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Let C be a closed convex subset of a uniformly smooth Banach space E, and T: C — E
a nonexpansive nonself-mapping satisfying the weakly inwardness condition such that
F(T) # @, and f: C — C a fixed contractive mapping. For ¢ € (0,1), the implicit itera-
tive sequence {x;} is defined by x; = P(¢f (x;) + (1 — t) Tx;), the explicit iterative sequence
{xn} 1s given by x,1 = P(av, f (x4) + (1 — ) Txyy), where a, € (0,1) and P is a sunny non-
expansive retraction of E onto C. We prove that {x;} strongly converges to a fixed point
of T as t — 0, and {x,} strongly converges to a fixed point of T as a, satisfying appro-
priate conditions. The results presented extend and improve the corresponding results of
Hong-Kun Xu (2004) and Yisheng Song and Rudong Chen (2006).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and Let T: C — C be
a nonexpansive mapping (i.e., [|Tx — Tyl < |[x — y|l for all x,y € C). We use Fix(T) to
denote the set of fixed points of T; that is , Fix(T) = {x € C: x = Tx}. Recall that a self-
mapping f : C — Cis a contraction on C if there exists a constant 8 € (0, 1) such that

If) - fI <Blx—yll, xyeC (1.1)

Xu (see [6]) defined the following two viscosity iterations for nonexpansive mappings:
x=tf(x)+(1-0Tx;, x€C, (1.2)

X1 = anf (x4) + (1 — o) T, (1.3)

where «,, is a sequence in (0,1). Xu proved the strong convergence of {x;} defined by (1.2)
as t — 0 and {x,} defined by (1.3) in both Hilbert space and uniformly smooth Banach
space.
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2 Strong convergence of approximation fixed points

Recently, Song and Chen [2] proved if C is a closed subset of a real reflexive Banach
space E which admits a weakly sequentially continuous duality mapping from E to E*,
and if T : C — E is a nonexpansive nonself-mapping satisfying the weakly inward condi-
tion, F(T) # ¢, f : C — C is a fixed contractive mapping, and P is a sunny nonexpansive
retraction of E onto C, then the sequences {x;} and {x,} defined by

xt=P(tf(xt)+(1—t)Txt), (14)
Xnr1 = Panf (x4) + (1 — o) Txp) (1.5)

strongly converge to a fixed point of T.

In this paper, we establish the strong convergence of both {x;} defined by (1.4) and
{x,} defined by (1.5) for a nonexpansive nonself-mapping T in a uniformly smooth Ba-
nach space. Our results extend and improve the results in [2, 6].

2. Preliminaries

Let E be a real Banach space and let J denote the normalized duality mapping from E into
2F" given by

Jx)={f € E*: {x, f) = lIxll I fL IIxll = I fI}  Vx€E, (2.1)

where E* denotes the dual space of E and (-, -) denotes the generalized duality pairing.
In the sequence, we will denote the single-valued duality mapping by j, and x, — x will
denote strong convergence of the sequence {x,} to x. In Banach space E, the following
result is well known [1, 3] for all x, y € E, for all j(x+ y) € J(x+ y), for all j(x) € J(x),

lacll? 42y, j(x)) < llx+ ylI* < xll” +2(y, j(x + y)). (2.2)

Recall that the norm of E is said to be Gateaux differentiable (and E is said to be smooth)
if

. X+t —||X
i X+ ey I =l

lim ; (2.3)

exists for each x, y in its unit sphere U = {x € E: [|x|| = 1}. It is said to be uniformly
Gateaux differentiable if, for each y € U, this limit is attained uniformly for x € U. Fi-
nally, the norm is said to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit in (2.3) is attained uniformly for (x,y) € U x U. A Banach space E
is said to be smooth if and only if J is single valued. It is also well known that if E is uni-
formly smooth, J is uniformly norm-to-norm continuous. These concepts may be found
in [3].

If C and D are nonempty subsets of a Banach space E such that C is nonempty closed
convex and D C C, then a mapping P: C — D is called a retraction from C to D if P> = P.
It is easily known that a mapping P : C — D is retraction, then Px = x, for all x € D. A
mapping P : C — D is called sunny if

P(Px+t(x—Px)) =Px Vxe€C, (2.4)
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whenever Px +t(x — Px) € Cand t > 0. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction of C onto D. For more detail,
see [1, 3-5].

The following lemma is well known [3].

LemMa 2.1. Let C be a nonempty convex subset of a smooth Banach space E,D € C, ] : E —
E* the (normalized) duality mapping of E, and P : C — D a retraction. Then the following
are equivalent:

(i) (x—Px, j(y = Px)) <0 forallx € Cand y € D;

(ii) P is both sunny and nonexpansive.

Let C be a nonempty convex subset of a Banach space E, then for x € C, we define the
inward set [4, 5]:

Ic(x)={y€E:y=x+Mz—x), z€ Cand A > 0}. (2.5)

A mapping T : C — E is said to be satisfying the inward condition if Tx € Ic(x) for all
x € C. T is also said to be satisfying the weakly inward condition if for each x € C, Tx €
Ic(x) (Ic(x) is the closure of Ic(x)). Clearly C C I¢(x) and it is not hard to show that I (x)
is a convex set as C is. Using above these results and definitions, we can easily show the

following lemma.

LEmMMA 2.2 ([2], Lemma 1.2). Let C be a nonempty closed subset of a smooth Banach space
E, let T : C — E be nonexpansive nonself-mapping satisfying the weakly inward condition,
and let P be a sunny nonexpansive retraction of E onto C. Then F(T) = F(PT).

LemMa 2.3 ([2], Lemma 2.1). Let E be a Banach space and let C be a nonempty closed
convex subset of E. Suppose that T : C — E is a nonexpansive mapping such that for each
fixed contractive mapping f : C — C, and P is a sunny nonexpansive retraction of E onto C.
For each t € (0,1), {x;} is defined by (1.4). Suppose u € C is a fixed point of T, then

(1) Cxr = f(x0)5j (o —u)) <05

(i) {x:} is bounded.

Definition 2.4. u is called a Banach limit if y is a continuous linear functional on [
satisfying
@ llu@ll =1=pu(1),e=(1,1,1,...);
(i1) Un(an) = pn(ann1), for all a, € (ap,as,...) €1%;
(iii) liminf,_« a, < p(a,) <limsup,,_ , a,, for all a, € (ap,a1,...) € ™.
According to time and circumstances, we use y,(a,) instead of y(agp,ay,...).

Further, we know the following result.

LEmMMA 2.5 ([3], Lemma 4.5.4). Let C be a nonempty closed convex subset of a Banach space
E with a uniformly Gateaux differentiable norm and let {x,} be a bounded sequence in E.
Let y be a Banach limit and u € C. Then

|20 — ua]]? =I;1Eigyn||xn—y||2 (2.6)
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if and only if

pn{x—u,J (xy —u)) <0 (2.7)
forallx € C.

3. Main results

TaeOREM 3.1. Let E be a uniformly smooth Banach, suppose that C is a nonempty closed
convex subset of E and T : C — E is a nonexpansive nonself-mapping satisfying the weakly
inward condition and F(T) + &. Let f : C — C be a fixed contractive mapping, and let {x;}
be defined by (1.4), where P is a sunny nonexpansive retraction of E onto C. Then ast — 0
{x¢} converges strongly to some fixed point q of T that q is the unique solution in F(T) to the
following variational inequality:

(I-1)gjlq—uw) <0 YueF(T). (3.1)

Proof. For all u € F(T) by Lemma 2.3(ii), {x} is bounded, therefore the sets {Tx;: t €
(0,1)} and {f(x:):t € (0,1)} are also bounded. From x; = P(tf(x;) + (1 — £)Tx;), we
have

|[xe = PTxe|| = [[P(¢f (x:) + (1 = ) Tx) — PTxi|
<|ltf(x) + (1 =) Tx — Txi] (3.2)
=t||Tx; — f(x)|| — 0 ast— 0.

This implies that

ltir{)1||xt —PTx|| =0. (3.3)

Assume t, — 0, set X, := x;,, and define g : C — R by g(x) = pullx, — x|, x € C, where p,
is a Banach limit on £*. Let

K = {xGC:g(x)=r;1'g/,tn||xnfy||2}. (3.4)

S

It is easily seen that K is a nonempty closed convex bounded subset of E, since (note
ll¢n — Tx,ull — 0)

g(Tx) = pyl|xn — Ttz = pn|| Txy — Tx||2 < tn||xn —x||2 =g(x). (3.5)
It follows that T'(K) C K, that is, K is invariant under T. Since a uniformly smooth Ba-

nach space has the fixed point property for nonexpansive mappings, T has a fixed point,
say ¢, in K. From Lemma 2.5 we get

pn{x—q,j(x,—q)) <0, xeC. (3.6)



R.Chenand Z. Zhu 5

Forall g € F(T), we have tf (x;) + (1 —t)q = P[tf (x;) + (1 — t)q], then

[lxe = [t f (xe) + (1 = £)q]]|
= |[P[tf(x:) + (1 =) Tx;] = P[tf (x:) + (1= t)q]]|
< || =(Tx: = @)l = (1 = )]|x: — ql|.

Hence from (2.2) and the above inequality we get

e = [££ () + (1 = 1)q]|
=110 — q) +t(xe — f(x:)) |
= (1-02]xe — qll” +2¢(1 = ) {xe = £ (), (% — q)).

Therefore
(%= f (%), j(x — q)) =<0.
Then
0= (x— f(x),j (% —q))
= |lxc = qll’ + (g = £(@), j (e = @) + (F(@) = f(x),j (e~ 9))
= (1-B)llxe — gl + (g~ f(q),j(x—q)).
We get

|l —ql|” < ﬁ(f(q) —q,j(x:—4q)).

Now applying Banach limit to the above inequality, we get

1 .
tnl I — g SW(q(f(q) —q,J(xz—q)>)-
Let x = f(q) in (3.6), and noting (3.12), we have
allxe = q|I* <0,
that is,

2
tnllxn —ql|" =0
and then exists a subsequence which is still denoted by {x,} such that

Xp — @ N— 0.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

We have proved that for any sequence {x,} in {x;:t € (0,1)}, there exists a subse-
quence which is still denoted by {x;,} that converges to some point q of T. To prove that
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the entire net {x;} converges to g, suppose that there exists another sequence {x;, } C {x;:}
such that x;, — p, as sy — 0, then we also have p € F(T) (using lim;_o [|x; — PTx|| = 0).
Next we show p = g and ¢ is the unique solution in F(T) to the following variational
inequality:

(I-1)g,j(q—w) YueF(T). (3.16)

Since the sets {x; — u} and {x; — f(x¢)} are bounded and the uniform smoothness of E
implies that the duality map J is norm-to-norm uniformly continuous on bounded sets
of E, for any u € F(T), by x;, — p (sx — 0), we have

I = flxg == fpll — 0, s —0,
| (s = f(5.)5 (s, — 1)) = (= f)p,j(p—w)) |
= (g = f ) =T = )p,j(xs — 1)) = {(I= )p,j(xg, — 1) = j(p—w)) |
< [T = fxs. = T = Fplllxs —ull
+ (U= )psjlxg, —u) = j(p—u) | — 0 assg— 0.

(3.17)
Therefore, noting Lemma 2.3(i), for any u € F(T), we get
(L= P)psj(p =) = lim Cxg, = f(xe), j (o, — 1)) < 0. (3.18)
Similarly, we also can show
(=g, j(q—w)) = (x, = fx1,), (%1, —u)) <0. (3.19)
Interchange g and u to obtain
(I=fp,j(p—9q) =0. (3.20)
Interchange p and u to obtain
(I-f)gjlq—p)) =0. (3.21)
This implies that
(p—a) - (f(p)—f(@)j(p—a) <0, (3.22)
that is,
lp—ql*<Bllp—ql* (3.23)

This is a contradiction, so we must have g = p.
The proof is complete. U
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From Theorem 3.1 we can get the following corollary directly.

CoROLLARY 3.2. Let E be a uniformly smooth space, suppose C is a nonempty closed convex
subset of E, T : C — E is a nonexpansive mapping satisfying the weakly inward condition,
and F(T) # &. Let f : C — C be a fixed contractive mapping from C to C. {x;} is defined by

Xt = tf(xt) + (1 — t)PTX[, (324)

where P is a sunny nonexpansive retraction of E onto C, then x; converges strongly to some
fixed point q of T as t — 0 and q is the unique solution in F(T) to the following variational
inequality:

(T=f)gj(q—u) VueF(T) (3.25)

LemMA 3.3 ([6], Lemma 2.1). Let {a,} be a sequence of nonnegative real numbers satisfying
the property

1 < (1= yp)on+8, Vn=0, (3.26)

where {y,} € (0,1) and 8, is a sequence in R such that:
(i) imy—co yn = 0 and .57 oy = ;
(ii) either X, (6, < +o0 orlimsup, _ ., (8,/yn) <0,
then lim, . o, = 0.

THEOREM 3.4. Let E be a uniformly smooth Banach space, suppose that C is a nonempty
closed convex subset of E, T : C — E is a nonexpansive nonself-mapping satisfying the weakly
inward condition, and F(T) # @. Let f : C — C be a fixed contractive mapping, and {x,}
is defined by (1.5), where P is a sunny nonexpansive retraction of E onto C, and a, € (0,1)
satisfies the following conditions:
(1) ay — 0, as n — oo;

(i) S5 o = oo;

(iii) either > o l0tur1 — atn| < 00 or limy—. oo (@ps1/00n) = 1.
Then x,, converges strongly to a fixed point q of T such that q is the unique solution in F(T)
to the following variational inequality:

(I-1)gjl@q—uw) <0 YueF(T). (3.27)
Proof. First we show {x,} is bounded. Take u € F(T), it follows that
%1 — || = ||[P((1 = an) Txn + n f (x0)) — Pull

< [(1 = an) Txn + tn f (x0) — u|

= (1= an) || Ton = ul| + an ([ f (xn) = F@[+] f () = ul])
= (1 = aw)[xn =l + ot (Bl — ual| + ] f () = u]) (3.28)
= (1= (1= Ban) |lxn = ul| + atu| f () = u|

= max{| s, —ul} 110 -
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By induction,
1
[P max{”xo— ull 41l —u||}, n>0, (3.29)

and {x,} is bounded, so are {Tx,} and { f (x,)}. We claim that
Xp41 —Xn — 0 asn — oo. (3.30)
Indeed we have (for some appropriate constant M > 0)
||xn+1 _xn” = ||P(‘an(xn) +(1—ay) Txy) _P(‘Xn—lf(xn—l) +(1- ‘Xn—l)Txn—l)”
<|Jatnf (xn) + (1 = ) Txy — 0tn1 f (xn-1) — (1 = @p—1) Txp—1]]
= ||(1 =) (Txp — Txp1) + (0n — 1) (f(xnfl) - Txnfl)H
+‘xn||f(xn) _f(xn—l)”

(1= o) |0 — xn1 || [B3pt] + M| @ty — oty | + Botu||xn — x0-1]]

(1= (1= B ||xn = xu-1||[3pt] + M | &ty — a1 |

IA

(3.31)
By Lemma 3.3 we have [|x,+1 — x4l — 0, as n — co. We now show that
||xn = PTx,|| — 0. (3.32)
In fact,
(%31 = PToxul| = [|P(an f (x0) + (1= ) Txn) — PT]|
(3.33)
= “n”f(xn) - Txn”-
This follows from (3.30) that
|0 — PTxul| < |10 — X1 || + [|Xne1 — PTx4|
(3.34)

< | = X1 || + | f (x0) = Txp|]] — 0 asn — oo.

Let g = lim;_ox¢, where {x;} is defined in Corollary 3.2, we get that q is the unique solu-
tion in F(T) to the following variational inequality:

((I-f)g,jlq—u)) <0 YueF(T). (3.35)
We next show that

limsup (f(q) — q,j(x» —q)) <0. (3.36)

n— oo
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Form Corollary 3.2, let x; = ¢ f (x¢) + (1 — t)PTx;, indeed we can write
X —xp = t(f(x¢) —2x0) + (1 =) (PTx; — x). (3.37)
Noting (3.32), putting
an(t) = ||xu — PTxu|| (|| — PTxn|| +2||x0 — x/||]) — 0 asn — oo, (3.38)
and using (2.2), we obtain
[t = ]
<(1-1)?||PTx, —x,,||2 +26(f (x¢) = % ji (20 — %))
< (1= 1)2[|PTx, = PToty + PTxy — || + 26 f () = %0, j (30 — %))
+ 21| Jxe — x| = (1= 02|y = x4l + (1 = )23 = PTx||”
+2(1 = O|PTxty — x| |l = |+ 26 (f (1) = 2605 j (3 = %)) + 210 — x|

< (14 8) |y = xal* + @ () + 26(f (x1) — %0 j (30 = x0) ).

(3.39)
The last inequality implies
(F ) = 30 o =) = 3l = 3l 300 (3.40)
From a,(t) — 0 as n — oo we get
limsup (f (x:) — x¢, j (%0 —2x)) <M - %, (3.41)

n— oo

where M >0 is a constant such that M > ||x; — x,||? for all n > 0 and ¢ € (0,1). By letting
t — 01in (3.41) we have

limlimsup (f (x¢) — x¢, j (x4 —2x¢)) < 0. (3.42)

t—0 n—oo
On the one hand, for all ¢ > 0, 36, such that ¢t € (0,6,),

)

N ™

limsup (f (x¢) = x¢, j (%0 — x¢)) <

n—oo
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On the other hand, {x;} strongly converges to q,as t — 0, the set {x; — x,,} is bounded, and

the duality map J is norm-to-norm uniformly continuous on bounded sets of uniformly
smooth space E; from x; — q (t — 0), we get

1f(@)—q—(f(x) —x)|| —0, t—0,
S (@) = j(xn =) = (f (xe) = %0 j (6w = x2))|
=1{f (@) = 4, (xn = q) = j(xn = x:)) + (£ (@) = q = (f (xt) = x2),j (ot = x0) )
< If (@ = aqllllj (xa = q) = j(xn = x)

+]1f(@) —q— (f(xe) = %) |[||xn — x| — 0, t—0.

(3.43)
Hence for the above ¢ > 0, 36,, such that for all ¢ € (0,6,), for all n, we have
147 (@)~ i on = @) = (f () =0 (e =) =< 5. (3.44)
Therefore, we have
(F@) = (o= @)} = {f () =200 (ea =) + 5. (3.45)
Noting (**) and taking § = min{é;,d,}, for all t € (0,8), we have
limsup (f(g) = 4,j (xn — )
(3.46)
< hl;l_s;.lp ((f(xt) —xp, j (%0 — xt)) + %) < §+§ =e.
Since ¢ is arbitrary, we get
limsup (f(q) = q,j(x, —q)) <0. (3.47)

n—oo

Finally we show x,, — g. Indeed

Xn+l — (“nf(xn) + (1 _“n)Q) = (xn+1 _Q) _(xn(f(xn) _Q)- (3.48)
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By (2.2) we have
e = qll* = s — (@ f () + (1= @) q) +an (f (x0) — ) ||
< |wer = Pt f () + (1= @) @) [*+ 20 (f () = 4, (01 = q))
< [[Plan f (xn) + (1= o) Tt ] = Pt f (xa) + (1= ) q) ||
+ 20, (f () = @ (X1 = q))
< (1= ) (| T2 = qlI” + 2000 (f () = £(q),j (11 — )
+20,(f(q) = g j (xn1 — q))
< (1= )| — ql[* +2aa]| £ (@) = £ ()] [ns1 — g
+20,(f(q) — g j (xne1 — q))
< (1= ) [l — gl + (11 (@) = £ Cen) I+ [loa — )

+20,(f(q) = ¢ j (Xns1 — q)).

(3.49)

Therefore, we have

(1_“n)||xn+1_Q||2
2 2 2 . (3.50)
< (1= o) [Jxn — gl +0‘nﬂ2||xn_qn +2a,(f(q) = qj (Xns1 — q))-
That is,

2
‘xn
1—ay,

1— 2
e =l < (112

2 ()~ g o~ 0)) (3.51)

)l = gl + 22l = gl

+
<(1- Vn)Hxn _‘1||2+AYH‘XWI+ %ﬂz)’r&f(q) ~q,j(xXne1 - q))>

where y, = ((1 - f%)/(1 — a,))a, and A is a constant such that A > (1/(1 — %)) llx, — qlI*.
Hence,

2 .
|[%n1 — ‘1”2 < (1= ya)llxn - ‘1”2 +Vu (A“n + 1_—/;2<f(‘1) =g, (%41 — ‘J)>) (3.52)
It is easily seen that y, — 0, >.;”; y» = o, and (noting (3.36))

limsup (Aocn " 1%;;2 () = g (Xt — q))) <0. (3.53)

n—oo

Applying Lemma 3.3 onto (3.52), we have x, — g.
The proof is complete. O
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