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We propose both a reformulation of some known results on the free dendriform algebra
on one generator from a parenthesis setting instead of using permutations and some
developments as well. Moreover, by introducing the concept of NCP-operad, we show
how to use the free dendriform algebra on one generator to reformulate some results
obtained by Speicher in free probability.
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1. Introduction

In Section 2, we propose a reformulation of the free dendriform algebra over the genera-
tor via a parenthesis setting. We propose at the same time both a brief survey on trees
and new results proved from the parenthesis setting. In Section 3, we present a bijection
between planar rooted binary trees and noncrossing partitions. This allows the intro-
duction of the concept of NCP-operads, whose axioms look like regular operads ones.
We then show, in Section 4, how to use the free dendriform algebra on one generator to
reformulate some results obtained by Speicher in free probability.

In this paper, K is a characteristic zero field, N is the semiring of integers, and Nn
b

stands for the set {v := (v1, . . . ,vn)∈Nn; for all 1≤ i≤ n, 0 < vi ≤ i}, in bijection with Sn,
the symmetric group over n elements. If S is a finite set, then card(S) denotes its cardinal,
KS, the K-vector space spanned by S, and 〈S〉, the free associative semigroup generated
by S. Rooted planar binary trees will be called binary trees for short. For all n > 0, we
mean by Yn the set of planar rooted binary trees with n+ 1 leaves. If k ∈ K , v ∈ Kn, then
(k+ v) is the vector v whose coordinates have been shifted by k.

2. Arithmetics on trees from operads

For details about operads, the reader should consult the literature, for instance, [1, 4, 10].
Dendriform algebras have been introduced by Loday [5] as dual, in the operadic sense, to
associative dialgebras, themselves motivated by K-theory. The free dendriform algebra on
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2 Free dendriform algebras. Part I. A parenthesis setting

one generator is then closely related to binary trees. Major developments [7] have been
put forward by using the Hopf algebra structure on the regular representations of the
permutation groups founded by Malvenuto and Reutenauer [9] and connections between
permutations and binary trees. Since then, an arithmetic on trees has been introduced by
Loday [6]. The aim of this section is to present another way to handle the free dendriform
algebra on one generator. Instead of starting with coding binary trees via permutations,
we focus on the parenthesizing the meaning of binary trees.

2.1. Binary trees versus vectors. Contrary to permutations used in [6, 8], we propose in
this section another way to encode binary trees compatible with the Tamari order which
will play a key role to explicit operations on trees. For that, we associate with a planar
binary tree of Yn a unique vector of Nn in the following way. To any binary tree τ corre-
sponds a unique parenthesizsing, and therefore a unique monomial in 〈x1, . . . ,xn+1,(, )〉
and thus a unique monomial in 〈x1, . . . ,xn+1,(〉 obtained by forgetting all right parenthe-
ses. Proceeding this way, we obtain an injection: Exp : Yn→ 〈x1, . . . ,xn+1,(〉. In the sequel,
to ease notation, the unique parenthesizing associated with the binary tree τ will be also
represented by Exp(τ) as in the following example:

(1,2,3,3)

Exp
(x1(x2((x3x4)x5)))

Exp
(x1(x2((x3x4)x5)))

(2.1)

Encode the parentheses of Exp(τ) of the binary tree τ in a vector v := (v1,v2, . . . ,vn) of
Nn by declaring that for all 1 ≤ i ≤ n, vi := i if and only if there exists a left parenthe-
sizing at the left-hand side of xi, that is, . . .(pxi . . ., with p > 0, occurs in the monomial
Exp(τ). Otherwise, there exists a unique rightmost parenthesis at the right-hand side of
xi which closes a unique left parenthesis, say, open at xj . In this case, vi := j. Observe that
this framework works since binary trees, via their leaves, model all parentheses one can
obtain from a binary operation. We then obtain an injective map; name : Yn→Nn, which
maps any tree τ into a vector, name(τ), also denoted by τ for short, called the name of
τ. We warn the reader that we use the word “name” with a different meaning that in [6].
In the sequel, name(Yn) will be denoted by An (A, like Appellation), and by complete ex-
pression, we mean a monomial of 〈x1, . . . ,xn+1,(, )〉 in one-to-one correspondence with a
rooted planar binary tree, that is, every parenthesis ( is closed by a unique parenthesis ).

Proposition 2.1. Let v ∈Nn
b .

There is a unique monomial (q1x1(q2x2 ···(qnxnxn+1 from 〈x1, . . . ,xn+1,(, )〉 associated
with v, where qi is the number of i’s appearing in v. Such an algorithm gives a surjective map
Tree :Nn

b → Yn.

Proof. We proceed by induction. Fix v := (v1, . . . ,vn) ∈ Nn
b . Its associated monomial in

〈x1, . . . ,xn, (〉 is of the form (q1x1(q2x2 ···(qnxnxn+1, where qj is the number of j’s ap-
pearing in v. Observe that

∑
qj = n and 1 ≤ qj ≤ n− j + 1 since j may appear only
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from xj . Take the highest j, with qj �= 0, that is, consider (qj x jx j+1 ···xn. As parenthe-
ses model a binary operation, there is a unique way to set right parentheses, namely,
(qj x jx j+1)···xj+qj )···xnxn+1. This gives a complete expression X = (qj x jx j+1)···xj+qj )
and (q1x1(q2x2 ···(qj−1xj−1X ···xn+1 with

∑
qk = n− qj . The proof is complete by induc-

tion. �

Proposition 2.1 is in fact an error-correcting code. Let us apply it to (1,2,1,2). This
gives ((x1((x2x3x4x5, that is, ((x1((x2x3)x4))x5), that is, the tree named by (1,2,2,1).

Corollary 2.2 (reconstruction criterion). A vector v ∈Nn
b is the name of a binary tree if

and only if name(Tree(v))= v.

2.1.1. Realization of the grafting operation. In the sequel, for all n > 0, n := (1,2,3,4, . . . ,n),
0 := (0), and 1n := (1,1,1, . . . ,1). Fix n,m �= 0 and v ∈An and w ∈Am. The grafting oper-
ation is a map,

∨ :An×Am −→Am+n+1,

(v,w) 	−→ v∨w := (v,1,w1 +n+ 1, . . . ,wm +n+ 1
)

:= (v,1,v+ 1 +w),
(2.2)

where for all k ∈N and w ∈Am, m> 0, the notation k+w stands for (w1 + k, . . . ,wm + k),
k+ 0 := 0 and where by abuse of notation v denotes the number of coordinates in v (i.e., n
in this case). In the sequel, we give the name (0) to the tree and (1) to the tree Y := . By
convention, if v := (v1, . . . ,vn)∈ An and n �= 0, then v∨ (0) := (v,1), (0)∨ v := (1,1 + v),
and (0)∨ (0) := (1). There exists a trivial partial order in Nn by declaring that v ≤ w⇔
for all 1≤ i≤ n, vi ≤ wi, inducing so a trivial partial order on An. As already mentioned,
there exists a partial order on binary trees, often called the Tamari order, induced by the
relation (τ1 ∨ τ2)∨ τ3 ≤ τ1 ∨ (τ2 ∨ τ3), for any trees τ1,τ2,τ3. Equip Yn with the Tamari
order. Then, for all π,τ ∈ Yn, π < τ if and only if name(π) < name(τ). There is, on the
symmetric group Sn, a partial order≤Bruhat called the weak-Bruhat order. From [8], there
is a surjective map, s 	→ Ys, mapping permutations of Sn to n-trees of Yn. Equipped with
the Tamari order, it is proved that s≤Bruhat s′ ⇔ Ys ≤ Ys. Therefore, the weak-Bruhat order
of the symmetric group Sn is nothing else that the trivial partial order on An. As Sn is
in bijection with Nn

b , it might be interesting to find an order preserving code between
permutations and vectors of Nn

b . The Tamari order is represented for (Y2,<) or (A2,<),
(1,1)→ (1,2), and for (Y3,<) or (A3,<), by

(1,1,3)

(1,1,1)

(1,2,3)

(1,2,2)

(1,2,1)

(2.3)
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For these lattices, the Möbius function, M, can be explicited. For all �v = (v1, . . . ,vn)∈An,
M(�v) := (−1)t�v if and only if for all i, vi = 1 or i, and where t�v is the number of coordinates
such that vi = i �= 1. Else, M(�v) := 0 [14]. We extend the Möbius function to (0) by setting
M(v∨ (0)) :=M(v,1) :=M(v), and M((0)∨ v) :=M((1,1 + v) := 0, unless v = n, for all
v ∈An and n > 0.

Proposition 2.3. Let π ∈ Yn and τ ∈ Ym. Then, name(π ∨ τ) = name(π)∨ name(τ).
(The map name is a grafting morphism.) Moreover, M(name(π∨ τ))=(−1)mM(name(π))
if τ =m and zero otherwise. Let v,w ∈ (An,<) and u,z ∈ (Am,<). Then (v ≤ w, u < z) or
(v < w, u≤ z) if and only if v∨u < w∨ z.

Proof. Let π ∈ Yn and τ ∈ Ym. The tree π gives a unique complete expression, Exp(π)=
(p1x1(p2x2 ···(pnxnxn+1, where pi is the number of i’s in the name of π. Similarly for τ, set
Exp(τ)= (p

′
1x1(p

′
2x2 ···(p

′
mxmxm+1. Their grafting gives

((p1x1
(p2x2 ···

(pnxnxn+1
(p′1x1

(p′2x2 ···
(p′mxmxm+1, (2.4)

which once renamed in a complete expression of 〈 x1, . . . ,xn+1,xn+2, . . . ,xn+1+m+1,(〉 gives

((p1x1
(p2x2 ···

(pnxnxn+1
(p′1xn+1+1

(p′2xn+1+2 ···
(p′mxn+1+mxn+1+m+1. (2.5)

Observe that name(π∨ τ)n+1 = 1, giving the first claim. For computing the Möbius func-
tion, observe that if 1≤ wi < i, then n+ 2≤ name(π ∨ τ)i+n+1 < i+n+ 1. Without forget-
ting w1 = 1, which becomes name(π∨ τ)1+n+1 = n+ 2 > 1, we obtain M(name(π∨m))=
(−1)mM(name(π)) and zero otherwise. The last claim is straightforward. �

The grafting operation can be extended by bilinearity to KA∞ :=⊕n≥0KA
n. In the

sequel, we set KA∞∗ :=⊕n≥1KA
n, A• :=⋃n≥0A

n, and A•∗ :=⋃n≥1A
n.

2.1.2. Coding the over and under operations. Before going on, recall that an associative
L-algebra is a K-vector space A equipped with two binary operations ↗,↖: A⊗2 → A and
obeying three constraints. The two operations are associative and verify (x ↗ y)↖ z := x ↗
(y ↖ z). L-monoids are straightforward to define. From a (co)algebraic point of view, L-
coalgebras have been introduced on graphs in [2, 3]. In [8], Loday and Ronco introduced
the operations over and under on trees, denoted, respectively, by ↗,↖: Yn ×Ym → Yn+m,
for all n,m �= 0, where π ↗ τ is the tree τ with its leftmost leaf identified with the root
of π and where π ↖ τ is the tree π with its rightmost leaf identified with the root of τ.
These two operations have a common unit which is . To define the analogue of these
two operations on vectors, consider the map � :N×An →An, k� v := (k+̃v1, . . . ,k+̃vn),
where k+̃vi := k+ vi, for vi �= 1 and k+̃1 := 1 (otherwise stated, 1 is a right annihilator for
the operation +̃).

Proposition 2.4. Fix n,m �= 0 and v ∈An and w ∈Am. The binary operations ↗,↖:An×
Am→An+m defined as follows: v ↗ w := (v, v�w) and v ↖ w := (v,v+w), turn A•∗ (resp.,
KA∞∗ ) into an associative L-monoid (resp., an associative L-algebra). The map name is a
morphism of associative L-monoids (resp., of associative L-algebras). Moreover, M(v ↗w)=
M(v)M(w) and M(v ↖w)= (−1)mM(v), if w =m, else 0.
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Proof. Fix n,m �= 0 and v ∈ An and w ∈ Am. Their complete expression Exp(v) (resp.,
Exp(w)) is of the form (p1x1(p2x2 ···(pnxnxn+1 (resp., (p

′
1x1(p

′
2x2 ···(p

′
mxmxm+1). The as-

sociated trees are Tree(v) and Tree(w). However, Tree(v) ↗ Tree(w) has the expression,
(p

′
1 Exp(v)(p

′
2x2 ···(p

′
mxmxm+1. Observe that (v ↗ w)n+1 corresponds to xn+1 thus is equal

to 1. Observe also that the left parentheses of Exp(w) do not move during this oper-
ation. We have to take into account the shift of the coordinate j of w of an amount
of v—corresponding to the degree of the tree Tree(w)—for all wj �= 1. For wj = 1, the
rightmost parenthesis at the right-hand side of xj still closes a left parenthesis at the
left-hand side of x1 ≡ Exp(v). Therefore, for those j, (v ↗ w) j = 1. This gives the vec-
tor (v,1,v+̃w2,v+̃w3, . . . ,v+̃wm) = (v,v�w). The second operation is easier since all the
wj have to be shifted by n= v. We extend easily these two operations to KA∞∗ by bilinear-
ity. Observe then that ↗ and ↖ are associative and the equality u ↗ (v ↖w)= (u ↗ v) ↖ w
holds, giving an associative L-monoidal structure toA•∗ or an associative L-algebra struc-
ture to KA∞∗ . Extend the map name by linearity, we obtain an isomorphism of associative
L-algebras between KY∞∗ and KA∞∗ . Concerning the identities on the Möbius function,
observe that M(v ↗ w)=M(v)M(w) since wi = i �= 1 if and only if (v ↗ w)i+v = i+ v and
vi = 1 becomes (v ↗ w)i+v = 1. However M(v ↖m) = (−1)mM(v) since we have also to
take into account w1 = 1 becoming (v ↗w)1+v = 1 + v and for w �=m, M(v ↖w)= 0. �

Corollary 2.5. For all u1,u2 ∈ (An,<), v1,v2 ∈ (Am,<), and w1,w2 ∈ (Ap,<), u1 ≤ u2,
w1 ≤ w2, v1 ≤ v2 ⇔ u1 ↗ v1 ↖ w1 ≤ u2 ↗ v2 ↖ w2, where the presence of a strict inequality
on the left-hand side induces a strict one in the right-hand side. Moreover, v ↗ w ≤ v ↖ w
holds.

Proof. The proof is complete by using Propositions 2.3 and 2.4. �

Since v = vl ∨ vr = vl ↗ (1) ↖ vr , it is straightforward to prove that the free L-algebra
over one generator x is isomorphic to (KA∞∗ ,↗,↖) by mapping x to the generator (1)
(see also [11]). By anticipating the ideas of Loday (explained in detail below), one can
convert operations ↗,↖ into set operations called L-additions denoted by +↗,+↖ : An ×
Am→An+m where v+↖ u := v ↖ u and v+↗ u := v ↗ u. These additions are associative and
noncommutative. Similarly, there is a notion of L-multiplication. As (KA∞∗ ,↗,↖) is the
free L-algebra on the generator (1), one can uniquely write any name of binary trees via
only the operations ↗ and ↖ and (1). Such a formula, for a vector v, is called its universal
expression and is denoted by �v((1)), obtained by the following induction �v((1)) :=
�vl((1)) ↗ (1) ↖ �vr ((1)). For instance, (1,1,3) = (1) ↗ (1) ↖ (1) = �(1,1,3)((1)). The L-
multiplication of u ∈ An by v ∈ Am is by definition u�̃v := �u(v) ∈ Anm. For instance,
(1,1,3)�̃v = (v) ↗ (v) ↖ (v). Therefore, any name of Am, where m is a prime number,
will be prime for the L-arithmetics. Consider now the K-vector space K[X]L spanned
by {Xv, v ∈ (A•∗,+↗,+↖,�̃)}. This is the free L-algebra over the generator X (1) where, as
expected, operations are defined by Xu ↗ Xv := Xu+↗v, Xu ↖ Xv := Xu+↖v, and (Xu)v :=
Xu�̃v, imitating the usual ploynomial algebra on one variable endowed with the usual
arithmetics over N. There is also a dendriform involution †, described in Section 2.2.2.
We summarize our investigation by the following theorem.
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Theorem 2.6. The setA•∗ equipped with the L-additions, +↗, and +↖, and with the dendri-
form involution † is an involutive-graded L-monoid. The L-multiplication, �̃, is left dis-
tributive associative though noncommutative. For any names of trees, u, v, (u +↗ v)† =
v† +↖ u†, (u+↖ v)† = v† +↗ u†, and (u�̃v)† = u†�̃v† hold. Moreover, equipped with the
dendriform involution, the K-vector space K[X]L spanned by {Xv, v ∈ (A•∗,+↗,+↖,�̃)} is
the free involutive associative L-algebra over the generator X (1).

Proposition 2.7. Fix n,m �= 0 and x, y ∈ (An,<) and a,b ∈ (Am,<). With regards to the

trivial partial order, the map �x : Am → Anm is a lattice morphism, that is, x�̃a < x�̃b⇔
a < b and the map �̃a :An→Anm is also a lattice morphism, that is, x�̃a < y�̃a⇔ x < y.

Proof. Keep notation of Proposition 2.7 For the first claim, proceed by induction. It is
true for x = (1), for x = (1,1) and for x = (1,2). By Corollary 2.5, x�̃a < x�̃b⇔ xl�̃a+↗
a+↖ xr�̃a < xl�̃b +↗ b +↖ xr�̃b⇔ a < b, xl�̃a < xl�̃b, xr�̃a < xr�̃b. The proof is com-
plete by induction. Concerning the second claim, if x < y, then there exist say k Tamari
moves between the trees associated with x and y. Suppose k = 1. Then, in the defini-
tions of x, y, this means the existence of three vectors say v1, v2, v3 such that we have
···(v1 ∨ v2)∨ v3 ··· < ···v1 ∨ (v2 ∨ v3) . . . . Therefore, we obtain, ···(v1 ↗ (1) ↖ v2) ↗
(1) ↖ v3 ··· < ···v1 ↗ (1) ↖ (v2 ↗ (1) ↖ v3) . . . . The second claim holds for k = 1, and
thus for all k. �

The operations ↗,↖ have a common unit which is (0) ≡ . However, the link axiom
of L-algebras is not compatible with this unit since it forces ↗=↖. Using the trivial par-
tial order, we will exhibit an associative operation, sum of two nonassociative operations
obeying three axioms. This operation has first been introduced by Loday and Ronco by
using techniques in permutation groups [8]. One of the main advantages of our coding
is to give easier proofs to these results.

Proposition 2.8. The following binary operation:� : KA∞∗ ⊗KA∞∗ → KA∞∗ , v⊗w 	→ v�
w =∑v↗w≤t≤v↖w t, is associative. Moreover, u� v�w =∑u↗v↗w≤t≤u↖v↖w t and v� (0) =
v = (0)� v hold for all u,v,w ∈ KA∞∗ .

Proof. Let u∈Ap, v ∈An, and w ∈Am, with p,n,m �= 0. On the one hand, u� (v�w)=
∑

u↗v≤a≤u↖v a�w =∑b∈J1 b, where J1 := {b; a ↗ w ≤ b ≤ a ↖ w, u ↗ v ≤ a ≤ u ↖ v} =
{b; (u, u� v, (u+ v)�w) ≤ b ≤ (u, u+ v, (u+ v) +w)}. On the other hand (u� v)�
w =∑v↗w≤c≤v↖w u� c =∑d∈J2 d, where J2 := {d, u↗ c ≤ d ≤ u↖ c, v ↗w ≤ c ≤ v ↖w} =
{d, (u, u� (v ↗ w)) ≤ d ≤ (u, u+ (v ↖ w))} = {d, (u, u� v, (u+ v)�w) ≤ d ≤ (u,u+
v, (u+ v) +w)}. Hence J1 = J2 and � is associative. The last claim is obvious since (0) is
by definition a unit for the operations ↗ and ↖. �

The sum in the definition of the associative product � can be split into two parts
corresponding to two operations.

Proposition 2.9. Let v and w be names of some trees. Then, the set I := {u; v ↗ w ≤ u≤
v ↖ w} splits into two disjoint subsets: I1 := {u; (v, vl + 1 + vr �w) ≤ u ≤ (v, v +w)} and
I2 := {u; (v, v�w)≤ u≤ (v, v+wl, 1, v+ 1 +wl +wr)}.
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Proof. First of all, observe that (v, v�w) = (v, v�wl, 1, v + 1 + wl + wr). Therefore,
we have only to compare (v�wl, 1) and (v +wl, 1) in I2. Similarly, concerning I1, ob-
serve that (v, vl + 1 + vr �w) = (v, vl + 1 + vr �wl, vl + 2, vl + 1 + vr � [wr +wl + 1]) =
(v, vl + 1 + vr �wl, vl + 2, v + 1 + wl + wr) and (v, v + w) = (v, v + wl, v + 1, v + wl +
1 +wr). Therefore, we have to compare the vector (vl + 1 + vr �wl, vl + 2) with (v +wl,
v + 1). As vl represents a complete expression, jumps of coordinates situated after vl
cannot take values below vl. From this remark, one obtains that I1 and I2 are disjoint
and I1∪ I2 = I . �

We recover from a vectorial framework the dendriform algebra introduced in [5]. Re-
call that a K-vector space E is a dendriform algebra [5] if it is equipped with 2 binary
operations ≺ and � satisfying the following axioms for all x, y ∈ E:

(x ≺ y)≺ z = x ≺ (y� z), (x � y)≺ z = x � (y ≺ z), (x� y)� z = x � (y � z),
(2.6)

where, by definition, x� y := x ≺ y + x � y, for all x, y ∈ E, where � turns out to be
associative. We now adapt the following theorem appearing in [5, 8].

Theorem 2.10. Equip KA∞∗ with two binary operations ≺ and �, defined as follows: v ≺
w := vl ∨ (vr �w) and v � w := (v�wl)∨wr , for all v,w �= (0). Then, (KA∞∗ ,≺,�) is a
dendriform algebra generated by (1). This space can be augmented by requiring v ≺ (0) :=
v =: (0)� v and v � (0) := 0=: (0)≺ v, for v �= (0). Equipped with these operations, KA∞

is still a dendriform algebra with v∗ (0)= (0)∗ v = v, for all v ∈ KA∞.

Theorem 2.11 (Loday [5]). The K-vector space (KA∞∗ ,≺,�) is the free dendriform algebra
on the generator (1).

As a corollary, there exists a universal expression, denoted by ωv(1), of v ∈ An as a
composition of n copies of (1) with ≺ and �. Set ω(0)(1) := 0 and of course ωv(1) :=
ωvl(1) � (1) ≺ ωvr (1). For instance, ω(121)(1) := ((1) ≺ (1)) � (1). So defined, (KA∞∗ :=
⊗n>0KAn,≺,�,↗,↖) is another presentation of the free dendriform algebra on one gen-
erator (1), equipped with an extra-structure of associative L-algebra (KA∞,↗,↖) whose
basis encodes binary trees in a compatible way with the Tamari order underlying the def-
initions of the operations ≺ and �. One of the main advantages of this coding lies in a
reformulation of arithmetree in terms of vectors.

2.2. Arithmetree on planar binary trees. After the reformulations of constructions de-
veloped in [5, 8], let us recall a deep notion introduced by Loday. We follow [6]. A grove is
simply a nonempty subset of Yn, that is, a disjoint union of binary trees with same degree
such that each tree appears only once. The set of groves over Yn is denoted by Yn and is
of cardinal 2cn − 1. For instance, in low degrees,

Y0 := { }, Y1 := { }
, Y2 := { , , ∪ }

. (2.7)
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Similarly, we define An in the same way. Instead of binary trees, we work with the set An,
which are the names of groves of Yn. Hence, A0 := {(0)}, A1 := {(1)}, A2 := {(1,1),(1,2),
(1,1)∪ (1,2)}, and continue to call grove such a union of vectors. The idea is now to
convert the associative operation � in Proposition 2.8 into an addition with values in
groves.

2.2.1. The dendriform addition.

Definition 2.12 (dendriform addition [6]). The dendriform addition of two vectors v and
w associated with some planar binary trees is defined by

v�w :=
⋃

v↗w≤u≤v↖w
u. (2.8)

For instance, (1) � (1) := (1,1)∪ (1,2) or at the level of binary trees � = ∪ .
This is extended to groves by distributivity of both sides, that is,

⋃
i vi �

⋃
j w j :=⋃i j(vi �

wj). Theorem 2.14 below proves that this definition has a meaning. This fundamental re-
sult has been found by Loday by using the following lemma whose proof can be simplified
by using our vector codes.

Lemma 2.13. Let w ∈An+m. Then, there exists unique u∈An and v ∈Am such that

u↗ v ≤w ≤ u↖ v. (2.9)

Proof (cf., to [6], Proposition 2.3, and Corollary 2.4). Recall that for u∈An and v ∈Am,
we get u ↗ v = (u,u� v) and u ↖ v = (u,u+ v). Take the first n coordinates of w ∈An+m.
This gives a unique vector u ∈ An according to Proposition 2.1. Consider the vector v1

defined by v1 := (wn+1, . . . ,wn+m). Make the translation of −n := −u to obtain v1 − u =
(wn+1 − u, . . . ,wn+m − u). The vector v ∈ Am we are looking for is obtained by replacing
all negative or null coordinates by 1. Observe that u ↗ v = (u,u� v) ≤ w ≤ (u,u+ v) =
u↖ v. �

Theorem 2.14 (Loday [6]). The dendriform addition of two groves is still a grove, that is,
� : An×Am→ An+m.

Proposition 2.15 (left and right cancellations). Let u,v ∈ Am, w ∈ An. Then, u� v =
u�w⇔ v =w and v�u=w�u⇔ v =w.

Proof. Using Proposition 2.4, recall that u ↖ v = (u;u + v) and u ↖ w = (u;u + w). The
equality u� v = u�w entails that u ↖ v = u ↖ w; hence v = w. The second equality is
straightforward. �

2.2.2. The dendriform involution. There is an involution on A• := ⋃n≥0 An denoted by
† and defined by (v∨w)† := w† ∨ v†. That is, (v,1,v +w)† := (w†,1,w + v†). Doing so,
observe that (v ↗ w)† = w† ↖ v† and (v ↖ w)† = w† ↗ v†. Therefore, (v �w)† = w† �
v†, that is, (A•,�,†) is an involutive graded monoid. Observe that (1)† = (1) and by
convention, we set (0)† := (0). We now state some properties of the involution on trees.

Proposition 2.16. Fix n≥ 1 and let Inv[n] := {v ∈An,v := v†}. Then, Inv[2n]=∅ and
card(Inv[2n+ 1])= cn := (1/(n+ 1))( 2n

n ).
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Proof. Observe that v = v† if and only if there exists a unique w such that v =w∨w†. �

[Trick to name v†]. Fix v ∈An. There exists a very simple way to name v†. Associate with
v, its complete expression in 〈x1, . . . ,xn,xn+1,(, )〉. Relabel xn+1 by x1, xn by x2 and so on.
Read therefore from left to right such a monomial. The vector v† ∈An is obtained from
the following construction. The coordinate v†i := i, for all 1≤ i≤ n, if and only if there is
a ) at the right-hand side of xi and v†i := j if the leftmost parenthesis ( at the left-hand side
of xi closes a ) open in xj . This works since the involution on binary trees is a symmetry
with regards to the root axis, which can also be viewed as a symmetry with regards to an
axis perpendicular to it—the Mirror axis—giving then the mirror image of the tree and
thus its involution:

Root axis

((x4(x3x2)) x1)

Name: (122)

Mirror axis

((x1(x2x3)) x4)

Name: (121)

(2.10)

Proposition 2.17 (lattice anti-automorphism). Let v,w ∈ An. Then, the dendriform in-
volution is a lattice anti-automorphism, that is, v < w⇔ w† < v†. Consequently, M(v,w)=
M(w†,v†), for any names of trees.

Proof. Fix v,w ∈ An with v < w. We will check the case when both vi = i = wi. In this
case v†n+1−i = j and w†n+1−i = j′ with j′ ≤ j < N + 1− i. Indeed, suppose the existence of
a ), the most external parenthesis standing at the right-hand side of xj′ and closing one
( open in xi in the complete expression associated with w. As v < w, we get vj′ ≤ wj′ = i.
If vj′ = k < i, then this means that the most external parenthesis ) standing at the right-
hand side of xj′ in the complete expression associated with v closes one ( open in xk.

This implies that v†n+1−i ≤ w†n+1−i. Checking every possibility leads to the conclusion that
v†i ≤ w†i for all 1 ≤ i ≤ n. The proof is complete since the dendriform involution is an
involution. For the last claim, recall that the dual lattice of (An,<) with order≤∗ is defined
such that v ≤∗ w⇔ w ≤ v. Therefore, v ≤∗ w⇔ v† ≤ w†, for any vectors of An. The last
claim holds since M∗(v,w)=M(w,v) (see [13]). �

2.2.3. The dendriform multiplication. The following idea developed by Loday consists in
replacing the polynomial ring K[X] (basis (Xn)n∈N) and well-known equations XnXm :=
Xn+m and (Xn)m := Xnm related to the usual arithmetic on N by planar binary trees. In-
stead of writing K[X], one could have chosen K[N] to denote this polynomial ring. Con-
sider the K-vector space K[A•∗] spanned by the basis {Xv, v ∈A•∗}. The space K[A•∗] has
a natural dendriform algebraic structure given by:Xu ≺ Xv := Xu�v andXu � Xv := Xu�v,
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with the convention Xu∪v := Xu +Xv. As expected, Xu�Xv := Xu�v, where � is the as-
sociative product, sum of ≺ and �. This nonunital associative algebra, another presen-
tation of the free dendriform algebra on one generator, here X (1), can be augmented
by adding the unit 1 := X (0) so that, K[A•] := K[A•∗]⊕ K · 1. By convention, we set
X∅ = 0. As usual, the operations ≺ and � can be partially extended to K[A•] by declar-
ing that 1 � Xv := Xv =: Xv ≺ 1, for v �= (0) and vanish otherwise, explaining the pres-
ence of the empty set. For instance, 1 ≺ Xv := X (0)�v := X∅ := 0, as expected. The no-
tation K[N] := K[X] stands for the usual polynomial algebra on one variable say X . As
XnXm := Xn+m and N is invariant by addition, one can use also the notation K[N] with-
out any ambiguity. However, K[A•] is not invariant by the dendriform addition, that is
why we choose the notation K[A•] and not K[A•]. The notation K[A•] stands for the
K-vector space spanned by {Xv, v ∈A•}.

Definition 2.18 (dendriform multiplication [6]). The dendriform multiplication � : An×
Am → Anm is given by u� v := ωu(v), for all u and v are names of binary trees and ex-
tended to groves via distributivity on the left with respect to the disjoint union, that is,
(u∪ v) �w := u�w∪ v�w.

For instance, as (1,2) = (1) � (1), we get (1,2) � v = (v) � (v). Therefore, (1,2) �

(1,1)= (1,1)� (1,1)= (1,1,3,3). The dendriform multiplication is associative, not com-
mutative, distributive on the left with regards to that the dendriform addition � has the
neutral element (1) and is compatible with the involution †, (u� v)† = u† � v†. More-
over, the neutral element for �, that is, (0), is by convention a left annihilator for �, that
is, (0) �u= (0). A vector w ∈An is said to be prime if there exists no vector v ∈Am and
v′ ∈Am′

, with n=mm′ such that w = v� v′. In general, the dendriform product of two
vectors gives a grove. However, observe there are two unique ways to obtain a vector. The
first one is to consider (1)� (1) � v, with v := v1∨ (0) and the second one is to consider
(1)� (1) � v, with v := (0)∨ v1. In the first case, we obtain (1)� (1) � v = v1∨ (v1∨ (0))
and in the second case, (1)� (1) � v = ((0)∨ v1)∨ v1. We summarize our discussion by
the following proposition.

Proposition 2.19. Any vector of A2n+1 is prime for the arithmetree just described. Whereas
there exist 2cn nonprime vectors in A2n+2. They are of the forms ((0)∨ v)∨ v and v∨ (v∨
(0)), with v ∈An.

Proposition 2.20 (right and left cancellations). Let v ∈An, u,w ∈Am. Then,

v�u= v�w⇐⇒ u=w, u�u=w�w⇐⇒ u=w, u� v =w� v⇐⇒ u=w.
(2.11)

Proof. The first claim is obtained by observing that the first operation appearing in
ωv((1)) is either � or �. Therefore, in both cases, the vectors composing the groves v�u
and v�w will start with (u, . . .), respectively, with (w, . . .). The same remark applies also
for the second claim. To complete the proof, observe that the dendriform multiplication
acting on the right-hand side is the unique dendriform automorphism which maps the
generator X (1) to Xv in K[A•]. �
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Proposition 2.21. Let u be a name of a binary tree. Then, �u((1)) can be obtained from
ωu((1)) by replacing the symbols � by +↗ and� by +↖. We name the middle term the vector
so obtained. If a grove is not prime for the dendriform arithmetics, then its middle term will
be not prime for the L-arithmetics.

Proof. Proceed by induction. It is true for n = 1,2,3 (checked by hand). Observe that
ul � (1)� ur = ul ∨ur = ul +↗ (1) +↖ ur . Therefore, ωul(1)� (1)� ωur (1) gives �ul(1) +↗
(1) +↖ �ur (1) by replacing the symbols � by +↗ and � by +↖. �

3. Bijection between noncrossing partitions and binary trees

In the following two sections, we show how to reformulate the framework of Speicher
[15] on free probability by using the free dendriform algebra on . We recall a bijec-
tion between noncrossing partitions and binary trees. A noncrossing partition of the set
{1,2,3, . . . ,n} is a decomposition π := {V1, . . . ,Vr} of S into disjoint and nonempty sets
Vi, called blocks, such that for all 1≤ p1, q1, p2,q2 ≤ n, the following does not occur: there
exist 1≤ p1 < q1 < p2 < q2 with p1 ∼π p2 �π q1 ∼π q2, where for all 1≤ p, q ≤ n, p ∼π q
means that p and q belong to the same block of π. The set of noncrossing partitions made
out of the elements 1,2,3, . . . ,n is denoted by NC(n). In low dimensions, these sets are

}{ }{{ }NC(1) =
1

, NC(2) =
1 2 12

, , NC(3) =
12 3

,
1 2 3

,
1 2 3

,
1 2 3

,
1 2 3

. (3.1)

There is a natural poset structure given by the refinement order. In the sequel, an interval
of a block V is a sequence of numbers all linked to one another. Every block can be
decomposed uniquely in several intervals. A bijection between noncrossing partitions
and binary trees is determined by the following algorithm in 2 steps.

(1) Let τ ∈ Yn be an n-tree, n > 0. As the tree is planar and binary, the notion of left
and right still has a meaning. Denote by 1 the root. This gives a frame denoted
by (1,R,L) where the axis R (resp., L) is the line passing through 1 and identified
with the rightmost (resp., leftmost) branch. Starting with the origin of the frame
here (1,L,R), that is, with 1, increment of a unit all the p > 1 branches linked to
the axis L giving 1,2,3 . . . , p. If there is no branch at the left-hand side of 1, give 2
to the closest vertex at the right-hand side of 1 and reapply the algorithm.

(2) Once arrived at the vertex p. If there is a vertex to the right of p, give the number
p+ 1 to it, and reapply the algorithm in the frame (p+ 1,L,R) modelling now the
subtree with root, the vertex p + 1. If not, go to the vertex p− 1 and reapply the
algorithm at step (2).

Once all vertices of the tree are labeled, a unique noncrossing partition is obtained by
the following trick. Put a vertical segment under each number 1,2, . . . ,n and link p to
q > p if q is the closest vertex at the right-hand side of p. One can view this partition as
the “projection” (by abuse of language) parallel to the axis L of all the branches of the
trees on the axis R in the frame (1,L,R) (if the branches are all drawn either parallel to
the axis L or R). Here is the example (1,9)(2,6,7)(3,4)(5)(8)(10) (written shortly like a
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permutation in disjoint cycles):

Projection

1

2

3
4

5

6

7
8

10

2 3
4

5
6

7
8

9

10

(3.2)

The construction of the inverse map is left to the reader. We therefore obtain a bijection
between rooted binary trees and noncrossing partitions.

4. Free probability

Free probability has been introduced by Voiculescu. Later, a complementary point of view
was given by Speicher [15], inspired by previous works of Rota [12]. We will focus on
[15].

4.1. Action of arithmetree on �−�-bimodule and operads. In the sequel, � denotes
a unital associative algebra (most of the time a unital C∗-algebra for applications) and �
is a �−�-bimodule. We denote by �⊗�n the space �⊗� �⊗� ···⊗� �, n times and
by convention �⊗� 0 := B. By abuse of language and sometimes to ease notation, we will
use equivalently trees and/or their names. One of the aims of this part is to describe the
action of the space K[Y∞]—or equivalently K[A•]—equipped with its arithmetree onto
the bimodule �.

4.1.1. NCP(�)-operads. To introduce the action of binary trees in terms of noncrossing
partitions, we will need the concept of noncrossing partitions operads, NCP(�)-operads
for short.

Definition 4.1. Let � be an associative K-algebra. A NCP(�)-operad P (without unit)
over a �−�-bimodule � is the data of a family of finite dimensional K-vector spaces
(P(n))n>0, whose basis elements μ are �−�-bimodule n-ary operations with values in
�, that is, μ : �⊗�n→�, and equipped with a family of composition maps ((◦i)i>0) ver-
ifying the following relations.

(1) For all μ∈ P(m) and ν∈ P(n) and 1≤ i≤m+ 1, μ◦i ν∈ P(m+n).
(2) For all λ∈ P(l), μ∈ P(m), and ν∈ P(n),

(
λ◦i μ

)◦ j+m ν= (λ◦ j ν
)◦i μ, 1≤ i≤ j ≤ l+ 1,

λ◦i
(
μ◦ j ν

)= (λ◦i μ
)◦i+ j−1 ν, 1≤ i≤ l+ 1, 1≤ j ≤m+ 1.

(4.1)
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Remark 4.2. This concept is inspired from [15] but is different, though similar, from
the definition of a regular K-linear operad over a vector space �. Indeed, take � as the
ground field. In the usual operad theory, the basis elements μ are n-ary operations with
values in �, that is, μ : �⊗�n→�, and not with values in the ground field. This entails a
slight modification of the usual axioms of an operad over a vector space � presented just
above.

A noncrossing partition μ∈NC(n) is said to be decorated by a set Col if a unique color
of Col is associated with each interval composing it. Observe that decorated noncrossing
partitions give special decorated binary trees, that is, binary trees whose all vertices of a
SW-NE-branch have the same color. We now give an example of such NCP(�)-operad
by mixing results in Section 2 on the free dendriform algebra on one generator and ideas
developed from noncommutative probability.

4.1.2. NCP(�)-operads and dendriform structure on �−�-bimodules. Let � be a �−
�-bimodule. The dendriform algebra structure over K[A•∗] induces a dendriform alge-
bra structure on the following K-vector space: Dend�(�) :=⊕n≥1K[An]⊗�⊗�n, by
declaring that

Xv ⊗ κ≺ Xw ⊗ κ′ := Xv ≺ Xw ⊗ κκ′=Xv�w ⊗ κκ′,

Xv ⊗ κ� Xw ⊗ κ′ := Xv � Xw ⊗ κκ′ = Xv�w ⊗ κκ′,
(4.2)

for any tensor κ ∈�⊗�n and κ′ ∈�⊗�n′ . Inspired by [15], we define a family of n-ary
operations, f (n) : �⊗�n→�, which are �−�-bimodule maps, that is, f (n)(ba1⊗� a2⊗�

···⊗� anb′) := b f (n)(a1⊗� a2⊗� ···⊗� an)b′, for all n > 0 and b,b′ ∈� and a1, . . . ,an ∈
�. With each family ( f (n))n≥1, we associate the following operator valued function f̂ ,
acting on the whole Dend�(�):

f̂ := ( f (n))
n≥1 : Dend�(�)−→�,

(
Xv ⊗ a1⊗� a2⊗� ···⊗� an

) 	−→ f̂
(
Xv ⊗ a1⊗� a2⊗� ···⊗� an

)
,

(4.3)

and defined via the following recursive prescription. With any monomial Xv, a unique
noncrossing partition Pr(v) is associated, constructed from the algorithm described in
the previous section. Identify this partition to the tensor a1⊗� a2⊗� ···⊗� an. Localize
the most nested block of length p ≤ n and apply the p-ary operations, giving thus an
operator in �. Then, reapply this procedure. In the sequel, we will write

(
Xv ⊗ a1⊗� a2⊗� ···⊗� an

) 	−→ f̂
(
Xv ⊗ a1⊗� a2⊗� ···⊗� an

)

:= f̂
(

Pr(v)
(
a1⊗� a2⊗� ···⊗� an

))
,

(4.4)

to denote that action of the noncrossing partition Pr(v). The following examples will
be better than a fastidious description. Here are three examples (recall that a⊗� ba′ =
ab⊗� a′, for b ∈�).

(1) f̂ (X ⊗ a1⊗� a2⊗� a3)= f (2)(a1⊗� f (1)(a2)⊗� a3)= f (2)(a1 f (1)(a2)⊗� a3).

(2) f̂ (X ⊗ a1⊗� a2⊗� a3)= f (2)(a1⊗� a2)⊗� f (1)(a3)= f (2)(a1⊗� a2) f (1)(a3).
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(3) Let Pr(v)= (1,9)(2,6,7)(3,4)(5)(8)(10) be the noncrossing partition represented
in Section 3 and get

f̂
(
Xv ⊗ a1⊗� a2⊗� ···⊗� a10

)= f̂
(

Pr(v)
(
a1⊗� a2⊗� ···⊗� a10

))

= f (2)(a1⊗� f (3)(a2⊗� f (2)(a3⊗� a4
)⊗� f (1)(a5

)⊗� a6⊗� a7
)

⊗� f (1)(a8
)⊗� a9

)⊗� f (1)(a10
)
,

(4.5)

and obtain f (2)(a1 f (3)(a2 f (2)(a3 ⊗� a4) f (1)(a5)⊗� a6 ⊗� a7)⊗� f (1)(a8)a9) f (1)

(a10).

Remark 4.3. Proceeding that way, observe that f (n)(a1 ⊗� a2 ⊗� ··· ⊗� an) and the ac-
tion of the maximal element 1n of NC(n) on the n-tensor, that is, f (n)(1n � a1⊗� a2⊗�

···⊗� an), coincide.

Remark 4.4. We can slightly reformulate this framework using the concept of NCP(�)-
operad. Let Col := { f (n), n > 0} be the color set made out of the n-ary operations f (n).
Observe that with each noncrossing partition, a unique decorated noncrossing partition

can be associated. Introduce the object P[ f̂ ] made out of a family of the K-vector spaces

(P[ f̂ ](n))n>0 and the family of composition (◦i)i>0 defined by induction as follows. The

K-vector space P[ f̂ ](1) is spanned by f (1) and P[ f̂ ](p) by the elements f (p) and the μ◦i ν
for all 1≤ i≤m+ 1, with p = n+m, μ∈ P[ f̂ ](m) and ν∈ P[ f̂ ](n) such that

μ◦i ν
(
a1⊗� ···⊗� an+m

)

:= (a1⊗� ···⊗� ai−1⊗� ν
(
ai⊗� ···⊗� ai+n−1

)⊗� ai+n⊗� ···⊗� am+n
)
,

(4.6)

for all a1, . . . ,an ∈� and not in �. From a noncrossing partition, one can easily write its
action on tensor elements in terms of composition maps. The following example will fix
ideas.

Example 4.5. Consider again Pr(v) := (1,9)(2,6,7)(3,4)(5)(8)(10), the noncrossing par-
tition represented in Section 3. Read the partition from left to right. Take the first en-
countered interval, say, with p elements (here {1,9} and p := 2) and (thus) starting with
1. Take the second encountered interval, starting with say n, and with say q elements (here
{2,6,7} and q := 3) and write f (p) ◦n f (q) ··· . Reapply the algorithm. We obtain

f̂
(
Xv ⊗ a1⊗� a2⊗� ···⊗� a10

)

:= f (2) ◦2 f (3) ◦3 f (2) ◦5 f (1) ◦8 f (1) ◦10 f (1)(a1⊗� a2⊗� ···⊗� a10
)
.

(4.7)

The following theorem summarizes the previous discussion.

Theorem 4.6. Let � be an associative algebra and let � be a �−�-bimodule. Let f̂ :=
( f (n) : Dend�(�) → �)n>0 be a family of n-ary � − �-bimodule operations. Then,

(Dend�(�), f̂ ) induces a NCP(�)-operad, P[ f̂ ], over the B−B-bimodule �.
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4.2. Cumulants and moments in free probability. We recall some properties of free
probability [15]. Fix B, a unital associative algebra. Let (�,φ) be a noncommutative prob-
ability space, that is, a B−B-bimodule � endowed with a unital associative algebra struc-
ture equipped with a B−B-bimodule map φ : �→ B such that φ(1)= 1, that is, φ(b)= b,
for any b ∈ B. Let �1, . . . ,�n be n unital B−B-subalgebras of �. It is said that �1, . . . ,�n

are stochastically free if φ(a1 ···an) = 0 under the following conditions. For all 1 ≤ i ≤
n, φ(ai) = 0 and for a1 ∈�ε1 , . . . ,an ∈�εn , ε1 �= ε2, ε2 �= ε3, . . . ,εn−1 �= εn. It has been
shown by Speicher, that this definition can be reformulated in terms of noncrossing
partitions equipped with the refinement order. For that, he introduced in [15], the set
⋃

n>1 NC(n)×�⊗�n and a family of functions φ̂ = (φ(n))n>1 :
⋃

n>1 NC(n)×�⊗�n → B

and defined φ̂(π)(a1 ⊗� ··· ⊗� an), where π is a noncrossing partition, as explained in
the previous section. The idea is to replace the object

⋃
n>1 NC(n)×�⊗�n by a much

more structured one, that is, Dend�(�) equipped with the NCP(�)-operad P[φ̂]. We
are now able to reformulate the major result of Speicher [15]. Recall that a moment func-
tion [15] φ is defined by φ(1)(1)= 1 and by (n > 1),

φ(n−1)(a1⊗� ···⊗� apap+1⊗� ···⊗� an
)= φ(n)(a1⊗� ···⊗� ap⊗� ap+1⊗� ···⊗� an

)
.

(4.8)

In this case, one can choose φ(n)(a1⊗� ···⊗� an) := φ(1)(a1a2 ···an). In our framework,
Speicher showed also that the cumulant function Ĉ obtained by convolution of φ̂ with
the Zeta function associated with the refinement order of the noncrossing partitions is
still a map from Dend�(�) to B. We now reformulate the result of Speicher [15].

Theorem 4.7 [15]. Fix B, a unital associative algebra. Let (�,φ) be a noncommutative
probability space and φ a moment function. Let �1, . . . ,�n be n unital B−B-subalgebras of
�. Consider the set I := {Xn⊗ a1⊗� ···⊗� an ∈�; for all n > 1; such that ∃ i, jai ∈�εi ,
aj ∈ �ε j , and εi �= ε j}. Then, �1, . . . ,�n are stochastically free if and only if I ⊆ ker Ĉ,

where Ĉ : Dend�(�)→ B is the cumulant function associated with φ̂ via the convolution
with the Zeta function with respect to the refinement order.
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