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We are concerned with a nonsmooth multiobjective optimization problem with inequal-
ity constraints. In order to obtain our main results, we give the definitions of the gener-
alized convex functions based on the generalized directional derivative. Under the above
generalized convexity assumptions, sufficient and necessary conditions for optimality are
given without the need of a constraint qualification. Then we formulate the dual problem
corresponding to the primal problem, and some duality results are obtained without a
constraint qualification.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

A multiobjective problem is a problem where two or more objective functions are to be
minimized on an implicitly constrained feasible set. In such a problem for optimality
conditions and duality results, we often deal with constraint qualifications. A constraint
qualification assumes some regularity of the constraint functions near the optimal so-
lution, in particular to exclude a cusp on the boundary of the feasible region. In some
approaches to multiobjective optimization problems, the necessary conditions for effi-
ciency are derived under the same constraint qualifications as in nonlinear programming
with a scalar-valued objective function. Constraint qualifications are often assumed but
do not always hold. Some of the well-known qualifications are the Kuhn-Tucker qualifi-
cation, Slater qualifications [1], and Mangasarian-Fromovitz qualification [7].

Weir and Mond [8] defined dual problems for the scalar-valued programming prob-
lems where the usual convexity requirement for duality was relaxed and a constraint qual-
ification was not needed. They established their results using differentiability. Then in [9]
Mond and Weir extended their results for multiobjective programs. They defined dual
problems for a convex multiobjective programming and a convex/concave multiobjective
fractional programming problem where the functions involved are not assumed to be
differentiable and where a constraint qualification is not required. Egudo et al. [5] have
defined dual problems for differentiable multiobjective programming problems where a
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constraint qualification is not assumed; their approach was different from that in [9] by
focusing on efficiency rather than proper efficiency. That approach has the advantage of
being suitable to define duals to nonconvex programming problems.

In this paper, we will introduce certain generalized convex functions and then neces-
sary and sufficient optimality conditions are obtained for nondifferentiable multiobjec-
tive problems without the need of a constraint qualification. We also define dual prob-
lems corresponding to primal problems and then we prove some duality results without
the need of a constraint qualification and differentiability. In our approach also the usual
convexity requirement for the functions is relaxed.

2. Definitions and preliminaries

We consider the following multiobjective problem:

min f (x)= ( f1(x), . . . , fm(x)
)

s.t.

g(x)= (g1(x), . . . ,gp(x)
)≤ 0, x ∈ C,

(MP)

where C is a convex set and f :Rn →Rm and g :Rn →Rp are locally Lipschitz functions.
The index sets are M = {1,2, . . . ,m}, P = {1,2, . . . , p}. We denote the feasible set {x ∈ C |
gi(x)≤ 0, i= 1, . . . , p} by F. Let I(x∗)= {i∈ P | gi(x∗)= 0} denote the index set of active
constraints at x∗. The minimal index set of active constraints for F is denoted by

I= = {i∈ P : x ∈ F =⇒ gi(x)= 0
}
. (2.1)

We also denote

I<
(
x∗
)= I

(
x∗
) \ I= = {i∈ I

(
x∗
)

: ∃xi ∈ F s.t. gi
(
xi
)
< 0
}
. (2.2)

For a fixed r ∈M and x∗ ∈Rn, denote

Mr =M \ {r},
Fr
(
x∗
)= {x : fi(x)≤ fi

(
x∗
)
, i∈Mr

}
,

Mr=(x∗
)= {i∈Mr : fi(x)= fi

(
x∗
)
, ∀x ∈ Fr

(
x∗
)}
.

(2.3)

We denote C∗ = {u∈Rn, utx ≥ 0, ∀x ∈ C} for the polar set of an arbitrary set C ⊂Rn.
For a nonempty subset C of Rn, we denote by co(C), cone(C), and C∗ the convex

hull of C, the cone generated by C, and the dual cone of C, respectively. Further, NC(x∗)
denotes the normal cone to C at x∗, defined by

NC
(
x∗
)= {d ∈Rn : 〈d,x− x∗〉 ≤ 0, ∀x ∈ C

}
, (2.4)

clearly, (C− x∗)∗ = −NC(x∗).
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Definition 2.1 [3, 4]. The generalized Clarke directional derivative of a locally Lipschitz
function f at x in the direction d is defined by

f c(x;d) := limsup
y→x
t↓0

f (y + td)− f (y)
t

. (2.5)

The Clarke generalized subgradient of a locally Lipschitz function f at x is defined by

∂c f (x) := {ξ ∈Rn : f c(x;d)≥ 〈ξ,d〉, ∀d ∈Rn
}
. (2.6)

We now recall the following result from [4].

Lemma 2.2. Let f be a locally Lipschitz function, and x ∈ dom f . Then for all d in Rn,

f c(x;d)=max
{〈ξ,d〉 : ξ ∈ ∂c f (x)

}
, (2.7)

and ∂c f (x) is a nonempty, convex, and compact set.

Definition 2.3. A point x̄ ∈ F is said to be an efficient solution of the minimum problem
(MP) if there exists no x ∈ F such that fi(x) < f (x̄) for some i∈M and f j(x)≤ f j(x̄) for
all j ∈M.

Definition 2.4. Let f :Rn→R be a locally Lipschitz function. Then
(i) it is said to be generalized convex at x if for any y,

f (y)− f (x)≥ 〈ξ, y− x〉, ∀ξ ∈ ∂c f (x), (2.8)

(ii) it is said to be generalized quasiconvex at x if for any y, such that f (y)≤ f (x),

〈ξ, y− x〉 ≤ 0, ∀ξ ∈ ∂c f (x), (2.9)

(iii) it is said to be generalized strictly quasiconvex at x if for any y, such that f (y)≤
f (x), y �= x,

〈ξ, y− x〉 < 0, ∀ξ ∈ ∂c f (x). (2.10)

3. Necessary and sufficient optimality conditions

Consider the following nonlinear programming problem:

min f0(x)

s.t.

gi(x)≤ 0, i∈ P, x ∈ C,

(SP)

where f0 and gi, i∈ P, are scalar, locally Lipschitz functions and C is a convex set.
To prove the next results we need the following theorems for the nonlinear program

(SP).
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Lemma 3.1. If a feasible point x∗ of (SP) is optimal, then the following intersection is empty:

cone
(
C− x∗

)∩F0∩G0, (3.1)

where F0 = {d : f c0 (x∗;d) < 0} and G0 = {d : gcj (x
∗;d) < 0, j ∈ I(x∗)}.

Proof. Suppose that there exists d ∈ cone(C− x∗) such that d ∈ F0∩G0. Then there exist
sufficiently small positive numbers λ1, λ2, and λ3 such that x∗ + αd ∈ C, whenever 0 <
α≤ λ1 and

f0
(
x∗ +αd

)
< f0

(
x∗
)
, ∀α∈ (0,λ2

)
,

gj
(
x∗ +αd

)
< gj

(
x∗
)
, ∀α∈ (0,λ3

)
.

(3.2)

Since gj(x∗) < 0, for j /∈ I(x∗), and by continuity of gj , there exists λ4 > 0 such that

gj
(
x∗ +αd

)
< 0, ∀α∈ (0,λ4

)
. (3.3)

Now, let λ=min{λ1, . . . ,λ4}. This contradicts the optimal solution of (SP) at x∗. �

Remark 3.2. Lemma 3.1 implies that the following intersection is also empty:

cone
(
C− x∗

)∩ {d : f c0
(
x∗;d

)
< 0
}∩ {d : gcj

(
x∗;d

)
< 0 j ∈ I

(
x∗
) \ I=}=∅. (3.4)

Theorem 3.3. If a feasible point x∗ of (SP) is optimal and gi, i∈ P, are generalized strictly
quasiconvex at x∗, then there exist a vector d ∈ −NC(x∗) and nonnegative scalars λi, i ∈
I<(x∗), such that

d ∈ ∂c f0
(
x∗
)

+
∑

i∈I<(x∗)

λi∂cgi
(
x∗
)
. (I)

Proof. By applying Lemma 3.1, the system

d ∈ cone
(
C− x∗

)
, f c0

(
x∗;d

)
< 0, gcj

(
x∗;d

)
< 0, ∀ j ∈ I<

(
x∗
)
, (3.5)

has no solution. Then by Lemma 2.2 the system

d ∈ cone
(
C− x∗

)
, max

ξ∈A
〈ξ,d〉 < 0 (3.6)

has no solution, where A= ∂c f0(x∗)∪ (
⋃

j∈I<(x∗) ∂cgj(x∗)). Since A is a nonempty com-
pact set and cone(C− x∗) is convex, by the alternative theorem [6, Theorem 3.1],

o∈−(C− x∗
)∗

+ co(A). (3.7)

That is to say, there exist λ0 ≥ 0, λj ≥ 0, j ∈ I<(x∗), and

ξj ∈ ∂cgj
(
x∗
)
, j ∈ I<

(
x∗
)
, ξ0 ∈ ∂c f0

(
x∗
)
, d ∈−NC

(
x∗
)

(3.8)

such that

λ0 +
∑

j∈I<(x∗)

λj = 1, d = λ0ξ0 +
∑

j∈I<(x∗)

λjξ j . (3.9)
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Observe that when I= �=∅, we have λ0 �= 0. Otherwise, if λ0 = 0, then
∑

i∈I<(x∗) λi > 0 and
d =∑i∈I<(x∗) λiξi, which implies that the system

d ∈ cone
(
C− x∗

)
, max

ξ∈B
〈ξ,d〉 < 0 (3.10)

has no solution, where B =⋃i∈I<(x∗) ∂cgi(x∗). On the other hand, since I= �= ∅, for each
i∈ I<(x∗), there exists xi ∈ F such that gi(xi) < 0= gi(x∗). By generalized strictly quasi-
convexity of gi, i∈ P, there exists di ∈ cone(C− x∗), such that

gci
(
x∗;di

)
< 0. (3.11)

Hence, for d̄ := (1/card(I<(x∗)))
∑

i∈I<(x∗)di, we have

gci
(
x∗; d̄

)
< 0, ∀i∈ I<

(
x∗
)
. (3.12)

This contradicts the alternative theorem [6, Theorem 3.1] and hence λ0 = 1 may be as-
sumed and this completes the proof. �

Remark 3.4. If I= =∅, then the constraints of the problem satisfy a constraint qualifica-
tion. In this case, the optimality condition is simplified.

Theorem 3.5. Let x∗ be a feasible point of (SP). Assume that condition (I) holds at x∗. If
the functions f0, gi, i∈ P, are generalized convex at x∗, then x∗ is a minimum of (SP).

Proof. Let x ∈ F be any feasible point of (SP). Then from (I), for each d ∈ cone(C− x∗),

〈

ξ0 +
∑

i∈I<(x∗)

λiξi,d

〉

≥ 0, (3.13)

for some ξ0 ∈ ∂c f0(x∗), ξi ∈ ∂cgi(x∗), i∈ I<(x∗). Since each function is generalized con-
vex at (x∗), x is feasible for (SP), and

∑
i∈I<(x∗) λigi(x∗)= 0, then

f0(x)− f0
(
x∗
)≥ 〈ξ0,x− x∗

〉≥
〈

−
∑

i∈I<(x∗)

λiξi,x− x∗
〉

≥−
∑

i∈I<(x∗)

λigi(x) +
∑

i∈I<(x∗)

λigi(x∗)

=−
∑

i∈I<(x∗)

λigi(x)≥ 0.

(3.14)

Hence x∗ is an optimal solution for (SP). �

Now we consider problem (MP). The following results is a well-known characteriza-
tion of the efficient solutions of (MP).
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Lemma 3.6 [2]. A feasible solution x∗ in (MP) is an efficient solution if and only if (x∗)
solves the scalar optimization problem

min fr(x)

s.t.

fi(x)≤ fi
(
x∗
)
, i∈Mr ,

gj(x)≤ 0, j ∈ P, x ∈ C,

(Pr(x∗))

for each r = 1,2, . . . ,m.

Theorem 3.3 and Lemma 3.6 can be used to derive necessary and sufficient optimality
conditions without constraint qualification for the multiobjective programming problem
(MP).

Theorem 3.7. If x∗ is an efficient solution for (MP) and gi, i ∈ P, are generalized strictly
quasiconvex at x∗, then there exist scalars λ∗i > 0, i∈M, with

∑m
i=1 λ

∗
i = 1, and μ∗i ≥ 0, i∈

I<(x∗), such that

0∈
∑

i∈M
λ∗i ∂c fi

(
x∗
)

+
∑

i∈I<(x∗)

μ∗i ∂cgi
(
x∗
)

+NC
(
x∗
)
. (3.15)

Conversely, if (3.15) is satisfied and for every fi, gi are generalized convex at x∗, then x∗ is
an efficient solution for (MP).

Proof. Necessity. Since x∗ is an efficient solution for (MP), then, by Lemma 3.6, x∗ is an
optimal solution for each (Pr(x∗)), r ∈M. Therefore, by Theorem 3.3, there exist λ∗ri ≥
0, i∈Mr , μ∗r j ≥ 0, j ∈ I<(x∗), such that

0∈ ∂c fr
(
x∗
)

+
∑

i∈Mr\Mr=(x∗)

λ∗ri∂c fi
(
x∗
)

+
∑

j∈I<(x∗)

μ∗r j∂cg j
(
x∗
)

+NC
(
x∗
)

(3.16)

for each r ∈M. Now summing the above over r ∈M, scaling appropriately, and using the
properties of NC(x∗) imply the necessary condition.

Sufficiency. Suppose that x∗ is not efficient for (MP) and (3.15) holds. Then there exist

ξi ∈ ∂c fi
(
x∗
)
, i= 1,2, . . . ,m, ηi ∈ ∂cgi

(
x∗
)
, i∈ I<

(
x∗
)
,

d ∈−NC(x∗), λ∗i > 0, i∈M, μ∗i ≥ 0, i∈ I<(x∗),
(3.17)

such that

∑

i∈M
λ∗i ξi +

∑

i∈I<(x∗)

μ∗i ηi = d, (3.18)

and there exits u∈ F such that

fi(u) < fi
(
x∗
)
, for some i,

f j(u)≤ f j(x∗), ∀ j ∈M.
(3.19)
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Hence
∑

i∈M
λ∗i fi(u) <

∑

i∈M
λ∗i fi

(
x∗
)
. (3.20)

Since the fi, i∈M and gi, i∈ P are generalized convex, it follows that

∑

i∈M
λ∗i fi(u)−

∑

i∈M
λ∗i fi

(
x∗
)≥ (u− (x∗))t

∑

i∈M
λ∗i ξi

= (u− x∗
)t

⎛

⎜
⎜
⎝d−

∑

i∈I<
(
x∗
)
μ∗i ηi

⎞

⎟
⎟
⎠

≥−(u− x∗
)t ∑

i∈I<(x∗)

μ∗i ηi

≥−
∑

i∈I<(x∗)

ηigi(u) +
∑

i∈I<(x∗)

ηigi(x∗)

=−
∑

i∈I<(x∗)

ηigi(u)≥ 0,

(3.21)

which contradicts (3.20), hence x∗ is an efficient solution. �

4. Duality

We now associate the Wolf-type vector dual [10] to the primal problem (MP):

max f̄ (u)= ( f1(u) + ytg(u), . . . , fm(u) + ytg(u)
)

s.t.

0∈
∑

i∈M
λi∂c fi(u) +

∑

i∈P
yi∂cgi(u) +NC(u),

yi ≥ 0, i= 1,2, . . . , p,

λi > 0, i= 1,2, . . . ,m,
∑

i∈M
λi = 1, gI=(u)= 0.

(DM)

Here FD denotes the set of feasible solutions to (DM) and gI=(·) for gi(·), i∈ I=. Now we
prove weak duality theorem which is similar to [9, Theorem 5].

Theorem 4.1 (weak duality). Suppose that x ∈ F and (u,λ, y)∈ FD and fi, i∈M, gj , j ∈
P, are generalized convex functions at u. Then the following cannot hold:

f j(x)≤ f j(u) + ytg(u), ∀ j ∈M,

fi(x) < fi(u) + ytg(u), for some i∈M.
(4.1)

Proof. Let x be feasible solution for (MP) and let (μ,λ, y) be feasible solution for (DM).
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Suppose contrary to the result that (4.1) hold. Then

∑

i∈M
λi fi(x) <

∑

i∈M
λi fi(u) + ytg(u). (4.2)

By feasibility of (u,λ, y), there exist ξi ∈ ∂c fi(u), i ∈M, ηi ∈ ∂cgi(u), i ∈ P, and d ∈
−NC(u), such that

∑

i∈M
λiξi +

∑

i∈P
yiηi = d. (4.3)

Then

∑

i∈M
λi
[
fi(x)− ( fi(u) + ytg(u)

)]=
∑

i∈M
λi fi(x)−

∑

i∈M
λi fi(u)− ytg(u)

≥ (x−u)t
∑

i∈M
λiξi− ytg(u)

=−(x−u)t
∑

i∈P
yiηi− ytg(u) + (x−u)td

≥
∑

i∈P
yi
(
gi(u)− gi(x)

)− ytg(u)

=−ytg(x)≥ 0,

(4.4)

which is a contradiction to (4.2). �

Theorem 4.2 (strong duality). If x∗ is an efficient solution for (MP) and weak duality
theorem (Theorem 4.1) holds between (MP) and (DM) and also gi, i ∈ P, are generalized
strictly quasiconvex at x∗, then there exist y∗i , i∈ P, λ∗i > 0, i∈M, such that (x∗,λ∗, y∗)
is efficient for (DM) and the objective values of (MP) and (DM) are equal.

Proof. Since x∗ is an efficient solution for (MP), then by Theorem 3.7 there exist λ∗i >
0, i∈M, and y∗i ≥ 0, i∈ I<(x∗), and d ∈−NC(x∗) such that (3.15) is satisfied. By taking
y∗i = 0 for i /∈ I<(x∗), (x∗,λ∗, y∗) is feasible for (DM). Suppose that (x∗,λ∗, y∗) is not
efficient for (DM), then there exists (u,λ, y) feasible for (DM) such that

fi(u) + ytg(u) > fi
(
x∗
)

+ y∗tg
(
x∗
)
, for some i,

f j(u) + ytg(u)≥ f j
(
x∗
)

+ y∗tg
(
x∗
)
, ∀ j ∈M.

(4.5)

However, since y∗tg(x∗)= 0, this would contradict weak duality. The objectives values of
(MP) and (DM) are clearly equal at their respective efficient points. �

We consider the following dual problem for the problem (MP) and develop duality
theorems without constraint qualification for (MP) where the functions of (MP) are not
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assumed to be convex and differentiable. Consider the dual problem

max f̄ (u)= ( f1(u), . . . , fm(u)
)

s.t.

0∈
∑

i∈M
λi∂c fi(u) +

∑

i∈P
yi∂cgi(u) +NC(u),

yigi(u)≥ 0, i∈ P,

gI=(u)= 0,

yi ≥ 0, i= 1,2, . . . , p,

λi > 0, i= 1,2, . . . ,m,
∑

i∈M
λi = 1.

(D2M)

Here FD2 denotes the set of feasible solutions to (D2M).

Theorem 4.3 (weak duality). Suppose that x ∈ F and (u,λ, y) ∈ FD2. If fi, i ∈M, are
generalized strictly quasiconvex functions and gi, i ∈ P, are generalized quasiconvex at u,
then the following cannot hold:

f j(x)≤ f j(u), ∀ j ∈M,

fi(x) < fi(u), for some i∈M.
(4.6)

Proof. Suppose, contrary to the result, that (4.6) hold. Then

f j(x)≤ f j(u), ∀ j ∈M,

fi(x) < fi(u), for some i∈M.
(4.7)

By assumption on fi, i∈M, and gi, i∈ P, we have

〈
∑

i∈M
λiξi,x−u

〉

< 0, ∀ξi ∈ ∂c fi(u),

〈
∑

j∈P
yjηj ,x−u

〉

≤ 0, ∀ηj ∈ ∂cgj(u).

(4.8)

This implies that

〈
∑

i∈M
λiξi +

∑

j∈P
yjηj ,x−u

〉

< 0, (4.9)
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for all ξi ∈ ∂c fi(u) and ηj ∈ ∂cgj(u). From the constraints of (D2M), it follows that for
some d ∈−NC(u), ξi ∈ ∂c fi(u), and ηj ∈ ∂cgj(u),

〈
∑

i∈M
λiξi +

∑

j∈P
yjηj ,x−u

〉

≥ (x−u)td ≥ 0. (4.10)

This is a contradiction to (4.9). �

Theorem 4.4 (strong duality). If x∗ is an efficient solution for (MP) and weak duality
theorem (Theorem 4.3) holds between (MP) and (D2M) and also gi, i∈ P, are generalized
strictly quasiconvex at x∗, then there exist y∗i , i∈ P, λ∗i > 0, i∈M, such that (x∗,λ∗, y∗)
is efficient for (D2M) and the objective values of (MP) and (D2M) are equal.

Proof. Since x∗ is efficient for (MP), then by Theorem 3.7 there exist λ∗i > 0, i∈M, and
y∗i ≥ 0, i ∈ I<(x∗), and d ∈ −NC(x∗) such that (3.15) is satisfied. By taking y∗i = 0 for
i /∈ I<(x∗), (x∗,λ∗, y∗) is feasible for (D2M). suppose that (x∗,λ∗, y∗) is not efficient for
(D2M), then there exists (u,λ, y) feasible for (D2M) such that

fi(u) > fi
(
x∗
)
, for some i,

f j(u)≥ f j
(
x∗
)
, ∀ j ∈M.

(4.11)

However, since x∗ is efficient for (MP), this would contradict weak duality. The objectives
of (MP) and (D2M) are equal at their respective efficient points. �
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