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1. Introduction

In his recent papers, Skogman [4, 5] showed that when certain components of a vec-
torvalued modular form associated to a Jacobi form of weight k (k is a positive integer)
and index m are zero, then some of the other components must be zero, where m is a
square-free positive integer. More precisely, he showed that a Jacobi form of weight k and
square-free index on the full Jacobi group is uniquely determined by any of the associated
vector components.

In this article, we generalize the work of Skogman to Jacobi forms of half-integral
weight.

2. Preliminaries and statement of results

Let k, N be positive integers and let χ be a Dirichlet character modulo 4N . Let � denote
the complex upper half-plane. For a complex number z, let

√
z = |z|1/2e(i/2)argz with −π < argz ≤ π,

zk/2 = (√z)k for any k ∈ Z.
(2.1)

For z ∈ C and a,b ∈ Z, we put eab(z) = e2πiaz/b. When a or b equals 1, we write ea1(z) =
ea(z), e1

b(z) = eb(z), and when a = b = 1, we write e1
1(z) = e(z). For a,b ∈ Z, the symbol

a (modb) means a set of congruent classes modulo b and gcd(a,b) means the greatest
common divisor of a and b.

A Jacobi form φ(τ,z) of weight k + 1/2 and index m for the group Γ0(4N), with char-
acter χ, is a holomorphic function φ : �×C→ C satisfying the following conditions.
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(i)
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cτ +d
+ λ2τ + 2λz+ λμ

)
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cτ +d
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= χ(d)φ(τ,z),

(2.2)

where τ ∈�, z ∈ C, γ = (a b
c d

)∈ Γ0(4N) and λ,μ∈ Z and ( c
d ) denotes the Jacobi symbol.

(ii) For every α= (a b
c d

)∈ SL2(Z),

(
cτ +d

)−k−1/2
em
( −cz2

cτ +d

)
φ
(
aτ + b

cτ +d
,

z

cτ +d

)
(2.3)

has a Fourier development of the form

∑

n,r∈Q
r2≤4nm

cφ,α(n,r)e(nτ + rz), (2.4)

where the sum varies over rational numbers n, r with bounded denominators subject to
the condition r2 ≤ 4nm.

Further, if cφ,α(n,r) satisfies the condition cφ,α(n,r) �= 0 implies r2 < 4nm, then φ is
called a Jacobi cusp form. We denote by Jk+1/2,m(4N ,χ) the space of Jacobi forms of weight
k+ 1/2, index m for Γ0(4N) with character χ. For other details, we refer to [3, 6].

Let φ(τ,z) be a Jacobi form in Jk+1/2,m(4N ,χ). Then its Fourier expansion at the infinite
cusp is of the form

φ(τ,z)=
∑

n,r∈Z
r2≤4nm

cφ(n,r)e(nτ + rz). (2.5)

The following property of the Fourier coefficients of a Jacobi form of half-integral weight
follows easily as in the case of integral weight case (see [2]).

Lemma 2.1. Let φ ∈ Jk+1/2,m(4N ,χ) having a Fourier expansion as in (2.5). Then cφ(n,r)
depends only on 4mn− r2 and on r (mod2m).

For D ≤ 0, μ(mod2m), define cμ(|D|) as follows:

cμ
(|D|) :=

⎧
⎪⎨

⎪⎩

cφ

(
r2−D

4m
,r
)

if D ≡ μ2(mod4m), r ≡ μ(mod2m),

0 otherwise.
(2.6)

For μ(mod2m), let

hμ(τ) :=
∞∑

|D|=0

cμ
(|D|)e4m

(|D|τ). (2.7)
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For α(mod2m), the Jacobi theta function is given by

ϑα(τ,z)=
∑

r∈Z
r≡α(mod2m)

e
(
r2

4m
τ + rz

)
. (2.8)

By standard arguments (see [2, 4]), the Jacobi form φ ∈ Jk+1/2,m(4N ,χ) can be expressed
as follows:

φ(τ,z)=
∑

μ(mod2m)

hμ(τ)ϑμ(τ,z). (2.9)

We now state our results.

Theorem 2.2. Let φ(τ,z)∈ Jk+1/2,p(4N ,χ), where p is an odd prime such that gcd(N ,2p)=
1. For some α, β(mod2p) with 2 � α, 2 | β and gcd (αβ, p)= 1, if hα(τ)= 0 and hβ(τ)= 0,
then φ(τ,z)= 0.

Theorem 2.3. Let φ(τ,z)∈ Jk+1/2,p(4N ,χ), where p is an odd prime such that p |N . Then
among the 2p components hμ(τ), λχ of them determine the Jacobi form φ(τ,z), where

λχ =
⎧
⎨

⎩
p− 1 if χ is odd,

p+ 1 if χ is even.
(2.10)

Theorem 2.4. Let φ(τ,z) ∈ Jk+1/2,pq(4N ,χ), where p, q are distinct odd primes. Then the
components hα and hβ with 2 | α, 2 � β and gcd(αβ, pq)= 1 determine the associated Jacobi
form φ(τ,z).

Theorem 2.5. Let φ(τ,z)∈ Jk+1/2,p2 (4N ,χ), where p is an odd prime such that gcd(p,N)=
1. Then among the 2p2 components hμ(τ), the following components:

{
ha,hb

}
,2 | a,2 � b,gcd(ab, p)= 1,

{
h2ip,h(2i+1)p

}(p−1)/2
i=0 , (2.11)

when χ is even and

{
ha,hb

}
, 2 | a, 2 � b, gcd(ab, p)= 1,

{
h2(i+1)p

}(p−3)/2
i=0 ,

{
h(2i−1)p

}(p−1)/2
i=1 , (2.12)

when χ is odd determine the Jacobi form φ(τ,z). In other words, at most p + 1 or p + 3
(according as χ is odd or even) of the components hμ will determine the Jacobi form φ(τ,z).

3. Proofs

We need the following lemma, which was proved by Tanigawa [6, Lemma 3].

Lemma 3.1. Let φ(τ,z) ∈ Jk+1/2,m(4N ,χ) and let hα, α (mod2m) be a component of φ as
described in (2.9). Then the following formulas hold for hα(τ).

(i)

h−α(τ)= χ(−1)hα(τ). (3.1)
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(ii)

hα(τ + b)e4m
(
α2b

)= hα(τ), for any b ∈ Z. (3.2)

(iii)

(4Nτ + 1)khα(τ)=
∑

β(mod2m)

ξα,βhβ

(
τ

4Nτ + 1

)
, (3.3)

or equivalently,

(− 4Nτ + 1
)−k

hα

(
τ

−4Nτ + 1

)
=

∑

β(mod2m)

ξα,βhβ(τ), (3.4)

where

ξα,β = 1
2m

∑

γ(mod2m)

e4m
(− 4Nγ2 + 2γ(β−α)

)
. (3.5)

Remark 3.2. The above lemma gives the relationship among the hα(τ). If one of the hα(τ)
is zero, then there is a linear dependence equation among the hα(τ) which is given by the
transformation rule (iii) of the lemma. It is natural to ask about the maximum number
of components hα(τ) that can be zero in order that the given form φ is nonzero. Our
theorems are motivated by this question considered by Skogman for the Jacobi forms of
integral weight. Note that if χ is an odd character, that is, χ(−1)=−1, then h0(τ)= 0=
hm(τ), which follows from (i) of the above lemma.

Remark 3.3. Let φ(τ,z)∈ Jk+1/2,1(4N ,χ) be a Jacobi form of index 1. Using (i) of Lemma
3.1, we see that when χ is an odd character, then φ(τ,z)= 0. Therefore, there is no nonzero
Jacobi form of weight k+ 1/2 and index 1 when the character χ is odd.

Remark 3.4. Let m= 2. In this case the Jacobi form φ(τ,z)∈ Jk+1/2,2(4N ,χ) will have four
components hμ(τ), μ= 0,1,2,3. When χ is an odd character, then using (i) of Lemma 3.1
we get h0 = 0 = h2 and h1 = −h3. Therefore, h1(τ) or h3(τ) determines φ(τ,z) ∈
Jk+1/2,2(4N ,χ) when χ is odd. Now, let φ(τ,z) ∈ Jk+1/2,2(4N ,χ), N odd, and χ be an even
character. In this case, h1 = h3. Also, it can be seen that ξ0,1 = ξ0,3 = 0 and ξ0,2 = 1. Using
this in the transformation (iii) of Lemma 3.1 and substituting α = 0 and assuming that
h0 = 0, we get

0= ξ0,1h1(τ) + ξ0,2h2(τ) + ξ0,3h3(τ)

= 2ξ0,1h1(τ) + ξ0,2h2(τ)= h2(τ).
(3.6)

Therefore, h0 = 0 implies that h2 = 0. Already we have seen that h1 determines h3. This
shows that h0(τ) and h1(τ) determine φ(τ,z) when m= 2, χ is even and N is odd.

Before we proceed to prove the theorems, we will evaluate the Gauss sum in (3.5) when
m is odd and gcd(m,N)= 1.
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Lemma 3.5. Let m be an odd natural number such that gcd(m,N) = 1 and let ξα,β be the
Gauss sum as defined in (3.5). Then

ξα,β =
⎧
⎪⎨

⎪⎩

1√
m

(−N
m

)
εme4m

(
(4N)−1(β−α)2

)
if 2 | (β−α),

0 otherwise,
(3.7)

where (4N)−1 is an integer which is the inverse of 4N modulo m and εm = 1 or i according
as m≡ 1 or 3 (mod4).

Proof. Since gcd(2,m) = 1, we write the representatives r(mod2m) as r = mr1 + 2r2,
where r1 varies modulo 2 and r2 varies modulo m. Then the Gauss sum simplifies to

1
2m

∑

r1(mod2)
r2(modm)

em
(− 4Nr2

2 + r2(β−α)
)
e2
(
r1(β−α)

)
. (3.8)

The sum modulo 2 is zero unless 2 | (β−α) and the sum over m is the standard quadratic
Gauss sum if gcd (m,2N)= 1 (see, e.g., [1, page 195]). Therefore, if 2 | (β−α), we have

ξα,β = 1
m
e4m

(
(4N)−1(β−α)2)

∑

r(modm)

em
(− (4N)−1r2)

= 1√
m

(−4N
m

)
εme4m

(
(4N)−1(β−α)2)

= 1√
m

(−N
m

)
εme4m

(
(4N)−1(β−α)2),

(3.9)

where (4N)−1 denotes an integer such that 4N(4N)−1 ≡ 1(modm). �

3.1. Proof of Theorem 2.2. We begin this section by observing some properties of ξα,β.
Using the definition of ξα,β it can be easily verified that

ξα,−β = ξ−α,β, ξα,β = ξ−α,−β. (3.10)

Assume that for an odd α, 0 ≤ α ≤ 2p with gcd(α, p) = 1, we have hα(τ) = 0. We will
show that hμ(τ)= 0 for all odd μ(mod2p). By Lemma 3.1(i) we have h−α(τ)= 0. Substi-
tuting hα = 0= h−α in the equivalent form of Lemma 3.1(iii), we get

∑

β

ξα,βhβ(τ)= 0,
∑

β

ξ−α,βhβ(τ)= 0. (3.11)

Observe that in the expansion of each of the hβ(τ), only hβ(τ) and h−β(τ) have terms of
the form e((−α2/4p)τ)e(nτ) (since x ≡ μ2(mod4p) has only two solutions ±μ modulo
2p if gcd(μ, p)= 1). Using this in the above inversion formulas, we get

ξα,βhβ(τ) + ξα,−βh−β(τ)= 0,

ξ−α,βhβ(τ) + ξ−α,−βh−β(τ)= 0.
(3.12)
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Hence,

hβ(τ)=−ξα,−β
ξα,β

h−β(τ)=−ξ−α,−β
ξ−α,β

h−β(τ). (3.13)

Claim 1. For β(mod2p) with gcd(β,2p)= 1, we have

ξ−α,βξα,−β �= ξα,βξ−α,−β for α≡ β(mod2). (3.14)

From this it follows that h−β(τ)= 0= hβ(τ) when gcd(β,2p)= 1.

Proof of Claim 1. Assume the contrary, that is, assume that

ξ−α,βξα,−β = ξα,βξ−α,−β. (3.15)

Then it follows that

ξ2
α,β = ξ2

α,−β, (3.16)

from which we should have

ξα,β =±ξα,−β. (3.17)

We will now show that the last identity is not true when gcd(β,2p)= 1.
By Lemma 3.5, we get

ξα,−β = 1√
p

(−N
p

)
εpe4p

(
N ′(α+β)2) (3.18)

if 2 | (α+ β), where N ′ is an integer such that (4N)N ′ ≡ 1(mod p). Therefore, for (3.17)
to be true we must have

ep(−N ′αβ)=±1, (3.19)

which implies that p |N ′αβ, a contradiction. Similarly, if one starts with hα = 0 for even
α, then hβ = 0 for all β even with gcd(β, p)= 1. It remains to show that h0(τ)= 0= hp(τ).
If χ is an odd character, then as remarked in Remark 3.2, we have h0(τ)= 0= hp(τ). So,
let χ be an even character. If hα(τ)= 0 for an even α, then applying the inversion formula
as before and observing that x2 ≡ 0 (mod4p) has only one solution x = 0 modulo 2p,
we have ξα,0h0(τ) = 0. Since ξα,0 �= 0, it follows that h0(τ) = 0. Similarly, one can prove
that hp(τ)= 0 by considering the square class p2 modulo 4p which has only one solution
(= p) modulo 2p. This completes the proof of Theorem 2.2. �

3.2. Proof of Theorem 2.3. Here the index is p and p |N . In this case, we have

ξα,β = 1
2p

∑

γ(mod2p)

e2p
(
γ(β−α)

)=
⎧
⎨

⎩
1 if 2p | (β−α),

0 otherwise.
(3.20)
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In other words, ξα,β �= 0 if and only if α≡ β(mod2p). Therefore, property (iii) of Lemma
3.1 won’t give any dependency relation among the hα(τ). Now let χ be an odd character.
In this case, as observed before, we have h0(τ) = 0 = hp(τ). Also, by the same property
(i) of Lemma 3.1, we have hα(τ)=−h−α(τ). So, in the remaining 2p− 2 components, if
we assume that p− 1 of them are zero, then φ(τ,z) = 0. This completes the first part. If
χ is an even character, we cannot conclude that h0 and hp are zero. Therefore, combining
with the property hα(τ)= h−α(τ) we see that one needs p− 1 + 2= p+ 1 components hα
to determine the given Jacobi form φ.

Remark 3.6. The number of components as obtained in Theorem 2.3 is minimal in the
sense that it is not possible to reduce the number by using the properties stated in Lemma
3.1. It is unclear whether one could obtain smaller bounds using other methods.

3.3. Proof of Theorem 2.4. As m= pq, p, q are distinct odd primes with gcd(pq,N)= 1,
by Lemma 3.5, we have

ξα,−β = 1√
pq

(−N
pq

)
εpqe4pq

(
N ′(α+β)2) (3.21)

if 2 | (α+β), where N ′ is an integer such that (4N)N ′ ≡ 1(mod pq). We group the residue
classes modulo 2pq, which are square roots of the squares modulo 4pq, as follows:

(a) those having 4 square roots with gcd(μ, pq)= 1, which are φ(pq)/2 in number;
(b) those having 2 square roots with gcd(μ, pq)= p or q, which are (φ(p) +φ(q)) in

number;
(c) those having only one square root, which are 2 in number, namely, {0, pq}.

Now assume that hα = 0 for some α with 2 | α and gcd(α, pq)= 1. We claim that hβ = 0 for
all β(mod2pq), where β is even. We already know that hα = 0, implies h−α = 0. Note that
ν and −ν satisfy the congruence ν2 ≡ α2(mod4pq). Now applying the inversion formula
(iii) of Lemma 3.1, we get

ξα,νhν(τ) + ξα,−νh−ν(τ)= 0,

ξ−α,νhν(τ) + ξ−α,−νh−ν(τ)= 0,
(3.22)

or

hν(τ)=−ξα,−ν

ξα,ν
h−ν(τ)=−ξ−α,−ν

ξ−α,ν
h−ν(τ). (3.23)

Claim 2.

ξα,−ν

ξα,ν
�= ξ−α,−ν

ξ−α,ν
, (3.24)

equivalently,

ξα,−νξ−α,ν �= ξα,νξ−α,−ν. (3.25)
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Proof of Claim 2. Assume that the claim is not true. Then by using (3.10), we get

ξ2
α,−ν = ξ2

α,ν or ξα,−ν =±ξα,ν. (3.26)

As in the proof of Theorem 2.2, we have

ξα,−ν =±ξα,ν ⇐⇒ epq(−N ′αν)=±1. (3.27)

Since α, ν are relatively prime to pq, the above relation is not true, which proves the claim.
This shows that

h−ν(τ)= 0= hν(τ). (3.28)

Next, by assuming that hα = 0, 2 | α with gcd(α, pq) = 1, we prove that hβ = 0 for all
2 | β, gcd(β, pq)= 1 such that β2 �≡ α2(mod4pq). Observe that the above arguments show
that hν = 0 for all ν in the same square class α2 modulo 4pq (which are 4 in number,
namely, α, −α, ν, and −ν). Let a, b be residue classes modulo 2pq such that 2 | a, 2 | b,
a2 ≡ b2(mod4pq) and a2 �≡ α2(mod4pq). Now applying the inversion formula (iii) of
Lemma 3.1 for hα, h−α, hν, h−ν, we have the following:

⎛

⎜
⎜
⎜
⎜
⎝

ξα,a ξα,−a ξα,b ξα,−b
ξ−α,a ξ−α,−a ξ−α,b ξ−α,−b
ξν,a ξν,−a ξν,b ξν,−b
ξ−ν,a ξ−ν,−a ξ−ν,b ξ−ν,−b

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

ha(τ)

h−a(τ)

hb(τ)

h−b(τ)

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

0

0

0

0

⎞

⎟
⎟
⎟
⎟
⎠
. (3.29)

Let Λ denote the above 4× 4 matrix. If detΛ �= 0, then it follows that

ha(τ)= h−a(τ)= hb(τ)= h−b(τ)= 0. (3.30)

Thus, assuming that hα = 0 for some α with 2 | α, gcd(α, pq)= 1, we have shown that hβ
is zero for all other β even such the gcd(β, pq)= 1. Therefore, it remains to prove in this
case that detΛ �= 0. This is equivalent to show that detΛ′ �= 0, where

Λ′=

⎛

⎜
⎜
⎜
⎜
⎝

e4pq
(−N ′(α−a)2

)
e4pq

(−N ′(α+a)2
)

e4pq
(−N ′(α−b)2

)
e4pq

(−N ′(α+b)2
)

e4pq
(−N ′(α+a)2

)
e4pq

(−N ′(α−a)2
)

e4pq
(−N ′(α+b)2

)
e4pq

(−N ′(α−b)2
)

e4pq
(−N ′(ν−a)2

)
e4pq

(−N ′(ν+a)2
)

e4pq
(−N ′(ν−b)2

)
e4pq

(−N ′(ν+b)2
)

e4pq
(−N ′(ν+a)2

)
e4pq

(−N ′(ν−a)2
)

e4pq
(−N ′(ν+b)2

)
e4pq

(−N ′(ν−b)2
)

⎞

⎟
⎟
⎟
⎟
⎠
.

(3.31)
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Write

Λ′ =
(
A B
C D

)

, (3.32)

where A, B, C, D are 2× 2 matrices. It is easy to see that AC = CA. Also A is nonsin-
gular, as detA= 0 implies that e4pq(4N ′αa)= e4pq(−4N ′αa), or equivalently, −2N ′αa≡
0(mod pq), a contradiction since gcd(a, pq)= 1= gcd(α, pq).

Now detΛ′ = R2− S2, where

R= e2pq
(
N ′(αa+ νb)

)
+ e2pq

(−N ′(αa+νb)
)−e2pq

(
N ′(νa+αb)

)−e2pq
(−N ′(νa+αb)

)
,

S=e2pq
(
N ′(αa−νb)

)
+e2pq

(−N ′(αa−νb)
)−e2pq

(
N ′(νa−αb)

)− e2pq
(−N ′(νa−αb)

)
.

(3.33)

It can be seen that detΛ′ = 0 implies that R = ±S, which is impossible. This completes
the proof of the even case. Similarly, assuming hβ = 0 for some β odd with gcd(β, pq)= 1,
we can show that hα = 0 for all α odd, gcd(α, pq)= 1.

Finally, assume that hα = 0 for some α with 2 | α and gcd(α, pq) = 1. We claim that
hβ = 0 for all β(mod2pq), where β is even and gcd(β, pq)= p or q. Suppose that gcd(β,
pq)= p, that is, β = pβ′, where gcd(β′,q)= 1. We already know that hα = 0 implies h−α =
0. Now applying the inversion formula (iii) of Lemma 3.1, we get

ξα,βhβ(τ) + ξα,−βh−β(τ)= 0,

ξ−α,βhβ(τ) + ξ−α,−βh−β(τ)= 0
(3.34)

or

hβ(τ)=−ξα,−β
ξα,β

h−ν(τ)=−ξ−α,−β
ξ−α,β

h−β(τ). (3.35)

But by Claim 1 we see that ξα,−β �= ±ξα,β, which implies hβ = 0= h−β.
Since the cases β even and gcd(β, pq)= q and β odd and gcd(β, pq)= p or q are similar,

this completes the proof. �

3.4. Proof of Theorem 2.5. In this case, we group the residue classes (modulo 2p2) which
are square roots of the squares modulo 4p2 as follows.

(a) The square roots of a2, gcd(a, p) = 1 are ±a. The total number of such squares
are φ(p2)= p(p− 1) and the total number of square roots are 2p(p− 1).

(b) The square roots of 0 are given by 2ip, where i= 0,1,2, . . . , p− 1. The total num-
ber of these square roots are p.

(c) The square roots of p2 are given by 2(i+ 1)p, where i= 0,1,2, . . . , p− 1. The total
number of these square roots are p.

By Lemma 3.5, the value of the Gauss sum in this case equals

ξα,β = 1
p
ep2

(

(4N)−1
(
β−α

2

)2
)

, (3.36)
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where (4N)−14N ≡ 1(mod p2), if 2 | (β− α). Now we assume that ha(τ) = 0 for some a
with 2 | a and gcd(a, p) = 1. We show that hb = 0 for all b even with gcd(b, p) = 1. We
already know that ha = 0 implies h−a = 0. Then as before, applying the inversion formula
(iii) of Lemma 3.1, we get

ξa,bhb(τ) + ξa,−bh−b(τ)= 0,

ξ−a,bhb(τ) + ξ−a,−bh−b(τ)= 0
(3.37)

or

hb(τ)=−ξa,−b
ξa,b

h−b(τ)=−ξ−a,−b
ξ−a,b

h−b(τ). (3.38)

Now, proceeding as in the proof of Theorem 2.2, we see that the above relation does not
hold, since gcd(p,2Nab)= 1.

Now using ha = χ(−1)h−a, among the p components h2ip(τ), 0≤ i≤ p− 1, (p− 1)/2 +
1 of them determine the rest. Similarly, among the p components h(2i+1)p(τ), 0 ≤ i ≤
p− 1, (p− 1)/2 + 1 of them determine the rest. Note that if χ is an odd character, then
h0 = 0= hp2 . The proof is now complete.

Remark 3.7. We feel that the components ha, 2 | a and hb, 2 � b, where gcd(ab, p) = 1,
will determine the Jacobi form φ(τ,z) in Theorem 2.5. We have already shown that these
components determine the other components hμ such that gcd(μ, p)= 1. So, it remains to
prove that one of ha, 2 | a and one of hb, 2 � b with gcd(ab, p)= 1 will determine the other
hμ corresponding to the square classes 0 and p2. Assuming that ha = 0 = hb, 2 | a, 2 � b
with gcd(ab, p) = 1, we use property (iii) of Lemma 3.1 to get a system of equations in-
volving hμ corresponding to the square classes 0 or p2. Using the fact that hμ = χ(−1)h−μ,
we obtain a system of equations in (p + 1)/2 variables and the number of such equa-
tions will be (p2− 1)/2− [(p− 1)/2], where [x] denotes the greatest integer ≤ x. So, it is
enough to show that the resulting matrix has rank (p+ 1)/2. We have verified this fact for
the first few primes. We do not know whether this fact can be proved in generality.

Remark 3.8. The result for the case of integral weight Jacobi forms obtained by Skog-
man [4, Theorem 3.5] and the corresponding result for the case of half-integral weight
Jacobi forms obtained in Theorem 2.5 give different characterizations when m= p2. This
is mainly due to the appearance of quadratic Gauss sum in property (iii) of Lemma 3.1,
whereas exponentials appear in the case of integral weight. Moreover, the appearance of
the quadratic Gauss sum makes it difficult to construct various hμ functions from one
another as was done in Skogman’s work [4, Section 5].

Remark 3.9. In principle, one can obtain characterization in the case of square-free index
as done by Skogman [5].
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