn, and γn are the same as in Algorithm 3.2.

Now we discuss the convergence and stability of the iterative sequences with errors
generated by Algorithm 3.2; we first give some concepts.

Let T be a self map of H , x0 ∈ H , and xn+1 = f (T ,xn), define an iterative procedure
which yields a sequence of points {xn} in H . Suppose that {x ∈ H : Tx = x} = ∅ and
{xn} converge to a fixed point x� ∈ H . Let {yn} ⊂ H and εn = ‖yn+1 − f (T , yn)‖. If
limn→∞ εn = 0 implies that limn→∞ yn = x�, then the iterative procedure {xn} defined by
xn+1 = f (T ,xn) is said to be T-stable or stable with respect to T . If

∑∞
n=0 εn < +∞ implies

that limn→∞ yn = x�, then the iterative procedure {xn} is said to almost T-stable.

Remark 3.6. An iterative procedure {xn} which is T-stable is almost T-stable, and an
iterative procedure {xn} which is almost T-stable need not be T-stable, see [5].

Theorem 3.7. Let g, V , G, and N be the same as in Theorem 3.1, and the conditions (3.1)
and (3.3) hold. Let {An} and A be maximal monotone mappings from H into power set of H

such that An
G−→A. Let {xn} be a sequence in H and define a sequence {εn} of real numbers

as follows:

εn =
∥
∥xn+1 =

{(
1−αn

)
xn

+αn
[
yn− g

(
yn
)

+ J
An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))]

+αnen + ln
}∥∥,

yn =
(
1−βn

)
xn +βn

[
zn− g

(
zn
)

+ JAn(·,zn)
λ

(
g
(
zn
)− λ

(
g
(
zn
)−N

(
Vzn,Gzn

)))]
+ fn,

zn =
(
1− γn

)
xn + γn

[
xn− g

(
xn
)

+ JAn(·,xn)
λ

(
g
(
xn
)− λ

(
g
(
xn
)−N

(
Vxn,Gxn

)))]
+hn.

(3.16)

Then the following conditions hold.
(i) The sequence {un} generated by Algorithm 3.2 converges strongly to the unique so-

lution u� of the problem (2.1).
(ii) If εn = αnDn + qn with

∑∞
n=0 qn < +∞ and limn→∞Dn = 0, then

lim
n→∞xn = u�. (3.17)

(iii) limn→∞ xn = u� implies that

lim
n→∞εn = 0. (3.18)
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Proof. By Theorem 3.1, we know that problem (2.1) has a unique solution u� ∈H . It is
easy to see that conclusion (i) follows from (ii). Now we prove (ii). It follows from the
Lemma 2.11 that

u� = (1−αn
)
u� +αn

[
u�− g

(
u�
)

+ JA(·,u�)
λ

{
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

))}]

= (1−βn
)
u� +βn

[
u�− g

(
u�
)

+ JA(·,u�)
λ

{
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

))}]

= (1− γn
)
u� + γn

[
u�− g

(
u�
)

+ JA(·,u�)
λ

{
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

))}]
.

(3.19)

From (3.16) and (3.19), we have

∥
∥xn+1−u�

∥
∥

≤ ∥∥xn+1−
{(

1−αn
)
xn

+αn
[
yn− g

(
yn
)

+ J
An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))]

+αnen + ln
}∥∥

+
∥
∥(1−αn

)(
xn−u�

)
+αn

[
yn−u�− (g(yn

)− g
(
u�
))]

+αn
[
J
An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))

− JA(·,u�)
λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))]∥∥

+αn
∥
∥en
∥
∥+

∥
∥ln
∥
∥

≤ (1−αn
)∥∥xn−u�

∥
∥+αn

∥
∥yn−u�− (g(yn

)− g
(
u�
))∥∥

+αn
∥
∥J

An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))

− J
An(·,yn)
λ

(
g(u�)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))∥∥

+αn
∥
∥J

An(·,yn)
λ

(
g
(
u�
)
λ
(
g
(
u�
)−N

(
Vu�,Gu�

)))

− JA(·,u�)
λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))∥∥

+αn
∥
∥JAn(·,u�)

λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))

− JA(·,u�)
λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))∥∥+ εn +αn
∥
∥en
∥
∥+

∥
∥ln
∥
∥

≤ (1−αn
)∥∥xn−u�

∥
∥+ 2αn

∥
∥yn−u�− (g(yn

)− g
(
u�
))∥∥

+αn
∥
∥yn−u� + λ

(
N
(
V yn,Gyn

)−N
(
Vu�,Gyn

))∥∥

+αnλ
∥
∥yn−u�− (g(yn

)− g
(
u�
))∥∥

+αnλ
∥
∥yn−u�− (N(Vu�,Gyn

)−N
(
Vu�,Gu�

))∥∥

+αnρ
∥
∥yn−u�

∥
∥+ εn +αnPn +αn

∥
∥en
∥
∥+

∥
∥ln
∥
∥,

(3.20)



12 Perturbed three-step approximation process with errors

where

Pn =
∥
∥JAn(·,u�)

λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))

− JA(·,u�)
λ

(
g
(
u�
)− λ

(
g
(
u�
)−N

(
Vu�,Gu�

)))∥∥−→ 0.
(3.21)

As the proof of (3.6)–(3.8), we have

∥
∥yn−u�− (g(yn

)− g
(
u�
))∥∥≤

√
1− 2α+β2

∥
∥yn−u�

∥
∥,

∥
∥yn−u� + λ

(
N
(
V yn,Gyn

)−N
(
Vu�,Gyn

))∥∥≤
√

1− 2λη+ λ2σ2ξ2
∥
∥yn−u�

∥
∥,

∥
∥yn−u�− (N(Vu�,Gyn

)−N
(
Vu�,Gu�

))∥∥≤
√

1 + 2κ+ δ2μ2
∥
∥yn−u�

∥
∥.

(3.22)

It follows from (3.20)–(3.22) that

∥
∥xn+1−u�

∥
∥≤ (1−αn

)∥∥xn−u�
∥
∥+ θαn

∥
∥yn−u�

∥
∥+ εn +αnPn +αn

∥
∥en
∥
∥+

∥
∥ln
∥
∥, (3.23)

where

θ = k+
√

1− 2λη+ λ2σ2ξ2 + λp < 1,

k = 2Ω+ ρ, p =Ω+ω, Ω=
√

1− 2α+β2, ω =
√

1 + 2κ+ δ2μ2.
(3.24)

Similarly, we have

∥
∥yn−u�

∥
∥≤ (1−βn

)∥∥xn−u�
∥
∥+βnθ

∥
∥zn−u�

∥
∥+βnPn +

∥
∥ fn
∥
∥, (3.25)

∥
∥zn−u�

∥
∥≤ (1− γn

)∥∥xn−u�
∥
∥+ γnθ

∥
∥xn−u�

∥
∥+ γnPn +

∥
∥hn

∥
∥

≤ (1− γn
(
1− θ

))∥∥xn−u�
∥
∥+ γnPn +

∥
∥hn

∥
∥

≤ ∥∥xn−u�
∥
∥+ γnPn +

∥
∥hn

∥
∥,

(3.26)

where

(
1− γn(1− θ)

)≤ 1. (3.27)

Substituting (3.26) into (3.25), we have

∥
∥yn−u�

∥
∥≤ (1−βn

)∥∥xn−u�
∥
∥+βnθ

∥
∥xn−u�

∥
∥+βnγnPnθ +βnθ

∥
∥hn

∥
∥+βnPn +

∥
∥ fn
∥
∥

≤ (1−βn(1− θ)
)∥∥xn−u�

∥
∥+βnγnPnθ +βnθ

∥
∥hn

∥
∥+βnPn +

∥
∥ fn
∥
∥

≤ ∥∥xn−u�
∥
∥+ 2Pn +

∥
∥hn

∥
∥+

∥
∥ fn
∥
∥.

(3.28)
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From (3.23) and (3.28),

∥
∥xn+1−u�

∥
∥≤ (1−αn

)∥∥xn−u�
∥
∥+αnθ

∥
∥xn−u�

∥
∥+αnθ

(
2Pn +

∥
∥hn

∥
∥+

∥
∥ fn
∥
∥)

+αnΔn + qn +αnPn +αn
∥
∥en
∥
∥+

∥
∥ln
∥
∥

≤ (1−αn(1− θ)
)∥∥xn−u�

∥
∥

+αn(1− θ)
1

1− θ

(
3Pn +

∥
∥hn

∥
∥+

∥
∥ fn
∥
∥+Δn +

∥
∥en
∥
∥)+

(
qn +

∥
∥ln
∥
∥).

(3.29)

Set an = xn− u�, bn = (1/(1− θ))(3Pn + ‖hn‖+ ‖ fn‖+Δn + ‖en‖) and tn = αn(1− θ),
cn = qn +‖ln‖.

Then we can rewrite (3.29) as follows:

an+1 ≤
(
1− tn

)
an + bntn + cn. (3.30)

From the assumption,we know that {an}, {bn}, {cn}, and {tn} satisfy the conditions of
Lemma 2.10. It follows from Lemma 2.10 that an→ 0 and so xn→ u� as n→∞.

Next, we prove (iii). From (3.11) and (3.28), we know that yn→ u� as n→∞. It follows
from (3.16) that

εn ≤
∥
∥xn−u�

∥
∥

+
∥
∥(1−αn

)
xn +αn

[
yn− g

(
yn
)

+ J
An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))]−u�
∥
∥

+αn
∥
∥en
∥
∥+

∥
∥ln
∥
∥.

(3.31)

As the proof of (3.23), we have

∥
∥(1−αn

)
xn +αn

[
yn− g

(
yn
)

+ J
An(·,yn)
λ

(
g
(
yn
)− λ

(
g
(
yn
)−N

(
V yn,Gyn

)))]−u�
∥
∥

≤ (1−αn
)∥∥xn−u�

∥
∥+αnθ

∥
∥yn−u�

∥
∥+αnPn.

(3.32)

Substituting (3.32) and (3.31), we get

εn ≤
∥
∥xn+1−u�

∥
∥+

(
1−αn

)∥∥xn−u�
∥
∥+αnθ

∥
∥yn−u�

∥
∥+αnPn. (3.33)

Since xn → u�, yn → u� and Pn → 0 as n→∞, it follows that εn → 0. This completes
the proof. �
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