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The generalized Roper-Suffridge extension operator in Banach spaces is introduced. We
prove that this operator preserves the starlikeness on some domains in Banach spaces
and does not preserve convexity in some cases. Furthermore, the growth theorem and
covering theorem of the corresponding mappings are given. Some results of Roper and
Suffridge and Graham et al. in C" are extended to Banach spaces.

1. Introduction and preliminaries

Let U = {z € C: |z| < 1} and B, denote the unit disc in C and the unit ball in C", respec-
tively. In [11], Roper and Suffridge introduced an extension operator, which is defined
for normalized locally univalent function f on U by

D,(f)(2) = (f (@), (21)20), (1.1)

where z; € U, zo = (2,...,2,) € C* ! with z = (z1,20) € B,,, and we choose the branch
of the square root such that ,/f’(0) = 1. This operator is known as the Roper-Suffridge
extension operator. Roper and Suffridge [11] proved that if f is a normalized convex
function on U, then ®,(f) is a normalized biholomorphic convex mapping on B,. In
[7], Graham and Kohr proved that (1) if f is a normalized starlike function on U, then
®,(f) is a normalized biholomorphic starlike mapping on B,; (2) if f is a normalized
Bloch function on U, then ®,( f) is a normalized Bloch mapping on B,,. Because Roper-
Suffridge extension operator has these important properties, many authors are interested
in this extension operator. They generalized this extension operator in C" and discussed
their properties (see [2, 3, 5, 6, 7, 8, 9, 10], etc.).

In [9], I. Graham, G. Kohr, and M. Kohr generalized the Roper-Suffridge extension
operator to

O,5()(2) = Fs(2) = (f (1) (f' (1)) ), (1.2)

where f3 € [0,1/2], f, z1, 29, z are defined as above, and the branch of the power function
such that (f’(z))#|,—o = 1 is chosen. In [7], Graham and Kohr posed the following open
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problem. Consider the Reinhardt domain

D, (f)(2) = {z: (z1,22) € C*: |z |2+ |2,|? < 1}, (1.3)

where p > 1. Does the operator

Dy1/5(f)(2) = Fuyp(2) = (f(21), (f'(21)) 22 (1.4)

extend convex functions on U to the convex mappings on ), ,?

In [2], Gong and Liu solved the above open problem of Graham and Kohr in the
affirmative.

The purpose of the present paper is to extend the Roper-Suffridge extension operator
from C” to Banach spaces and discuss its properties. In particular, we will verify that the
solution of the above open problem of Graham and Kohr still holds in Banach spaces (see
Theorem 2.6).

Throughout this paper, let X be a complex Banach space with norm || - ||, let X* be the
dual space of X, and let O C X be a domain. Suppose that f : QO — X is a biholomorphic
mapping and 0 € f(Q). A biholomorphic mapping f : O — X is said to be starlike, pro-
vided f(Q) is starlike with respect to the origin. A holomorphic mapping f : Q — X is
called normalized if f(0) = 0 and D f(0) = I, where I is the identity map on X and D f (x)
is the Fréchet derivative of f at x € Q). The class of all normalized biholomorphic starlike
mappings on Q is denoted by $*(Q). Then f € $*(Q) if and only if f is a normalized
biholomorphic mapping on Q and

Af(x) € f(Q) (15)

for all x € Q and 0 < A < 1. A biholomorphic mapping f : Q — X is said to be convex,
provided f(Q) is a convex set. The class of all normalized biholomorphic convex map-
pings on Q is denoted by K(Q). Then f € K(Q) if and only if f is a normalized biholo-
morphic mapping on Q and

(1=-1)f(x1) +Af (x2) € f(Q) (1.6)

for all x1,x, € Q and 0 < A < 1. In particular, let $*(U), K(U), S be the class of all nor-
malized starlike functions, convex functions, and univalent functions on U, respectively.
Suppose that 7 is a positive integer and dimX > #n. Let x;,%2,...,%, be a linearly in-
dependent family in X with |lx;[| =1 (j = 1,2,...,n). According to the Hahn-Banach
theorem [12], there exist x;“ € X* such that x;-" (xj) =1 and x;-" (x) = 0 for all x € M;
(j = 1,2,...,n),where M; = span{xi,...,xj_1,Xj+1,...,%,}. Hence, we havex;-k(xj) =1land
X7 (i) =0(j #1).
Assumen =2, p; =1 (j=2,3,...,n+1),and let
DPn+1
< 1}.
(1.7)

X — Z x]’»k (x)x;

Qu(paseespur1) = {xEX: |x1*(x)|2+z |x}"(x)|pj+
=2 j=1




M.-S. Livand Y.-C. Zhu 1173

In this paper, we consider the generalized Roper-Suffridge extension operator

F(X) = q)vtz B2seeos i 1,1 (f) x

_ fxt () +2(M) ()P (o),

x1 (%)

+(f( (x))>%1(f(x1 ﬁ“[ Zx x)x]],

x7 (x)

(1.8)

where f € Sand x € Qu(p2,..., pus1)s aj € [0,1], B € [0,1/pj], &j + B <1 (j =2,3,...,
n+1). We may choose the branch of all power functions ( f(z)/z)%| .= = 1 and (f'(2))P|.=o
=1for @ = 0, 3 = 0. Below we apply this agreement.

It is obvious that if x{(x) = 0 in (1.8), then F(x) = x.

Whena; =0,8;=1/2,p; =2 (j =2,...,n), X = C", x*(-) = (-,u;) € X* in (1.8), we
obtain the Roper-Suffridge operator ®,(f), where u; denotes the vector in C* with 1 in
the jth place and zeros elsewhere.

In order to derive our main results, we need the following lemmas.

LemMa 1.1 [1]. Let g: U — U be an analytic function in U with g(a) = b, then

’ 1_ |b|2
lg'(a)] < Zlak (1.9)
LemMa 1.2. Let f € K(U). Then for every z1,z, € U, 0 <A <1,
A=-MIf @) (1= lal?)+Af @) (1)) <= 1w?) [ fw],  110)

wherew = f1((1—=A) f(z1) + A f (z2)).

Proof. Let ¢, () = ({+2;)/(1+Z;() (j = 1,2), then the functions ¢, : U — U are ana-
lyticin U, and ¢;,(0) = zj, ¢; (0) = 1 — 1zjl? (j = 1,2). Set

8O =fHA=Nf(pz (Ce™)) +Af (9, (L™ ™)), (L.11)

where 0; = arg(f'(z;)/f'(w)) (j = 1,2). Then g is analytic in U with

g0) = fH (A =N f(z1) +Af(22)) = w,
'y — | f'(z1) | N L f(z)] , (1.12)
g(0)=(1-1) o] (1- 1z | )+A|f,(w)| (1-121%).

Hence, (1.10) follows from Lemma 1.1, and the proof of Lemma 1.2 is complete. O
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LemMma 1.3 [10]. Suppose that @, y are twice differentiable on [0,1), and

p(0)=¢(0)—1=0, ¢'(r)=0, ¢"(r)<0 onl0,1);

y(0) =y’ (0)-1=0, ¥ (r)=0, v"(r)=0 on[0,1). (1.13)

Ifp=1,a€[0,1], B €[0,1/p] with a+ 5 < 1, then for fixed r € [0, 1), the minimum of

pa
((p(t))"+(rP—tP)(@> ((p'(t))P‘B (1.14)

fort € [0,7] occurs when t = r; the maximum of

pa
oy + (- (M) o) (115)

fort € [0,r] occurs when t = r.

LemMma 1.4 [4]. (1) If f(z) € S*(U), then for |z| =r < 1,

r 1—r

G =@l @y s @< g0y (1.16)
(2) If f(z) e K(U), then for |z| =r < 1,
o <lf@l = (le)z <|f (2| < (1—1r)2' (1.17)

2. Main results and their proofs

THEOREM 2.1. Suppose that aj € [0,1], B; € [0,1/pj]l withaj+f; <1 (j=2,3,...,n+1).
If f € Sand F(x) = @u, p,...ane1pons (f)(X) is defined by (1.8), then F € S*(Q) if and only if
f S S*(U), where Q) = Qn(pz,...,pn+1).

Proof. First, we prove that F: Q — X is a normalized biholomorphic mapping on Q.
From (1.8), by a direct calculation and noting f(0) =0, f'(0) = 1, we have F(0) = 0 and

DF(0) = xf (-)x1 + > x5 (-)x; + (1 Zx;-k(-)x]) =1 (2.1)
j=1

j=2

Hence, F is a normalized holomorphic mapping on Q.
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If F(y1) = F(y2) for y1, ¥, € Q, then we have

f () =x7(F(n)) = x5 (F(y2)) = f(xf (12)). (2.2)

Therefore, it follows from f € S that x{"(y1) = x{ (). Since F(y1) = F(»2), f € S, and

) (e )P (),
(2.3)

—) 5Pt ()

for j = 2,3,...,n, then we obtain that x;»“(yl) = x;"(yz) (j = 1,2,...,n). Hence, we have
¥1 = 2. It follows that F is a biholomorphic mapping on Q.
Next, we prove that F = @y, 6, .., 8,., (f) is a starlike mapping on Q when f € §*(U).
Let ye Qand 0 <A < 1. Since f € §*(U), there exists a point z € U such that

f(2) =Af (xf (). (2.4)
Set
: N/t )Y (f (o ()P
- Z PRI x5 (y)x;
(2 (f(Z)/Z) (f'(2) 05

St )/t <y>)"‘"”(f'(x:‘(y>))ﬁm[ -3 ]
(f(z)/z)"‘"“(fr(z))ﬂm y j;x] (»)x;j |

where (f(x{(»))/xF ()% = (f' (x5 (y)) DB = 1if xf (y)=0and (f(2)/2)% = (f'(z (2)Bi =
llfz—Ofor]—l ..... n+1.
Note that x}k (xj) = 1and x}k (x;) =0 (j # i), we have x{"(v) = 0 and

(f ek )/ ) (f (xF )™,

* = ; ) 2.6
) G r@r Y (20

for 2 < j < n. Hence,
S LG O )™ ()™ [ S ] 27
; (f(Z /Z)a l(f (z))[; o y j;x] ()’)xj (2.7)

From (2.4), we have

=1 f W), (2.8)
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where u = x{(y). Let g(§) = f1(Af(§)) for £ € U. Then g : U — U is analytic in U with
g(0) = 0and z = g(u). By Schwarz’s lemma and Lemma 1.1, we obtain that |z| = [g(u)] <
lul = |x{"(y)| and

, 1-]zI> 11—zl
g ()] < W = ) (2.9)
On the other hand,
g’(u)—/\f( ). (2.10)

f(z

According to (2.6), (2.7), (2.8), (2.9),and (2.10) and &; + 3; < 1, pjB; < 1(j = 2,3,...,n+
1), lz| < Ix{ ()], we have

Pn+1

Z|x;k(v)|pj+
=)

n
V- Z xj’-k (v)x;
j=1

n n Pnn1
< Y 1g @ PP x5 [P+ 18 @) P00 ly = Sk ()
j=2 j=1
n ﬁjpj But1 Pt n Pnr1
— |z|? ) »; 1 |z|?
SZ( DI+ —— y=2.xf ()
i\ 1= [ xf Solk ! 1- |2 (p) | i
L1z -z d o
Z | xF () |7+ Hy—zx*(y)x;
21— |xf(y |2 1_|1)’)| j:1]
- |zI%
(2.11)
Let zg = v+ zx;. Then we have x} (z0) = z, x;-“(zo) = x]’»‘(v) for2 <j<mn,and
20 — Zx Z0)x Z V)Xj, (2.12)
j=1
where x (v) = 0. Hence, we obtain
n n Pn+1 5
Z 20) |7 + 1|20 — > x7 (20)x <1-lzl*=1-|xf(z0)]|". (2.13)
j=2 j=1
This implies zg € Q. From (2.6), (2.7), and (2.12), direct computation yields
AF(y) = F(z). (2.14)

Hence, F € $*(Q).
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Conversely, if F = @y, g,....a,.1.p.: (f) € S*(Q), we prove that f € §*(U).

In fact, for every z; € U and t € [0,1], if we let x = zx;, using the fact that x{*(x) =
z; and x;"(x) =0 (j =2,3,...,n), then we have x € Q and x{(F(x)) = f(z). Since F €
S*(Q), then tF(x) € F(Q). It follows that there exists xo € Q such that tF(x) = F(xp).
This implies |xf (x0)| < 1 and

tf(z1) = x{ (tF(x)) = x{ (F(x0)) = f (x{ (x0)) € f(V). (2.15)

Hence, f € $*(U) and the proof of Theorem 2.1 is complete. O

Example 2.2. Let pyi1 =p =1, p; > 1(j =2,3,...,n), let e; denote the vector in [, with 1
in the jth place and zeros elsewhere, x;»k (+) =(-,ej), and let

n +oo
qu—{x— (X1,%25 > Xs.. ) €l |x1|2+z lxi [P+ > |xj|p<1}. (2.16)

j=2 j=n+1

Since f1({) = {/(1 - {)* € $*(U), then we have

xe S xfej(l"‘xl)ﬁj (x_z;l=1xfej>(l+xl)ﬁn+l

(1 _ xl)Z = (1 _ xl)ZaJJr.’)ﬁj (1 _xl)thn+1+3ﬁn+1

es*(Q}), (2.17)

where x = (x1,X2,...,Xn,...) € Qh, a; €[0,1], B € [0,1/p;], and a; + 8 < 1 (j = 2,3,...,
n+1).

Remark 2.3. Letx;j (j = 1,2,...,n+ 1) be the vector in C" with 1 in the jth place and zeros
elsewhere. Settingatj = 0, 8; = 1/2, X = (C”,x;‘(-) =(x))eX*p;i=2(j=2,3,...,n)in
Theorem 2.1, we obtain [7, Theorem 2.2] from the sufficient condition of Theorem 2.1;
[8, Corollary 3.3], [9, Corollary 2.2], [6, Corollary 2.2], and [10, Theorem 3.1] are all the
special cases of the sufficient condition of Theorem 2.1.

THEOREM 2.4. Suppose that aj =0, B; 20, and p; =1 (j =2,3,...,n+1). If dimX >
n+land ®o,p, . arpon (K(U)) CK(Qu(p2s..., pui1)), where Do, g, a1 g (f) is defined
by (1.8), then B; < 1/p; for j = 2,3,...,n+ 1. Furthermore, if B;, = 1/pj, for some jo €
12,3,...,n+ 1}, then aj, = 0.

Proof. Let M = {x € X : x] (x) =0, j = 1,2,...,n}. For every x € X, setting x;,; = x —
>7-1%] (x)xj, we have
x;-" (x)41) =x7-‘(x) —x}"(x)x}‘ (x) =0, j=12,...,n (2.18)

This implies x,,,; € M. Sincex;“(x,-) =0(j+1) andx;" (xj) = 1(i,j = 1,2,...,n), we obtain
X=Mo{dx;:1€C}t®---® {Ax,: A € C}. Because dimX = n + 1, then there exists
Xnp1 € M with [|x,1] = 1.
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Suppose that there exists S > 1/pr 2 <k <n+1). For0<e< 1, weletr =+/1—ebk,
x =rx1+ (e/2)xx, w = —rx; + (¢/2)xk, then we have x(x) = r, x{"(w) = —r.

Case 1. When k = n+1,wehavex;“(x) :xjf(w) =0(j=2,...,n),and

n
€
X — x;-k (%)xj = ZXn11 w— Zx]’»‘(w)xj = —Xpt1. (2.19)

2

n
i=1 j=1

J

Hence, x,w € Qy(p2>.-.» Prt1)-

Taking f(z1) = (1/2)log((1 +2z1)/(1 — z1)) with logl = 0, we have f € K(U). Setting
F(X) = (Daz,ﬁz ..... Wt 1>Pnt1 (f)(x)> since F € (Daz,ﬁz ..... Wt 1>Pn1 (K(U)) C K(Qn(pb---:pn+l))) we
have

%[F(x)+F(w)] € F(Qu(pry.rs prsr))- (2.20)

Hence, there exists xg € Q,(p2,..., pns1) such that F(xy) = (1/2)[F(x) + F(w)] . Using
the fact that f(—r) = — f(r) for 0 < r < 1, we obtain

St (20)) = (B(x0)) = 5 67 (FG)) +37 (FOw))

_ %[f(xf‘(x))+f(XIk(W))]

(2.21)
1
= JLf+ f=n)]
=0.
Since f is univalent on U, then we obtain x{"(xy) = 0 and F(xy) = xo. Hence,
1 .
x7 (x0) = x} (F(x0)) = E[xf* (F(x)) +xF (F(w))] =0, j=2,3,...,n (2.22)
On the other hand, from (1.8), we have
1
F(x) = 5[F(x)+F(w)]
_l(il 1+r>(xn+l< 1 ),Bnﬂf
“2\2r 81, 1—p2) 2%
(2.23)

Lo Ligglor)™ ()™,

2 2 814y 1—r? 2!

— l (210g(1 + 1- SP"H) —pn+110g£>(xn+]£1Pn+lﬂn+1x

= > > il ~ehn n+l1-

+
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If Bus1 > 1/ pns1, letting e — 0%, we obtain

21og (14T —ePr1) — ppyprloge ™"
IIF (x0) || = 1 (2log( ePre1) — ppyiloge glmPmibr . yoo, (2.24)
2 2+/1 _£Pn+l
which contradicts [|F(xo) || = llxoll = Il — 37_; 7 (x0)x;1l < 1. Hence, Bps1 < 1/pp1-

Furthermore, if Su41 = 1/pps1, from (2.24), we have [|[F(xo)l| — +oo(e — 0%) when
anr1 > 0. This is impossible. Hence, we have a1 = 0, and the proof of Case 1 is com-
plete.

Case 2. When 2 < k < n, we have x;(x) = €/2, x{ (w) = ¢/2, x;»‘(x) = x]*(w) =0 (j=
2,....,k—1,k+1,...,n), and

n n
X — Zx]* (x)xj =0, w— Zx;-k(w)xj =0. (2.25)
j=1 j=1

Hence, x,w € Qu(p2,..., Pns1)-
Similarly, it can be shown that there exists xp € Q,(p2,..., pn+1) such that F(xy) =

(1/2)[F(x) + F(w)], x{*(x0) = 0, and F(x0) = xo.
On the other hand, by (1.8), we have

F(xo) =

_%ibuqy lﬁ;
“2\2r gl—r 1—17r2 Zk

[F(x)+F(w)]

N[ =

R
2\ 72 %1y ) \1o2) 2%
! (210g(1+¢1 —e7) —pklogff)akgl_pkﬁkx
_1 .
2 21— el
Since Bk > 1/px, letting e — 0%, we obtain
1(2log(1+T—eP) — peloge\ ™ |
o) | = [ (PG| = (218U o) opn e,
(2.27)

which contradicts |x; (xo)| < 1. Hence, fx < 1/px.

Furthermore, if B = 1/px (2 < k < n), from (2.27), we have x; (xp) — +oo(e — 0")
when ax > 0. This is impossible. Hence, we have ax = 0, this completes the proof of
Case 2. [l
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Remark 2.5. Let x; (j = 1,2,...,n+ 1) be the vector in C" with 1 in the jth place and zeros
elsewhere. Setting p; =2, aj = a, ; =, X = ", xj’-“(-) =(,xj) €X*, j=2,3,...,n+
1, in Theorem 2.4, we obtain the partial result of [6]. Furthermore, when a; =0, j =
2,3,...,n+1, Theorem 2.4 provides the necessary condition of preserving convexity, and
the following result provides the sufficient condition of preserving convexity.

TaeorEM 2.6. If f € K(U), and

G(x) =¥y pir (F) (%)
= flxf )+ X (f )P oxg + (f (x (x))) [x - X <x>xj},

j=2

then G € K(Q), where Q = Qu(p25..-> Put1)-

Proof. First, since f € S, according to the proof of Theorem 2.1, by straightforward cal-
culation from (2.28), we obtain that G is a normalized biholomorphic mapping on Q.

.....

For every Y, Y2 €Q and 0 <A < 1, there exists a point w € U such that
Fw) = (=D f (e (1)) +Af (5 (32)). (2.29)
Let

n v 1/pj
v=~1-1)2 (f (;,1(%1))> x; (y1)x;

j=2

'l 1/pn+1 n
+(1—A)(%> |:)/1 _;x;k(}’l)xj:|

a3 (L)

j=2

A(%) [ 005 |

j=1

(2.30)

Then for 1 < j < n, note that x;-‘(xj) = 1and x]*(x,-) =0 (j # i), we have x{(v) = 0 and

7 * I/PJ' ’ * UPJ
xjf(v):(l—A)(f—(fx)(fj;))) x}‘(yl)M(if("‘(”))) xf(n) @31
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for 2 < j < n. Hence, we obtain

(2.32)
+A<_f, (1 ()’2))> " <}/2 - ix* ()’2)x->.
fr(w) bl ’
In the following, we prove that
k)| = ( 'f M 1x2 ()7 42 f—(}‘}(%z)) () [P (2.33)

forpj =1(j=2,3...,n).

Case 1. Suppose p; > 1. Taking g; > 1 such that 1/p; +1/q; = 1, by Hélder’s inequality,
we have

EAOIK

< [(1)01/%'((1

+ A4 (A‘ f (x,ik (};2))

WO e )
LT s 1)

1/pjqpj
() |Pf) ]

[ 'f |x R fi(fx}(fv}f)) |xj‘(y2)|Pj}(l—/1+/\)Pf/‘b
[ On) xl py | S EED) | e
<= FEUD g p | LEEOD 1y
(2.34)
The proof of Case 1 is complete.
Case 2. Suppose p; = 1. By the triangle inequality, we have
17 = x| =1 %\ixﬂmm % 50|
o (x1 Xt () | f( ( 12
(2.35)

The proof of Case 2 is complete.

Hence, the inequality (2.33) holds for p; > 1, j = 2,3,...,n.
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Similarly, we may obtain

n Pnn1 f X n Pn1
- > xf(v)x A)' i ' ‘ -2 xF(n)x;
j=1 j=1
Pnt1
A -0
(2.36)
|f’“ (- 2 >'”)
+A %'( le 72) Ip’>-

According to (2.33), (2.36), and Lemma 1.2, we have

DPn+1

v
par
f1&E )

S lxrm) |+
j=2

f (1 (2) *(Yz)) ' >
<(1-2 +1 1— |xf
a-n| LU0 ‘( i ) ) A ZETOD - )
<1-|wl
(2.37)
Let zo = v+ wx;. Then we have x;*(zp) = w, x;-‘(zo) = xf(v) for2 < j <mn,and
Z0— Zx 20)x; =v— > xF(v)x), (2.38)
j=1
where x; (v) = 0. Hence, we obtain
n n Pn+1
Z 2) |7+ |20 = D xf (zo)xj]|  <1-Iwl=1-|xf(20)]" (2.39)
j=2 j=1

This implies zg € Q. From (2.31), (2.32), and (2.38), straightforward calculation yields

(1-2M)G(y) +AG(y2) = G(z). (2.40)

Hence, F € K(Q) and the proof is complete. O

Remark 2.7. Theorem 2.6 tell us that the solution of the open problem of Graham and
Kohr [7] mentioned in Section 1 still holds in Banach Spaces; [11, Theorem 1], [7, The-
orem 2.1] and [3, Theorem 2] are all the special cases of Theorem 2.6.
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THEOREM 2.8. Suppose that f € S satisfies

o)< |flz)] =v(r), |al=r, (2.41)
P =<|f' () =y (), l|al=r (2.42)

where ¢, v are twice differentiable on [0, 1), and

(0)=¢ (0)-1=0, ¢'(r)=0, ¢"(r)<0 on[0,1);

() =y’ (0)-1=0, ¥ (r)=0, y"(r)=0 on[0,1). (2.43)

Let aj >0, ; 20, g; =1 (j=12,...,n+1), «a € [0,1], B € Ol/ql] where a =
mMax;-23,. n+1 1%}, B = MmaxXj=a3, a1 1P}, and F(x) = Oy g, apr o (f)(X) is defined by
(1.8), and

Q' =Qggqn = X EX:p(x) <1}, (2.44)

where p(x) = (37_; x}] ()19 + llx = 37 7 () 19+) V4 If g1 = maxj-1 o, 1 {q;} and
a+f < 1, then F is a normalized biholomorphic mapping on Q, and

o(r) < p(F(x)) < y(r), (2.45)

forp(x) =r<1.
Furthermore, if for some f the lower (resp., upper) estimate (2.41) is sharp at z; € U,
then the lower (resp., upper) estimate (2.45) is sharp for @, g, .. ay o (f) (%) at x = z1x1.

Proof. Since f € §, according to the proof of Theorem 2.1, by straightforward calculation
from (1.8), we obtain that F is a normalized biholomorphic mapping on Q)'.

Now we prove that the inequalities (2.45) hold for p(x) = r < 1.

Let t = |x{(x)|, using the fact that 0 < ¢(¢)/t < 1,0 < ¢'(t) < 1 for t € (0,1) and

i () =f (37 (), xf(F<x>)=(f§j§(§j‘”) (NP (=23 0m)
_ " * .x (.x e ,Bnﬂ _ * .
J;x] (F(x))x; ( T [x j;xj (x)x]],
q1=j:g§§+l{qj}, = max L =j:2,n;)jc}§m{ﬁ;},
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we obtain
n . n qn+1
= D % (F) | +|[F(x) = > xF (F(x)x
j=1 j=1
B o Il X1 (x )) * Bidj | % qj
<1ttt 3 [ PO p iy 1991y
FOEE) ™ oy ]S |
T |f (xf () | x j;xj (x)x;
(2.47)
n q)(t) ®;jqj 13 )
= p(t)7 +3 (7) (¢ ()P |57 )]
j=2
An+1qn+1 qn+1
+ (@) ( (t ﬂn+lq;1+l Zx X)X]
L0
= ()7 + (t> (¢ (£)F (i — 1),
By Lemma 1.3, we have
p(F(x)" = o(r)n, (2.48)
hence ¢(r) < p(F(x)).
Similarly, we may prove that p(F(x)) < w(r). This completes the proof. O
Setting g1 = q2 = - - + = qu+1 = p in Theorem 2.8, we obtain the following corollary.

CoROLLARY 2.9. Suppose that f, ¢, v satisfy the hypothesis of Theorem 2.8. Let p > 1,
«j=0,8;=0(j=23..,nt1), a€[0,1], B €[0,1/p], where &« = maxj—s3_ . +1{a;},
B=maxj_s3. nr11fj}. Let F(x) = Do, g, a1 pon (f)(X) be defined by (1.8), and

Qp={xeX:|xll, <1}, (2.49)

where || x|, = ( }1:1 Ix;-"(x)IP + [|x — ]'7:1x;-“(x)xj||P)1/P, Ifa+ <1, then F is a normal-
ized biholomorphic mapping on Q,, and

o(r) < [[F(x)[], = y(r), (2.50)

for [Ix|l, =r < 1.
Furthermore, if for some f the lower (resp., upper) estimate (2.41) is sharp at z; € U,
then the lower (resp., upper) estimate (2.50) is sharp for @, g, .. ay o (f) (%) at X = z1x1.

Remark 2.10. Setting p = 2, oc] =a,Bj=p(j=23..,n),X=C"x =(10,...,0),x=
(0,1,0,...,0),..., x, = (0,.. ),x}“(-): (-,xj) €X* (j = 1,2,...,n) in Corollary 2.9, we
obtain [6, Theorem 3.1].

According to Corollary 2.9 and Lemma 1.4, we have the following corollary.
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CoroLLARY 2.11. Suppose that X is a Banach space, p > 1, a; = 0, ; =20 (j = 2,3,...,n+
1), a € [0,1], B € [0,1/p] with a+ f <1, where a = maxj_3. .1iq;}, B =
maxj—z3,.a+11fj}. Let F(x) = @, 6, ap o (f)(x) be defined by (1.8).

() If f € S*(U), then for ||zl , = r < 1,

ﬁ <||F2)l, < ﬁ (2.51)
(2) If f € K(U), then for ||zll, =r < 1,
< [F@Il, = . (2.52)

These estimates are sharp.
From Corollary 2.11, we have the following corollary.

CoRrOLLARY 2.12 (covering theorem). Suppose that X isa Banach space, p > 1, aj = 0, §; =
0(j=2,3,...,n+1), € [0,1], B€[0,1/p] with a+p <1, where « = max;-s3_ u+11a;j},
B=maxj—23 . 11} Let F(x) = D, g, . ar pon (f ) (X) be defined by (1.8) and Q, defined
by (2.49).

(1) If f € $*(U), then F(Q,) D (1/4)Q2,.

(2) If f € K(U), then F(Qp) D (1/2)Q,.

Remark 2.13. Setting X = C", x; = (1,0,...,0), x, = (0,1,0,...,0),..., x, = (0,...,0,1),
x]’-"(-) = (-,x;) € X* (j = 1,2,...,n) in Corollary 2.11, we obtain [10, Theorem 3.3]. Set-
ting X = (C”,x}k(-) = (-,x;) € X*(j = 1,2,...,n) in Corollary 2.12, we obtain [10, Corol-
lary 3.4].

Suppose $ is a nonempty subclass of normalized biholomorphic mappings on Q) =
Qu(p2s-.ospusr). Letn =2, p; > 1(j =2,3,...,n+1),r >0, and let

2 n Pj Prn1
Q;(pz,...,pnﬂ):{xeX: x;“(f) +Z x}‘(f) + f—Zx]’-k<§)xj <1},
r ] r rooN\r
(2.53)
we define
r*($) = sup {r : F is a starlike mapping on Q}, (p»,..., pus1), F € $}. (2.54)

For every f €S, according to the proof of Theorem 2.1, we obtain that F(x) =
Do, fy.otyir fos (f ) (%) is @ biholomorphic mapping on Q. Hence, the mapping family
$1 = { P, 5,001 s (f)(x) 1 f € S} is given. Consequently, we derive the following re-
sult from Theorem 2.1.

THEOREM 2.14. Letn>2, p; > 1 (j =2,3,...,n+1), a; € [0,1], B; € [0,1/p;], and «;j +
Bi<1(j=23,...,n+1), then r*($,) = tanh(n/4).
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Proof. Since the radius of starlikeness for the set S is r = tanh(n/4) (see [4]), for any
f eS8, g(z) =(1/r)f(rz) is a normalized biholomorphic starlike mapping. According to
Theorem 2.1, we obtain that

(Daz ﬁz ~~~~~ QA+l ﬁnﬂ (g) (X)

*

x)X+Z( ?f( ) (g (xF (0))Pxs (0)x;

(2.55)
g(xl (x)) o ’ * /5n+1 _ - * .
+ (x{k ™) (¢ (%7 (x))) x j;xj (%)x;
is a starlike mapping on Q, thus
f(xf (rx) x1+z ( ) )> (f'(xf(rx)))ﬁjx;"(rx)xj
f( J*z )) . . (2.56)
X (rx ’ n+1
+ (W) (f (xik(rx)))lg [rx—];x;-"(rx)xj]
is a starlike mapping on ), too. Set y = rx, then
fiat+ 3 (LBI0 ”) (F ()P ()
S\ AO)
Flro) ™ é 27
X1y , i1
(PO o™ S o
is a starlike mapping on Q,(pa2,..., pu+1). From Theorem 2.1, we have r*($;) = tanh(n/4)
= ("> - 1)/(e"? +1) = 0.65579, and the proof is complete. O
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