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A semigroup whose bi-ideals and quasi-ideals coincide is called a B9 -semigroup. The full
transformation semigroup on a set X and the semigroup of all linear transformations of
a vector space V over a field F into itself are denoted, respectively, by T'(X) and Lg(V). It
is known that every regular semigroup is a B9 -semigroup. Then both T'(X) and Lg(V)
are BA-semigroups. In 1966, Magill introduced and studied the subsemigroup T(X,Y)
of T(X), where @ # Y € X and T(X,Y) = {a € T(X) | Ya < Y}. If W is a subspace of
V, the subsemigroup Lr(V, W) of Lg(V) will be defined analogously. In this paper, it is
shown that T(X,Y) is a B2-semigroup if and only if Y = X, |Y| =1, or |X| < 3, and
Le(V,W) is a BA-semigroup if and only if (i) W =V, (ii)) W = {0}, or (iii) F = Z,,
dimpV =2, and dimp W = 1.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The cardinality of a set A is denoted by |A|. The image of a map « at x in the domain of
a will be written by xa.

An element a of a semigroup S is said to be regular if a = aba for some b € S, and S is
called a regular semigroup if every element of S is regular. The set of all regular elements
of S is denoted by Reg(S).

The full transformation semigroup on a nonempty set X is denoted by T'(X), that is,
T(X) is the semigroup of all mappings « : X — X under composition. The semigroup
T(X) is known to be regular [4, page 4]. Magill [9] introduced and studied the subsemi-

group
T(X,Y)={aeT(X)|Yac Y} (1.1)

of T(X), where @ # Y < X. Note that 1x, the identity map on X, belongs to T(X,Y)and
T(X,Y) contains T(X,Y) as a subsemigroup, where T(X,Y) = {a € T(X) | rana C Y}
and rana denotes the range of a. The semigroup T(X,Y’) was introduced and studied by
Symons [13].
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2 On transformation semigroups which are B2 -semigroups

For a vector space V over a field F, let Lr(V) be the semigroup of all linear transfor-
mations «: V — V under composition. It is known that Lp(V) is a regular semigroup
(5, page 63]. For a subspace W of V, we define the subsemigroup Lr(V, W) of Lr(V)
analogously, that is,

Le(V,W) = {a € Lp(V) | Wa = W1. (1.2)

Clearly, 1y € Lg(V, W) and 0, the zero map on V, also belongs to Lr(V, W). In addition,
Lr(V,W) contains Lg(V,W) = {a € Lr(V) | rana € W} as a subsemigroup.

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if SQ N QS < Q, and
a bi-ideal of S is a subsemigroup B of S such that BSB < B. The notions of quasi-ideal
and bi-ideal for semigroups were introduced by Steinfeld [11] and Good and Hughes [3],
respectively. Both quasi-ideals and bi-ideals are generalizations of one-sided ideals, and
bi-ideals also generalize quasi-ideals. For a nonempty subset A of S, let (A), and (A), be
the quasi-ideal and the bi-ideal of S generated by A, respectively, that is, (A),[(A),] is the
intersection of all quasi-ideals (bi-ideals) of S containing A [12, pages 10, 12]. Observe
that (A), < (A),.

ProrosrITION 1.1 [2, pages 84, 85]. For a nonempty subset A of a semigroup S,
(i) (A), = S'ANAS!,
(i) (A), = AS'A U A.

Kapp [6] used B to denote the class of all semigroups whose bi-ideals and quasi-
ideals coincide and Mielke [10] called a semigroup in B9 a B -semigroup. Important
B9 -semigroups are the following ones.

ProrositioN 1.2 [8]. Every regular semigroup is a B -semigroup.

ProrosITION 1.3 [6]. Every left (right) simple semigroup or every left (right) 0-simple semi-
group is a B -semigroup.

Recall that a semigroup S is left (right) simple if S has no proper left (right) ideal,
and a semigroup S with 0 is called left (right) 0-simple if $* # {0} and S has no proper
nonzero left (right) ideal. Kemprasit showed in [7] that if X is an infinite set, then the
subsemigroup {« € T(X) | X \ rana is infinite} of T(X) is a B -semigroup but it is nei-
ther regular nor left (right) simple. In fact, BQ-semigroups have been characterized by
Calais [1] as follows.

ProrosiTION 1.4 [1]. A semigroup S is a BL-semigroup if and only if (x,y)y = (x,y)q for
allx,y € 8.

Every bi-ideal of a regular semigroup is a B2 -semigroup. The proof is rather sim-
ple and is as follows: let T be a bi-ideal of a regular semigroup S and B a bi-ideal of T.
Then TST < T and BTB € B. Let x € TB N BT. Since S is regular, x = xsx for some s € S
which implies that x = xsx € BTsTB < BISTB < BTB < B. Thus TBN BT < B. Hence B
is a quasi-ideal of T, as desired. Since T(X,Y) and Lr(V, W) are left ideals of T(X) and
Lp(V), respectively, it follows that T(X,Y) and Lg(V, W) are always B2 -semigroups.
However, the semigroups T(X,Y) and Lr(V,W) need not be B2.-semigroups. Notice



S. Nenthein and Y. Kemprasit 3

that if X is infinite, then the semigroup {a € T(X) | X \ rana is infinite} is a left ideal
of T(X). Similarly, if V has infinite dimension over F, then the semigroup {a € Lp(V) |
dimp(V/rana) is infinite} is a left ideal of Lr(V).

In Section 2, we give a necessary and sufficient condition for T(X,Y) to be a B9-
semigroup in terms of [X| and |Y[. In Section 3, a necessary and sufficient condition for
Lr(V, W) to be a BA-semigroup is given in terms of |F|, dimp V, and dimp W.

In the remainder, let X be a nonempty set, & # Y < X, V a vector space over a field F,
and W a subspace of V.

2. The semigroup T(X,Y)

We begin this section by characterizing regular elements of the semigroup T(X,Y). Then
it is shown that T(X,Y) is a regular semigroup if and only if Y = X or Y contains only
one element.

ProposITION 2.1. The following statements hold for the semigroup T(X,Y).
(i) Fora € T(X,Y), a € Reg(T(X,Y)) ifand only ifranaNY = Ya.

(ii) The semigroup T(X,Y) is regular if and only if either Y = X or | Y| = 1.

Proof. (i) Since Ya € Y, we have Ya € rana N Y. Assume that o = afa for some f§ €
T(X,Y). If x Erana N Y, then x € Y and x = aa for some a € X which imply that
x =aa = anPoa = xpa € YBa S Ya. Hence we haveranaNnY = Ya.

Conversely, assume that rana N Y = Ya. Then for each x € rana N Y, we have xa™' N
Y # @. We choose an element x’ € xa ! NY for each x € rana N Y. Also, for x € rana
Y, choose an element X € xa~!. Then x’a = x for all x € rananN Y and Xa = x for all
x €rana \ Y. Let a be a fixed element in Y and define $: X — X by a bracket notation as
follows:

B=

x t X\rana
(2.1)

X't a :| xEranany
terana\Y.

Then Y c {x' |x€erananY} U {a} cY,and forx € X,

(xa)a=xa ifxa€ranany,

xofo = (xa) o = { (2.2)

(x@)a = xa  if xa €Erana Y.

Hence B € T(X,Y) and & = afa.
(ii) Suppose that Y C X and | Y| > 1. Let a and b be two distinct elements of Y. Define
a:X — X by

Y X\Y
oc=[ } (2.3)
a b

Then rana = {a,b} € Y, so a € T(X,Y) and ranan Y = {a,b} # {a} = Ya. It follows
from (i) that a  Reg(T(X,Y)). Hence T(X,Y) is not a regular semigroup.
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If Y = X, then T(X,Y) = T(X) which is regular. Next, assume that Y = {c}. In this
case, T(X,Y) is isomorphic to the semigroup P(X \ Y) consisting of all partial transfor-
mations of X \ 'Y, via the map P(X \Y) — T(X,Y), a — @, where

x X ~doma«a
o= (2.4)
xa ¢ xedoma.
It is well known that P(X \ Y) is regular [4, page 4]. Hence T(X,Y) is a regular semi-
group, as required. O

To characterize when T(X,Y) is a BB9.-semigroup, Propositions 1.1, 1.2, 1.4, and 2.1
and the following three lemmas are needed.

LEMMA 2.2. Let S be a semigroup. If & # A < Reg(S), then (A)y = (A)g.

Proof. We know that (A), < (A),. Let x € (A),;. By Proposition 1.1(i), x = sa = bt for
some s,t € S' and a,b € A. Since a € Reg(S), a = aa’a for some a’ € S. Then

x=sa=saa'a=bta'ac ASA c (A), (2.5)
by Proposition 1.1(ii). Hence we have (A), = (A)y, as desired. O
LemMA 2.3. Let S be a semigroup, let @ # A € S, and let B < Reg(S). If (A (A)g, then

(AUB)p = (AUB),.

Proof. We first show that S'A N BS' and S'B N AS! are subsets of (A U B);,. Let x € S'A N
BS!. Then x = sa = bt for some s,t € S, a € A, and b € B. Since b € Reg(S), b = bb’b for
some b’ € S. It follows that

x=bt=>bb'bt =bb'sac BSA< (AUB)S(AUB) < (AUB),. (2.6)

This shows that S'A N BS! = (A U B)y. It can be shown similarly that S'B N AS' = (AU
B)p. Consequently,
(AUB);=S'"(AUB)N(AUB)S'
= (S'AUS'B) n (AS' U BS)
= (S'ANASY) U (S'ANBS') U (S'BNAS!) U (S'BnBS')
=(A)qU (S'ANBS') U (S'BNAS") U(B), (2.7)
=(A), U (S'ANBS') U (S'BNASY) U (B)y,

from the assumption and Lemma 2.2,

c(A)pU(AUB), U(AUB) U (B)y = (AU B).

But (AUB), € (AUB)y, s0 (AUB), = (AU B),. O
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Lemma 2.4. If |X| =3 and |Y| =2, then foralla, f € T(X,Y), (o, ) = (a, ) in T(X, Y).

Proof. For convenience, let X, denote the constant map whose domain and range are X
and {a}, respectively.
Assume that X = {a,b,c} and Y = {a,b}. Clearly,

X7 XX a b ¢ a b ¢ a b ¢ a b ¢
(’)_ X>4qs bra a b’a a C)b b a)b b C’

a b ¢ a b ¢ a b ¢ a b ¢ a b ¢

a b al’la b b|’'|b a al’lb a b|’|b a c|)

By Proposition 2.1(i), T(X,Y) ~ Reg(T(X,Y)) = {[*V¢],[4 ) ¢]}. LetA = [*V ¢l and yy =
(4% ¢]. Note that A> = X, = A and 1? = X; = A. To show that (a, ), = (a,B)4 for all
a,B € T(X,Y), by Lemma 2.3, it suffices to show that (1), = (Mg> (M) = (17)g> and (A,

e = (A, 17)4. By direct multiplication, we have

(2.8)

TX,Y)A = {AX, ), AT(X,Y) = (M, Xa, Xp, 1}, AT(X,Y)A = {X.},
TX,Y)n={nXe}, 4TX,Y)={nX0XesAl, TG Y)n={X},  (2.9)
AT(X’ Y)I’] = {Xb}> ’/IT()QY)A = {Xa}'

Hence

My =AT(X,Y)AU {A} = {XaA} = T(X,Y)ANAT(X,Y) = (A)g,

My =nTX,Y)nu {n} = (Xe.n} = TX, V) onT(X,Y) = (1),
Ay = A TX,Y) I n} U A0}

=AT(X, VAUAT(X,Y)qunT(X,Y)AunT(X,Y)nu {A,n}

(2.10)
= {Xo, Xp, Ao}
(A,T])q = T(X’ Y){/L’/]} N {/Ll’]}T(Xa Y)
— (T(X, Y)AUTX, Y)n) 0 (AT(X, Y) UnT(X, Y))
= {ALXe,Xp} = (A1)
A Xam Xp} = Ay .

THEOREM 2.5. The semigroup T(X,Y) is a BL-semigroup if and only if one of the following
statements holds.
(i) Y =X.
(i) 1Y] = 1.
(iii) 1X| < 3.
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Proof. Assume that (i), (ii), and (iii) are false. Then X \ Y # &, |Y| > 1, and |X| > 3.
Case1((|]Y]=2)). Let Y = {a,b}. Since |X| >3, | X\ Y| >1.Letce X\ Y. Then X \
{a,b,c} # @. Define a,B,y € T(X,Y) by

a b ¢ X~ {ab,c} c X a b X~ {ab}
o= , B= , y = .
b b a c a x|y i b b c

(2.11)

Then aaf = b = aya, baff = b = bya, cafp = a = cya, and (X \ {a,b,c})af = {a} = (X ~
{a,b,c})ya # (X~ {a,b,c})a, so « # aff = ya € (&), by Proposition 1.1(i). If af € (),
then by Proposition 1.1(ii), B = ana for some 1 € T(X,Y). Hence we have a = caff =
cana = (an)a. This implies that ay = ¢ which is contrary toa € Y and ¢ € X \ Y. Thus
(&) # (@)4, so by Proposition 1.4, T(X,Y) is not a BA-semigroup.

Case 2 ((IY| >2)). Let a, b, c be distinct elements of Y. Let a, 8,y € T(X,Y) be defined
by

b a c b a x

[a Y < {a} x}
y =
¢ a Xyexwy.

Then aaff = a = aya # aa, (Y ~ {a})af = {b} = (Y \ {a})ya, and (X \ Y)af = {c} =
(X \Y)ya. Thus a # aff = ya € (a)4. If o € (a)p, then aff = ana for some n € T(X,Y).
Therefore we have for every x € X \ Y, ¢ = xaf8 = xana = (ci)a which implies that ¢y €
X \ Y. This is a contradiction since ¢ € Y. Hence (), # (a)4, and so by Proposition 1.4,
T(X,Y) is not a B9 -semigroup.

If Y=X or |Y| =1, then T(X,Y) is regular by Proposition 2.1(ii) which implies
by Proposition 1.2 that T(X,Y) is a B9-semigroup. If |X| = 3 and |Y| = 2, then by
Lemma 2.4 and Proposition 1.4, T(X,Y) is a B2.-semigroup.

Hence the theorem is completely proved. O

[a Y~ {a} X\Y] [a b x
a= , p=

:|xEX\{a,b},
(2.12)

Two direct consequences of Propositions 1.2, 2.1(ii), Theorem 2.5, and the proof of
Lemma 2.4 are as follows.

COROLLARY 2.6. If | X| # 3, then the following statements are equivalent.
(i) T(X,Y) is a BA-semigroup.
(i) Y=Xor|Y|=1
(iii) T(X,Y) is a regular semigroup.
COROLLARY 2.7. The semigroup T(X,Y) is a nonregular B.-semigroup if and only if | X| =
3 and |Y| = 2. Hence for each set X with |X| = 3, there are exactly 3 semigroups T(X,Y)

which are nonregular B9 -semigroups, and each of such T(X,Y) contains 12 elements.

Remark 2.8. We have mentioned that T(X,Y) is a left ideal of T(X). But fora € T(X,Y)
and f€ T(X,Y), Xafc YB<SY,s0 T(X,Y) is an ideal of T(X,Y). We have 1x € T(X,
Y)NT(X,Y) if Y # X. Hence if Y # X, then T(X,Y) is neither left nor right simple.
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Therefore we deduce from Corollary 2.7 that if |X| = 3 and |Y| = 2, then T(X,Y) is an
example of BA-semigroup which is neither regular nor left (right) simple (see Proposi-
tions 1.2 and 1.3).

3. The semigroup Lg(V, W)

In this section, we give a necessary and sufficient condition for Lg(V, W) to be a B9-
semigroup. We first provide the conditions of the regularity of elements of Lr(V, W) and
of the semigroup Lr(V,W). The following facts about vector spaces and linear trans-
formations will be used. If U, and U, are subspaces of V, B, is a basis of the subspace
U; N Uy, B, € U; and B; € U, are such that B; U B, and B; U B; are bases of U; and U,,
respectively, then B; U B, U Bjs is a basis of the subspace Uy + U, of V. If o € Lp(V), By is
a basis of kera, B; is a basis of rana, and choose an element v’ € ua™! for every u € B,
then By U {u' |u € B,} isabasis of V.

ProposITION 3.1. The following statements hold for the semigroup Lr(V, W).
(i) Fora € Lr(V, W), a € Reg(Lp(V,W)) if and only if ranan W = Wa.
(ii) The semigroup Lr(V, W) is regular if and only if either W = V or W = {0}.

Proof. (i) The proof that & € Reg(Lr(V, W)) implies rana N W = Wa is analogous to the
proof of the “only if” part of Proposition 2.1(i).

Conversely, assume that rana N W = Wa. Let B; be a basis of rana N W, B, S rana \
By, and Bs & W \ By such that B; U B, and By U Bs are bases of rana and W, respectively.
Then B; U B, U B; is a basis of rana+ W. Let B4 € V ~ (B U B, U B3) be such that B; U
B, U B3 U By is a basis of V. Since B; S rana N W = Wa, we have ua™ ' n' W # @ for
every u € B;. For each u € By, choose an element ¥’ € ua™! N W. Since B, < rana, for
each v € By, va™! # &, so choose an element v € va~!. Define f € Lg(V) on the basis
B; UBzUB3UB4bY

u v B3sUB, (3 1)
ﬁ B u v 0 ueB; ’

vEB;.

It follows that WB = (B; UB3)B = ({u/ | u € By}) € W, so B € Lg(V,W). Let By be a
basis of kera. Then By U {u' |u € B;} U {v | v € By} is a basis of V. Since

Boafa = {0} =Boa, w'afa=ufa=u'a VueB,
(3.2)
vapa=vpa=va Vv EB,,

we have a = afa, so « is a regular element of Lr(V, W).
(ii) Assume that {0} # W C V. Let B, be a basis of W and B a basis of V containing
B;.Then B; # @ # B~ B;. Let w € By and u € B~ By. Define a € Lp(V) by

o= [” B\{”}]. (3.3)

w 0
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Then Wa = (B;)a < (B~ {u})a = {0}, so « € Lp(V,W). Since rana N W = (w) # {0}
= Wa, by (i), we deduce that « is not a regular element of Lr(V, W). Hence Lp(V, W) is
not a regular semigroup.

Since Lp(V,V) = Lg(V) = Lp(V, {0}), the converse holds. 0

To prove the main theorem, the following lemma is also needed. Lemma 2.3 and
Proposition 3.1(i) are useful to obtain this result.

LEMMA 3.2. IfF=7,, dimp V =2, and dimg W = 1, then for all a, € Lr(V, W), (&, B)p =
(“)ﬁ)q in LF(V) W)

Proof. Let {w} be a basis of W and {w,u} a basis of V. Since F = Z,, it follows that
W = {0,w} and V = {0,w,u,u+ w}. Clearly, both {u,u+w} and {w,u +w} are also bases
of V. Thus (w) N (u) = (w) N {u+w) = (u) n {u+w) = {0}. All elements of Lp(V, W)
defined on the basis {w,u} of V can be given as follows:

Lovow) = o w ul] [w ul [w u
L B 0 wl'lo ul’l0o w+ul’
w ul [w ul [w u
w 0 lw wl|'|w w+ul|l)
By Proposition 3.1(i), Lr(V, W) ~ Reg(Lr(V,W)) = {[§ &]}. Let A = [ 4]. Note that

A? = 0. To prove the lemma, by Lemma 2.3, it suffices to show that (1), = (1),. By direct
multiplication, we have

Lp(V,W)A = {0,A}, ALR(V,W) = {0,1}, ALE(V,W)A = {0}. (3.5)

Consequently, (A), = AL;(V, W)AU {A} = {0,A} = Lp(V,W)ANn ALg(V,W) = (1),. O

THEOREM 3.3. The semigroup Lr(V, W) is a BL-semigroup if and only if one of the follow-
ing statements holds.
(i) W=V.
(if) W = {0}.
(iii) F = Zy, dimp V =2, and dimp W = 1.

Proof. Assume that (i), (ii), and (iii) are false. Then (1) {0} # W C V and (2) F # Z,,
dimp V >2, or dimp W > 1. Let B; be a basis of W and B a basis of V containing B;. Then
By # @and B\ B; # @.

Case 1 ((F #7;)). Letae F~\ {0,1}, w € B;, and u € B~ By. Define o, 8,y € Le(V, W)

by
u B~ {u} w B~ {w} u B~ {u}
‘X:|: :|’ ﬁ:|: :|, y:|: :|. (3.6)

w 0 aw 0 au 0

Then we have aff = [ % 5>/*/] = ya. Since a # 1, we have aff # a. By Proposition 1.1(i),
ap € Lp(V,W)(«)q. Suppose that aff € Lp(V, W)(a);. By Proposition 1.1(ii), af = ana
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for some € Lp(V,W). Then aw = uaf = uana = (wn)a. Butwyn € W and Wa = (B;)a =
(B~ {u})a = {0}, so aw = 0 which is contrary to a # 0. Thus («)4 # (&), s0 Le(V,W)is
not a BY-semigroup by Proposition 1.4.

Case 2 ((dimg W >1)). Then |B;| > 1. Let w;,w, € By be such that w; # w, and u €
B By. Define a, 8,y € Le(V, W) by

a:[wl u B\{wl,u}]) ﬁ:[wl B\{wl}], y:[u B\{u}]_

wy Wi 0 wy 0 u 0
(3.7)

Then off = [, B = ya 4 «, so af € (a),. If aff € (a)p, then aff = ana for some
1 € Le(V,W). Thus w = uaf = uana = (win)a. Since win € W = (B;), we have wn =
aw; +v for some a € F and v € (B; ~ {w1}). But B; ~ {w;} € B~ {wi,u}, so va = 0.
Consequently, w; = (aw; + v)a = aw, which is contrary to the independence of w; and
w,. By Proposition 1.4, Lg(V, W) is not a B9.-semigroup.

Case 3 ((dimgV >2 and dimg W = 1)). Then |B;| =1 and |B~ B;| > 1. Let B; = {w}
and u;,u; € B\ B; be such that u; # u,. Let a, 8,y € Lr(V, W) be defined by

“:[ul 102 B\{ul,uz}]’ ﬁ:[w B\{w}], y:[ul B\{ul}]

w U 0 w 0 U 0
(3.8)

Then we have aff = [*! B\é”l}] = ya& # «, s0 aff € (a)q. Suppose that af € (a)p. It follows
that aff = ana for some n € Lg(V,W). Thus w = uyaff = ujana = (wn)a. Butwnp e W =
(w) and wa = 0, so w = (wn)a = 0, a contradiction. Hence (&), # (), so Le(V, W) is
not a BAY-semigroup, as before.

For the converse, if (i) or (ii) holds, then Lr(V, W) = Lr(V) which is a B2 -semigroup
by Proposition 1.2. If (iii) holds, then Lg(V, W) is a B2-semigroup by Proposition 1.4
and Lemma 3.2. O

The following corollaries follow directly from Propositions 1.2, 3.1(ii), Theorem 3.3,
and the proof of Lemma 3.2.

COROLLARY 3.4. IfF # Z, or dimp V # 2, then the following statements are equivalent.
(i) Le(V, W) is a B -semigroup.
(ii)) W=V or W ={0}.
(iii) Lr(V, W) is a regular semigroup.

COROLLARY 3.5. The semigroup Lp(V, W) is a nonregular B9-semigroup if and only if
F =17, dimpV =2, and dimg W = 1. Hence if F = 7, and dimp V = 2, there are exactly
3 semigroups Lg(V, W) which are nonregular B9 -semigroups, and each of such Lr(V, W)
contains 8 elements.

Remark 3.6. We also have that Lp(V, W) is an ideal of Lr(V, W) (see Remark 2.8). Con-
sequently, if {0} # W C V, then Lp(V, W) is neither left nor right 0-simple. Hence if
F =7,,dimpV =2, and dimp W = 1, then Lp(V, W) is a B2-semigroup which is nei-
ther regular nor left (right) 0-simple.
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