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The generalized Roper-Suffridge extension operator in Banach spaces is introduced. We
prove that this operator preserves the starlikeness on some domains in Banach spaces
and does not preserve convexity in some cases. Furthermore, the growth theorem and
covering theorem of the corresponding mappings are given. Some results of Roper and
Suffridge and Graham et al. in Cn are extended to Banach spaces.

1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} and Bn denote the unit disc in C and the unit ball in Cn, respec-
tively. In [11], Roper and Suffridge introduced an extension operator, which is defined
for normalized locally univalent function f on U by

Φn( f )(z)=
(
f
(
z1
)
,
√
f ′
(
z1
)
z0

)
, (1.1)

where z1 ∈ U , z0 = (z2, . . . ,zn) ∈ Cn−1 with z = (z1,z0) ∈ Bn, and we choose the branch
of the square root such that

√
f ′(0) = 1. This operator is known as the Roper-Suffridge

extension operator. Roper and Suffridge [11] proved that if f is a normalized convex
function on U , then Φn( f ) is a normalized biholomorphic convex mapping on Bn. In
[7], Graham and Kohr proved that (1) if f is a normalized starlike function on U , then
Φn( f ) is a normalized biholomorphic starlike mapping on Bn; (2) if f is a normalized
Bloch function on U , then Φn( f ) is a normalized Bloch mapping on Bn. Because Roper-
Suffridge extension operator has these important properties, many authors are interested
in this extension operator. They generalized this extension operator in Cn and discussed
their properties (see [2, 3, 5, 6, 7, 8, 9, 10], etc.).

In [9], I. Graham, G. Kohr, and M. Kohr generalized the Roper-Suffridge extension
operator to

Φn,β( f )(z)= Fβ(z)=
(
f
(
z1
)
,
(
f ′
(
z1
))β

z0

)
, (1.2)

where β ∈ [0,1/2], f , z1, z0, z are defined as above, and the branch of the power function
such that ( f ′(z))β|z=0 = 1 is chosen. In [7], Graham and Kohr posed the following open
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problem. Consider the Reinhardt domain

Ω2,p( f )(z)=
{
z = (z1,z2

)∈ C2 :
∣∣z1

∣∣2
+
∣∣z2

∣∣p < 1
}

, (1.3)

where p ≥ 1. Does the operator

Φ2,1/p( f )(z)= F1/p(z)=
(
f
(
z1
)
,
(
f ′
(
z1
))1/p

z2

)
(1.4)

extend convex functions on U to the convex mappings on Ω2,p?
In [2], Gong and Liu solved the above open problem of Graham and Kohr in the

affirmative.
The purpose of the present paper is to extend the Roper-Suffridge extension operator

from Cn to Banach spaces and discuss its properties. In particular, we will verify that the
solution of the above open problem of Graham and Kohr still holds in Banach spaces (see
Theorem 2.6).

Throughout this paper, let X be a complex Banach space with norm ‖ · ‖, let X∗ be the
dual space of X , and let Ω⊂ X be a domain. Suppose that f : Ω→ X is a biholomorphic
mapping and 0∈ f (Ω). A biholomorphic mapping f : Ω→ X is said to be starlike, pro-
vided f (Ω) is starlike with respect to the origin. A holomorphic mapping f : Ω→ X is
called normalized if f (0)= 0 andD f (0)= I , where I is the identity map on X andD f (x)
is the Fréchet derivative of f at x ∈Ω. The class of all normalized biholomorphic starlike
mappings on Ω is denoted by S∗(Ω). Then f ∈ S∗(Ω) if and only if f is a normalized
biholomorphic mapping on Ω and

λ f (x)∈ f (Ω) (1.5)

for all x ∈Ω and 0 ≤ λ ≤ 1. A biholomorphic mapping f : Ω→ X is said to be convex,
provided f (Ω) is a convex set. The class of all normalized biholomorphic convex map-
pings on Ω is denoted by K(Ω). Then f ∈ K(Ω) if and only if f is a normalized biholo-
morphic mapping on Ω and

(1− λ) f
(
x1
)

+ λ f
(
x2
)∈ f (Ω) (1.6)

for all x1,x2 ∈Ω and 0 ≤ λ ≤ 1. In particular, let S∗(U), K(U), S be the class of all nor-
malized starlike functions, convex functions, and univalent functions on U , respectively.

Suppose that n is a positive integer and dimX ≥ n. Let x1,x2, . . . ,xn be a linearly in-
dependent family in X with ‖xj‖ = 1 ( j = 1,2, . . . ,n). According to the Hahn-Banach
theorem [12], there exist x∗j ∈ X∗ such that x∗j (xj) = 1 and x∗j (x) = 0 for all x ∈Mj

( j = 1,2, . . . ,n), whereMj = span{x1, . . . ,xj−1,xj+1, . . . ,xn}. Hence, we have x∗j (xj)= 1 and
x∗j (xi)= 0 ( j 	= i).

Assume n≥ 2, pj ≥ 1 ( j = 2,3, . . . ,n+ 1), and let

Ωn
(
p2, . . . , pn+1

)=
{
x ∈ X :

∣∣x∗1 (x)
∣∣2

+
n∑
j=2

∣∣x∗j (x)
∣∣pj +

∥∥∥∥∥x−
n∑
j=1

x∗j (x)xj

∥∥∥∥∥
pn+1

< 1

}
.

(1.7)
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In this paper, we consider the generalized Roper-Suffridge extension operator

F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x)

= f
(
x∗1 (x)

)
x1 +

n∑
j=2

(
f
(
x∗1 (x)

)
x∗1 (x)

)αj(
f ′
(
x∗1 (x)

))βj x∗j (x)xj

+

(
f
(
x∗1 (x)

)
x∗1 (x)

)αn+1(
f ′
(
x∗1 (x)

))βn+1

[
x−

n∑
j=1

x∗j (x)xj

]
,

(1.8)

where f ∈ S and x ∈Ωn(p2, . . . , pn+1), αj ∈ [0,1], βj ∈ [0,1/p j], αj + βj ≤ 1 ( j = 2,3, . . . ,
n+1). We may choose the branch of all power functions ( f (z)/z)α|z=0=1 and ( f ′(z))β|z=0

= 1 for α≥ 0, β ≥ 0. Below we apply this agreement.
It is obvious that if x∗1 (x)= 0 in (1.8), then F(x)≡ x.
When αj = 0, βj = 1/2, pj = 2 ( j = 2, . . . ,n), X = Cn, x∗(·)= 〈·,uj〉 ∈ X∗ in (1.8), we

obtain the Roper-Suffridge operator Φn( f ), where uj denotes the vector in Cn with 1 in
the jth place and zeros elsewhere.

In order to derive our main results, we need the following lemmas.

Lemma 1.1 [1]. Let g :U →U be an analytic function in U with g(a)= b, then

∣∣g′(a)
∣∣≤ 1−|b|2

1−|a|2 . (1.9)

Lemma 1.2. Let f ∈ K(U). Then for every z1,z2 ∈U , 0≤ λ≤ 1,

(1− λ)
∣∣ f ′(z1

)∣∣(1−∣∣z1
∣∣2
)

+ λ
∣∣ f ′(z2

)∣∣(1
∣∣z2

∣∣2
)
≤ (1−|w|2)∣∣ f ′(w)

∣∣, (1.10)

where w = f −1((1− λ) f (z1) + λ f (z2)).

Proof. Let ϕzj (ζ) = (ζ + zj)/(1 + zjζ) ( j = 1,2), then the functions ϕzj : U → U are ana-
lytic in U , and ϕzj (0)= zj , ϕ′zj (0)= 1−|zj|2 ( j = 1,2). Set

g(ζ)= f −1((1− λ) f
(
ϕz1

(
ζe−iθ1

))
+ λ f

(
ϕz2

(
ζe−iθ2

)))
, (1.11)

where θj = arg( f ′(zj)/ f ′(w)) ( j = 1,2). Then g is analytic in U with

g(0)= f −1((1− λ) f
(
z1
)

+ λ f
(
z2
))=w,

g′(0)= (1− λ)

∣∣ f ′(z1
)∣∣∣∣ f ′(w)
∣∣
(

1−∣∣z1
∣∣2
)

+ λ

∣∣ f (z2
)∣∣∣∣ f ′(w)
∣∣
(

1−∣∣z2
∣∣2
)
.

(1.12)

Hence, (1.10) follows from Lemma 1.1, and the proof of Lemma 1.2 is complete. �
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Lemma 1.3 [10]. Suppose that ϕ, ψ are twice differentiable on [0,1), and

ϕ(0)= ϕ′(0)− 1= 0, ϕ′(r)≥ 0, ϕ′′(r)≤ 0 on [0,1);

ψ(0)= ψ′(0)− 1= 0, ψ′(r)≥ 0, ψ′′(r)≥ 0 on [0,1).
(1.13)

If p ≥ 1, α∈ [0,1], β ∈ [0,1/p] with α+β ≤ 1, then for fixed r ∈ [0,1), the minimum of

(
ϕ(t)

)p
+
(
r p− tp)

(
ϕ(t)
t

)pα(
ϕ′(t)

)pβ
(1.14)

for t ∈ [0,r] occurs when t = r; the maximum of

(
ψ(t)

)p
+
(
r p− tp)

(
ψ(t)
t

)pα(
ψ′(t)

)pβ
(1.15)

for t ∈ [0,r] occurs when t = r.
Lemma 1.4 [4]. (1) If f (z)∈ S∗(U), then for |z| = r < 1,

r

(1 + r)2
≤ ∣∣ f (z)

∣∣≤ r

(1− r)2
,

1− r
(1 + r)3

≤ ∣∣ f ′(z)
∣∣≤ 1 + r

(1− r)3
. (1.16)

(2) If f (z)∈ K(U), then for |z| = r < 1,

r

1 + r
≤ ∣∣ f (z)

∣∣≤ r

1− r ,
1

(1 + r)2
≤ ∣∣ f ′(z)

∣∣≤ 1
(1− r)2

. (1.17)

2. Main results and their proofs

Theorem 2.1. Suppose that αj ∈ [0,1], βj ∈ [0,1/p j] with αj +βj ≤ 1 ( j = 2,3, . . . ,n+ 1).
If f ∈ S and F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x) is defined by (1.8), then F ∈ S∗(Ω) if and only if
f ∈ S∗(U), where Ω=Ωn(p2, . . . , pn+1).

Proof. First, we prove that F : Ω→ X is a normalized biholomorphic mapping on Ω.
From (1.8), by a direct calculation and noting f (0)= 0, f ′(0)= 1, we have F(0)= 0 and

DF(0)= x∗1 (·)x1 +
n∑
j=2

x∗j (·)xj +

(
I −

n∑
j=1

x∗j (·)xj
)
= I. (2.1)

Hence, F is a normalized holomorphic mapping on Ω.
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If F(y1)= F(y2) for y1, y2 ∈Ω, then we have

f
(
x∗1
(
y1
))= x∗1 (F(y1

))= x∗1 (F(y2
))= f

(
x∗1
(
y2
))
. (2.2)

Therefore, it follows from f ∈ S that x∗1 (y1)= x∗1 (y2). Since F(y1)= F(y2), f ∈ S, and

x∗j
(
F
(
y1
))=

(
f
(
x∗1
(
y1
))

x∗1
(
y1
)
)αj(

f ′
(
x∗1
(
y1
)))βj x∗j (y1

)
,

x∗j
(
F
(
y2
))=

(
f
(
x∗1
(
y2
))

x∗1
(
y2
)
)αj(

f ′
(
x∗1
(
y2
)))βj x∗j (y2

) (2.3)

for j = 2,3, . . . ,n, then we obtain that x∗j (y1) = x∗j (y2) ( j = 1,2, . . . ,n). Hence, we have
y1 = y2. It follows that F is a biholomorphic mapping on Ω.

Next, we prove that F =Φα2,β2,...,αn+1,βn+1 ( f ) is a starlike mapping onΩwhen f ∈ S∗(U).
Let y ∈Ω and 0≤ λ≤ 1. Since f ∈ S∗(U), there exists a point z ∈U such that

f (z)= λ f (x∗1 (y)
)
. (2.4)

Set

v = λ
n∑
j=2

(
f
(
x∗1 (y)

)
/x∗1 (y)

)αj( f ′(x∗1 (y)
))βj

(
f (z)/z

)αj( f ′(z)
)βj x∗j (y)xj

+ λ

(
f
(
x∗1 (y)

)
/x∗1 (y)

)αn+1
(
f ′
(
x∗1 (y)

))βn+1

(
f (z)/z

)αn+1
(
f ′(z)

)βn+1

[
y−

n∑
j=1

x∗j (y)xj

]
,

(2.5)

where ( f (x∗1 (y))/x∗1 (y))αj = ( f ′(x∗1 (y)))βj = 1 if x∗1 (y)= 0 and ( f (z)/z)αj = ( f ′(z))βj =
1 if z = 0 for j = 1, . . . ,n+ 1.

Note that x∗j (xj)= 1 and x∗j (xi)= 0 ( j 	= i), we have x∗1 (v)= 0 and

x∗j (v)= λ
(
f
(
x∗1 (y)

)
/x∗1 (y)

)αj( f ′(x∗1 (y)
))βj

(
f (z)/z

)αj( f ′(z)
)βj x∗j (y), (2.6)

for 2≤ j ≤ n. Hence,

v−
n∑
j=1

x∗j (v)xj = λ
(
f
(
x∗1 (y)

)
/x∗1 (y)

)αn+1
(
f ′
(
x∗1 (y)

))βn+1

(
f (z)/z

)αn+1
(
f ′(z)

)βn+1

[
y−

n∑
j=1

x∗j (y)xj

]
. (2.7)

From (2.4), we have

z = f −1(λ f (u)
)
, (2.8)
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where u= x∗1 (y). Let g(ξ)= f −1(λ f (ξ)) for ξ ∈U . Then g :U →U is analytic in U with
g(0)= 0 and z = g(u). By Schwarz’s lemma and Lemma 1.1, we obtain that |z| = |g(u)| ≤
|u| = |x∗1 (y)| and

∣∣g′(u)
∣∣≤ 1−|z|2

1−|u|2 =
1−|z|2

1−∣∣x∗1 (y)
∣∣2 . (2.9)

On the other hand,

g′(u)= λ f
′(x∗1 (y)

)
f ′(z)

. (2.10)

According to (2.6), (2.7), (2.8), (2.9), and (2.10) and αj +βj ≤ 1, pjβj ≤ 1 ( j = 2,3, . . . ,n+
1), |z| ≤ |x∗1 (y)|, we have

n∑
j=2

∣∣x∗j (v)
∣∣pj +

∥∥∥∥∥v−
n∑
j=1

x∗j (v)xj

∥∥∥∥∥
pn+1

≤
n∑
j=2

∣∣g′(u)
∣∣βj pj∣∣x∗j (y)

∣∣pj +
∣∣g′(u)

∣∣βn+1pn+1

∥∥∥∥∥y−
n∑
j=1

x∗j (y)xj

∥∥∥∥∥
pn+1

≤
n∑
j=2

(
1−|z|2

1−∣∣x∗1 (y)
∣∣2

)βj pj∣∣x∗j (y)
∣∣pj +

(
1−|z|2

1−∣∣x∗1 (y)
∣∣2

)βn+1 pn+1∥∥∥∥∥y−
n∑
j=1

x∗j (y)xj

∥∥∥∥∥
pn+1

≤
n∑
j=2

1−|z|2
1−∣∣x∗1 (y)

∣∣2

∣∣x∗j (y)
∣∣pj +

1−|z|2
1−∣∣x∗1 (y)

∣∣2 ·
∥∥∥∥∥y−

n∑
j=1

x∗j (y)xj

∥∥∥∥∥
pn+1

< 1−|z|2.
(2.11)

Let z0 = v+ zx1. Then we have x∗1 (z0)= z, x∗j (z0)= x∗j (v) for 2≤ j ≤ n, and

z0−
n∑
j=1

x∗j
(
z0
)
xj = v−

n∑
j=1

x∗j (v)xj , (2.12)

where x∗1 (v)= 0. Hence, we obtain

n∑
j=2

∣∣x∗j (z0
)∣∣pj +

∥∥∥∥∥z0−
n∑
j=1

x∗j
(
z0
)
xj

∥∥∥∥∥
pn+1

< 1−|z|2 = 1−∣∣x∗1 (z0
)∣∣2

. (2.13)

This implies z0 ∈Ω. From (2.6), (2.7), and (2.12), direct computation yields

λF(y)= F(z0
)
. (2.14)

Hence, F ∈ S∗(Ω).
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Conversely, if F =Φα2,β2,...,αn+1,βn+1 ( f )∈ S∗(Ω), we prove that f ∈ S∗(U).
In fact, for every z1 ∈ U and t ∈ [0,1], if we let x = z1x1, using the fact that x∗1 (x) =

z1 and x∗j (x) = 0 ( j = 2,3, . . . ,n), then we have x ∈ Ω and x∗1 (F(x)) = f (z1). Since F ∈
S∗(Ω), then tF(x) ∈ F(Ω). It follows that there exists x0 ∈ Ω such that tF(x) = F(x0).
This implies |x∗1 (x0)| < 1 and

t f
(
z1
)= x∗1 (tF(x)

)= x∗1 (F(x0
))= f

(
x∗1
(
x0
))∈ f (U). (2.15)

Hence, f ∈ S∗(U) and the proof of Theorem 2.1 is complete. �

Example 2.2. Let pn+1 = p ≥ 1, pj ≥ 1 ( j = 2,3, . . . ,n), let ej denote the vector in lp with 1
in the jth place and zeros elsewhere, x∗j (·)= 〈·,ej〉, and let

Ωl
p =

{
x = (x1,x2, . . . ,xn, . . .

)∈ lp :
∣∣x1

∣∣2
+

n∑
j=2

∣∣xj∣∣pj +
+∞∑
j=n+1

∣∣xj∣∣p < 1

}
. (2.16)

Since f1(ζ)= ζ/(1− ζ)2 ∈ S∗(U), then we have

F(x)= x1e1(
1− x1

)2 +
n∑
j=2

xje j
(
1 + x1

)βj
(
1− x1

)2αj+3βj
+

(
x−∑n

j=1 xje j
)(

1 + x1
)βn+1

(
1− x1

)2αn+1+3βn+1
∈ S∗

(
Ωl
p

)
, (2.17)

where x = (x1,x2, . . . ,xn, . . .)∈Ωl
p, αj∈[0,1], βj ∈ [0,1/p j], and αj + βj ≤ 1 ( j = 2,3, . . . ,

n+ 1).

Remark 2.3. Let xj ( j = 1,2, . . . ,n+ 1) be the vector in Cn with 1 in the jth place and zeros
elsewhere. Setting αj = 0, βj = 1/2,X = Cn, x∗j (·)= 〈·,xj〉 ∈ X∗, pj = 2 ( j = 2,3, . . . ,n) in
Theorem 2.1, we obtain [7, Theorem 2.2] from the sufficient condition of Theorem 2.1;
[8, Corollary 3.3], [9, Corollary 2.2], [6, Corollary 2.2], and [10, Theorem 3.1] are all the
special cases of the sufficient condition of Theorem 2.1.

Theorem 2.4. Suppose that αj ≥ 0, βj ≥ 0, and pj ≥ 1 ( j = 2,3, . . . ,n + 1). If dimX ≥
n+ 1 and Φα2,β2,...,αn+1,βn+1 (K(U))⊂ K(Ωn(p2, . . . , pn+1)), where Φα2,β2,...,αn+1,βn+1 ( f ) is defined
by (1.8), then βj ≤ 1/p j for j = 2,3, . . . ,n + 1. Furthermore, if βj0 = 1/p j0 for some j0 ∈
{2,3, . . . ,n+ 1}, then αj0 = 0.

Proof. Let M = {x ∈ X : x∗j (x) = 0, j = 1,2, . . . ,n}. For every x ∈ X , setting x′n+1 = x−∑n
j=1 x

∗
j (x)xj , we have

x∗j
(
x′n+1

)= x∗j (x)− x∗j (x)x∗j
(
xj
)= 0, j = 1,2, . . . ,n. (2.18)

This implies x′n+1 ∈M. Since x∗j (xi)= 0 ( j 	= i) and x∗j (xj)= 1 (i, j = 1,2, . . . ,n), we obtain
X =M ⊕ {λx1 : λ ∈ C} ⊕ ··· ⊕ {λxn : λ ∈ C}. Because dimX ≥ n + 1, then there exists
xn+1 ∈M with ‖xn+1‖ = 1.



1178 On the generalized Roper-Suffridge extension operator

Suppose that there exists βk > 1/pk (2 ≤ k ≤ n+ 1). For 0 < ε < 1, we let r =√1− εpk ,
x = rx1 + (ε/2)xk, w =−rx1 + (ε/2)xk, then we have x∗1 (x)= r, x∗1 (w)=−r.
Case 1. When k = n+ 1, we have x∗j (x)= x∗j (w)= 0 ( j = 2, . . . ,n), and

x−
n∑
j=1

x∗j (x)xj = ε

2
xn+1, w−

n∑
j=1

x∗j (w)xj = ε

2
xn+1. (2.19)

Hence, x,w ∈Ωn(p2, . . . , pn+1).
Taking f (z1) = (1/2)log((1 + z1)/(1− z1)) with log1 = 0, we have f ∈ K(U). Setting

F(x) =Φα2,β2,...,αn+1,βn+1 ( f )(x), since F ∈Φα2,β2,...,αn+1,βn+1 (K(U)) ⊂ K(Ωn(p2, . . . , pn+1)), we
have

1
2

[
F(x) +F(w)

]∈ F(Ωn
(
p2, . . . , pn+1

))
. (2.20)

Hence, there exists x0 ∈Ωn(p2, . . . , pn+1) such that F(x0)= (1/2)[F(x) +F(w)] . Using
the fact that f (−r)=− f (r) for 0 < r < 1, we obtain

f
(
x∗1
(
x0
))= x∗1 (F(x0

))= 1
2

[
x∗1
(
F(x)

)
+ x∗1

(
F(w)

)]
= 1

2

[
f
(
x∗1 (x)

)
+ f

(
x∗1 (w)

)]
= 1

2

[
f (r) + f (−r)]

= 0.

(2.21)

Since f is univalent on U , then we obtain x∗1 (x0)= 0 and F(x0)= x0. Hence,

x∗j
(
x0
)= x∗j (F(x0

))= 1
2

[
x∗j
(
F(x)

)
+ x∗j

(
F(w)

)]= 0, j = 2,3, . . . ,n. (2.22)

On the other hand, from (1.8), we have

F
(
x0
)= 1

2

[
F(x) +F(w)

]

= 1
2

(
1
2r

log
1 + r
1− r

)αn+1( 1
1− r2

)βn+1 ε

2
xn+1

+
1
2

(
− 1

2r
log

1− r
1 + r

)αn+1( 1
1− r2

)βn+1 ε

2
xn+1

= 1
2

(
2log

(
1 +
√

1− εpn+1
)− pn+1 logε

2
√

1− εpn+1

)αn+1

ε1−pn+1βn+1xn+1.

(2.23)
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If βn+1 > 1/pn+1, letting ε→ 0+, we obtain

∥∥F(x0
)∥∥= 1

2

(
2log

(
1 +
√

1− εpn+1
)− pn+1 logε

2
√

1− εpn+1

)αn+1

ε1−pn+1βn+1 −→ +∞, (2.24)

which contradicts ‖F(x0)‖ = ‖x0‖ = ‖x0−
∑n

j=1 x
∗
j (x0)xj‖ < 1. Hence, βn+1 ≤ 1/pn+1.

Furthermore, if βn+1 = 1/pn+1, from (2.24), we have ‖F(x0)‖ → +∞(ε → 0+) when
αn+1 > 0. This is impossible. Hence, we have αn+1 = 0, and the proof of Case 1 is com-
plete.

Case 2. When 2 ≤ k ≤ n, we have x∗k (x) = ε/2, x∗k (w) = ε/2, x∗j (x) = x∗j (w) = 0 ( j =
2, . . . ,k− 1,k+ 1, . . . ,n), and

x−
n∑
j=1

x∗j (x)xj = 0, w−
n∑
j=1

x∗j (w)xj = 0. (2.25)

Hence, x,w ∈Ωn(p2, . . . , pn+1).
Similarly, it can be shown that there exists x0 ∈ Ωn(p2, . . . , pn+1) such that F(x0) =

(1/2)[F(x) +F(w)], x∗1 (x0)= 0, and F(x0)= x0.
On the other hand, by (1.8), we have

F
(
x0
)= 1

2

[
F(x) +F(w)

]

= 1
2

(
1
2r

log
1 + r
1− r

)αk( 1
1− r2

)βk ε
2
xk

+
1
2

(
− 1

2r
log

1− r
1 + r

)αk( 1
1− r2

)βk ε
2
xk

= 1
2

(
2log

(
1 +
√

1− εpk)− pk logε
2
√

1− εpk
)αk

ε1−pkβkxk.

(2.26)

Since βk > 1/pk, letting ε→ 0+, we obtain

∣∣x∗k (x0
)∣∣= ∣∣x∗k (F(x0

))∣∣= 1
2

(
2log

(
1 +
√

1− εpk)− pk logε
2
√

1− εpk
)αk

ε1−pkβk −→ +∞,

(2.27)

which contradicts |x∗k (x0)| < 1. Hence, βk ≤ 1/pk.
Furthermore, if βk = 1/pk (2 ≤ k ≤ n), from (2.27), we have x∗k (x0) → +∞(ε → 0+)

when αk > 0. This is impossible. Hence, we have αk = 0, this completes the proof of
Case 2. �
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Remark 2.5. Let xj ( j = 1,2, . . . ,n+ 1) be the vector in Cn with 1 in the jth place and zeros
elsewhere. Setting pj = 2, αj = α, βj = β, X = Cn, x∗j (·) = 〈·,xj〉 ∈ X∗, j = 2,3, . . . ,n+
1, in Theorem 2.4, we obtain the partial result of [6]. Furthermore, when αj = 0, j =
2,3, . . . ,n+ 1, Theorem 2.4 provides the necessary condition of preserving convexity, and
the following result provides the sufficient condition of preserving convexity.

Theorem 2.6. If f ∈ K(U), and

G(x)=Ψp2,...,pn+1 ( f )(x)

= f
(
x∗1 (x)

)
x1 +

n∑
j=2

(
f ′
(
x∗1 (x)

))1/p j x∗j (x)xj +
(
f ′
(
x∗1 (x)

))1/pn+1

[
x−

n∑
j=1

x∗j (x)xj

]
,

(2.28)

then G∈ K(Ω), where Ω=Ωn(p2, . . . , pn+1).

Proof. First, since f ∈ S, according to the proof of Theorem 2.1, by straightforward cal-
culation from (2.28), we obtain that G is a normalized biholomorphic mapping on Ω.

Next, we prove that G=Ψp2,...,pn+1 ( f )∈ K(Ω) for f ∈ K(U).
For every y1, y2 ∈Ω and 0 < λ < 1, there exists a point w ∈U such that

f (w)= (1− λ) f
(
x∗1
(
y1
))

+ λ f
(
x∗1
(
y2
))
. (2.29)

Let

v = (1− λ)
n∑
j=2

(
f ′
(
x∗1
(
y1
))

f ′(w)

)1/p j

x∗j
(
y1
)
xj

+ (1− λ)

(
f ′
(
x∗1
(
y1
))

f ′(w)

)1/pn+1[
y1−

n∑
j=1

x∗j
(
y1
)
xj

]

+ λ
n∑
j=2

(
f ′
(
x∗1
(
y2
))

f ′(w)

)1/p j

x∗j
(
y2
)
xj

+ λ

(
f ′
(
x∗1
(
y2
))

f ′(w)

)1/pn+1[
y2−

n∑
j=1

x∗j
(
y2
)
xj

]
.

(2.30)

Then for 1≤ j ≤ n, note that x∗j (xj)= 1 and x∗j (xi)= 0 ( j 	= i), we have x∗1 (v)= 0 and

x∗j (v)= (1− λ)

(
f ′
(
x∗1
(
y1
))

f ′(w)

)1/p j

x∗j
(
y1
)

+ λ

(
f ′
(
x∗1
(
y2
))

f ′(w)

)1/p j

x∗j
(
y2
)

(2.31)
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for 2≤ j ≤ n. Hence, we obtain

v−
n∑
j=1

x∗j (v)xj = (1− λ)

(
f ′
(
x∗1
(
y1
))

f ′(w)

)1/pn+1(
y1−

n∑
j=1

x∗j
(
y1
)
xj

)

+ λ

(
f ′
(
x∗1
(
y2
))

f ′(w)

)1/pn+1(
y2−

n∑
j=1

x∗j
(
y2
)
xj

)
.

(2.32)

In the following, we prove that

∣∣x∗j (v)
∣∣pj ≤ (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1

)∣∣pj + λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣pj (2.33)

for pj ≥ 1 ( j = 2,3, . . . ,n).

Case 1. Suppose pj > 1. Taking qj > 1 such that 1/p j + 1/q j = 1, by Hölder’s inequality,
we have

∣∣x∗j (v)
∣∣pj

≤
[

(1− λ)1/q j

(
(1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1)

∣∣pj)1/p j

+ λ1/q j

(
λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣pj)1/p j]pj

≤
[

(1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1

)∣∣pj + λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣pj](1− λ+ λ)pj /q j

≤ (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1

)∣∣pj + λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣pj .
(2.34)

The proof of Case 1 is complete.

Case 2. Suppose pj = 1. By the triangle inequality, we have

∣∣x∗j (v)
∣∣pj = ∣∣x∗j (v)

∣∣≤ (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1

)∣∣+ λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣

= (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y1

)∣∣pj + λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∣∣x∗j (y2

)∣∣pj .
(2.35)

The proof of Case 2 is complete.

Hence, the inequality (2.33) holds for pj ≥ 1, j = 2,3, . . . ,n.
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Similarly, we may obtain

∥∥∥∥∥v−
n∑
j=1

x∗j (v)xj

∥∥∥∥∥
pn+1

≤ (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
∥∥∥∥∥y1−

n∑
j=1

x∗j
(
y1
)
xj

∥∥∥∥∥
pn+1

+ λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
∥∥∥∥∥y2−

n∑
j=1

x∗j
(
y2
)
xj

∥∥∥∥∥
pn+1

< (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
(

1−
n∑
j=1

∣∣x∗j (y1
)∣∣pj)

+ λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
(

1−
n∑
j=1

∣∣x∗j (y2
)∣∣pj).

(2.36)

According to (2.33), (2.36), and Lemma 1.2, we have

n∑
j=2

∣∣x∗j (v)
∣∣pj +

∥∥∥∥∥v−
n∑
j=1

x∗j (v)xj

∥∥∥∥∥
pn+1

< (1− λ)

∣∣∣∣∣ f
′(x∗1 (y1

))
f ′(w)

∣∣∣∣∣
(

1−∣∣x∗1 (y1
)∣∣2

)
+ λ

∣∣∣∣∣ f
′(x∗1 (y2

))
f ′(w)

∣∣∣∣∣
(

1−∣∣x∗1 (y2
)∣∣2

)

≤ 1−|w|2.
(2.37)

Let z0 = v+wx1. Then we have x∗1 (z0)=w, x∗j (z0)= x∗j (v) for 2≤ j ≤ n, and

z0−
n∑
j=1

x∗j
(
z0
)
xj = v−

n∑
j=1

x∗j (v)xj , (2.38)

where x∗1 (v)= 0. Hence, we obtain

n∑
j=2

∣∣x∗j (z0
)∣∣pj +

∥∥∥∥∥z0−
n∑
j=1

x∗j
(
z0
)
xj

∥∥∥∥∥
pn+1

< 1−|w|2 = 1−∣∣x∗1 (z0
)∣∣2

. (2.39)

This implies z0 ∈Ω. From (2.31), (2.32), and (2.38), straightforward calculation yields

(1− λ)G
(
y1
)

+ λG
(
y2
)=G(z0

)
. (2.40)

Hence, F ∈ K(Ω) and the proof is complete. �

Remark 2.7. Theorem 2.6 tell us that the solution of the open problem of Graham and
Kohr [7] mentioned in Section 1 still holds in Banach Spaces; [11, Theorem 1], [7, The-
orem 2.1] and [3, Theorem 2] are all the special cases of Theorem 2.6.
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Theorem 2.8. Suppose that f ∈ S satisfies

ϕ(r)≤ ∣∣ f (z1
)∣∣≤ ψ(r),

∣∣z1
∣∣= r, (2.41)

ϕ′(r)≤ ∣∣ f ′(z1
)∣∣≤ ψ′(r),

∣∣z1
∣∣= r, (2.42)

where ϕ, ψ are twice differentiable on [0,1), and

ϕ(0)= ϕ′(0)− 1= 0, ϕ′(r)≥ 0, ϕ′′(r)≤ 0 on [0,1);

ψ(0)= ψ′(0)− 1= 0, ψ′(r)≥ 0, ψ′′(r)≥ 0 on [0,1).
(2.43)

Let αj ≥ 0, βj ≥ 0, qj ≥ 1 ( j = 1,2, . . . ,n + 1), α ∈ [0,1], β ∈ [0,1/q1], where α =
max j=2,3,...,n+1{αj}, β =max j=2,3,...,n+1{βj}, and F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x) is defined by
(1.8), and

Ω′ =Ωq1,q2,...,qn =
{
x ∈ X : ρ(x) < 1

}
, (2.44)

where ρ(x)= (
∑n

j=1 |x∗j (x)|qj +‖x−∑n
j=1 x

∗
j (x)xj‖qn+1 )1/q1 . If q1 =max j=1,2,...,n+1{qj} and

α+β ≤ 1, then F is a normalized biholomorphic mapping on Ω′, and

ϕ(r)≤ ρ(F(x)
)≤ ψ(r), (2.45)

for ρ(x)= r < 1.
Furthermore, if for some f the lower (resp., upper) estimate (2.41) is sharp at z1 ∈ U ,

then the lower (resp., upper) estimate (2.45) is sharp for Φα2,β2,...,αn+1,βn+1 ( f )(x) at x = z1x1.

Proof. Since f ∈ S, according to the proof of Theorem 2.1, by straightforward calculation
from (1.8), we obtain that F is a normalized biholomorphic mapping on Ω′.

Now we prove that the inequalities (2.45) hold for ρ(x)= r < 1.
Let t = |x∗1 (x)|, using the fact that 0≤ ϕ(t)/t ≤ 1, 0≤ ϕ′(t)≤ 1 for t ∈ (0,1) and

x∗1
(
F(x)

)= f (x∗1 (x)
)
, x∗j

(
F(x)

)=
(
f
(
x∗1 (x)

)
x∗1 (x)

)αj(
f ′
(
x∗1 (x)

))βj x∗j (x) ( j=2,3, . . . ,n),

F(x)−
n∑
j=1

x∗j
(
F(x)

)
xj =

(
f
(
x∗1 (x)

)
x∗1 (x)

)αn+1(
f ′
(
x∗1 (x)

))βn+1

[
x−

n∑
j=1

x∗j (x)xj

]
,

q1 = max
j=1,2,...,n+1

{
qj
}

, α= max
j=2,3,...,n+1

{
αj
}

, β = max
j=2,3,...,n+1

{
βj
}

,

(2.46)
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we obtain

ρ
(
F(x)

)q1 =
n∑
j=1

∣∣x∗j (F(x)
)∣∣qj +

∥∥∥∥∥F(x)−
n∑
j=1

x∗j
(
F(x)

)
xj

∥∥∥∥∥
qn+1

= ∣∣ f (x∗1 (x)
)∣∣q1 +

n∑
j=2

∣∣∣∣∣ f
(
x∗1 (x)

)
x∗1 (x)

∣∣∣∣∣
αjqj∣∣ f ′(x∗1 (x)

)∣∣βjqj∣∣x∗j (x)
∣∣qj

+

∣∣∣∣∣ f
(
x∗1 (x)

)
x∗1 (x)

∣∣∣∣∣
αn+1qn+1∣∣ f ′(x∗1 (x)

)∣∣βn+1qn+1

∥∥∥∥∥x−
n∑
j=1

x∗j (x)xj

∥∥∥∥∥
qn+1

≥ ϕ(t)q1 +
n∑
j=2

(
ϕ(t)
t

)αjqj(
ϕ′(t)

)βjqj∣∣x∗j (x)
∣∣qj

+

(
ϕ(t)
t

)αn+1qn+1(
ϕ′(t)

)βn+1qn+1

∥∥∥∥∥x−
n∑
j=1

x∗j (x)xj

∥∥∥∥∥
qn+1

≥ ϕ(t)q1 +

(
ϕ(t)
t

)αq1(
ϕ′(t)

)βq1
(
rq1 − tq1

)
.

(2.47)

By Lemma 1.3, we have

ρ
(
F(x)

)q1 ≥ ϕ(r)q1 , (2.48)

hence ϕ(r)≤ ρ(F(x)).
Similarly, we may prove that ρ(F(x))≤ ψ(r). This completes the proof. �

Setting q1 = q2 = ··· = qn+1 = p in Theorem 2.8, we obtain the following corollary.

Corollary 2.9. Suppose that f , ϕ, ψ satisfy the hypothesis of Theorem 2.8. Let p ≥ 1,
αj ≥ 0, βj ≥ 0 ( j = 2,3, . . . ,n+ 1), α ∈ [0,1], β ∈ [0,1/p], where α =max j=2,3,...,n+1{αj},
β =max j=2,3,...,n+1{βj}. Let F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x) be defined by (1.8), and

Ωp =
{
x ∈ X : ‖x‖p < 1

}
, (2.49)

where ‖x‖p = (
∑n

j=1 |x∗j (x)|p + ‖x−∑n
j=1 x

∗
j (x)xj‖p)1/p. If α+ β ≤ 1, then F is a normal-

ized biholomorphic mapping on Ωp, and

ϕ(r)≤ ∥∥F(x)
∥∥
p ≤ ψ(r), (2.50)

for ‖x‖p = r < 1.
Furthermore, if for some f the lower (resp., upper) estimate (2.41) is sharp at z1 ∈ U ,

then the lower (resp., upper) estimate (2.50) is sharp for Φα2,β2,...,αn+1,βn+1 ( f )(x) at x = z1x1.

Remark 2.10. Setting p = 2, αj = α, βj = β ( j = 2,3, . . . ,n), X = Cn, x1 = (1,0, . . . ,0), x2=
(0,1,0, . . . ,0), . . . , xn=(0, . . . ,0,1), x∗j (·)=〈·,xj〉∈X∗ ( j = 1,2, . . . ,n) in Corollary 2.9, we
obtain [6, Theorem 3.1].

According to Corollary 2.9 and Lemma 1.4, we have the following corollary.
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Corollary 2.11. Suppose that X is a Banach space, p ≥ 1, αj ≥ 0, βj ≥ 0 ( j = 2,3, . . . ,n+
1), α ∈ [0,1], β ∈ [0,1/p] with α + β ≤ 1, where α = max j=2,3,...,n+1{αj}, β =
max j=2,3,...,n+1{βj}. Let F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x) be defined by (1.8).

(1) If f ∈ S∗(U), then for ‖z‖p = r < 1,

r

(1 + r)2
≤ ∥∥F(z)

∥∥
p ≤

r

(1− r)2
. (2.51)

(2) If f ∈ K(U), then for ‖z‖p = r < 1,

r

1 + r
≤ ∥∥F(z)

∥∥
p ≤

r

1− r . (2.52)

These estimates are sharp.

From Corollary 2.11, we have the following corollary.

Corollary 2.12 (covering theorem). Suppose thatX is a Banach space, p ≥ 1, αj ≥ 0, βj≥
0 ( j=2,3, . . . ,n + 1), α∈ [0,1], β∈ [0,1/p] with α+β≤1, where α=max j=2,3,...,n+1{αj},
β =max j=2,3,...,n+1{βj}. Let F(x)=Φα2,β2,...,αn+1,βn+1 ( f )(x) be defined by (1.8) and Ωp defined
by (2.49).

(1) If f ∈ S∗(U), then F(Ωp)⊃ (1/4)Ωp.
(2) If f ∈ K(U), then F(Ωp)⊃ (1/2)Ωp.

Remark 2.13. Setting X = Cn, x1 = (1,0, . . . ,0), x2 = (0,1,0, . . . ,0), . . . , xn = (0, . . . ,0,1),
x∗j (·)= 〈·,xj〉 ∈ X∗ ( j = 1,2, . . . ,n) in Corollary 2.11, we obtain [10, Theorem 3.3]. Set-
ting X = Cn, x∗j (·)= 〈·,xj〉 ∈ X∗( j = 1,2, . . . ,n) in Corollary 2.12, we obtain [10, Corol-
lary 3.4].

Suppose $ is a nonempty subclass of normalized biholomorphic mappings on Ω =
Ωn(p2, . . . , pn+1). Let n≥ 2, pj ≥ 1 ( j = 2,3, . . . ,n+ 1), r > 0, and let

Ωr
n

(
p2, . . . , pn+1

)=
{
x ∈ X :

∣∣∣∣x∗1
(
x

r

)∣∣∣∣
2

+
n∑
j=2

∣∣∣∣x∗j
(
x

r

)∣∣∣∣
pj

+

∥∥∥∥∥xr −
n∑
j=1

x∗j
(
x

r

)
xj

∥∥∥∥∥
pn+1

< 1

}
,

(2.53)
we define

r∗($)= sup
{
r : F is a starlike mapping on Ωr

n

(
p2, . . . , pn+1

)
, F ∈ $

}
. (2.54)

For every f ∈ S, according to the proof of Theorem 2.1, we obtain that F(x) =
Φα2,β2,...,αn+1,βn+1 ( f )(x) is a biholomorphic mapping on Ω. Hence, the mapping family
$1 = {Φα2,β2,...,αn+1,βn+1 ( f )(x) : f ∈ S} is given. Consequently, we derive the following re-
sult from Theorem 2.1.

Theorem 2.14. Let n≥ 2, pj ≥ 1 ( j = 2,3, . . . ,n+ 1), αj ∈ [0,1], βj ∈ [0,1/p j], and αj +
βj ≤ 1 ( j = 2,3, . . . ,n+ 1), then r∗($1)= tanh(π/4).
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Proof. Since the radius of starlikeness for the set S is r = tanh(π/4) (see [4]), for any
f ∈ S, g(z)= (1/r) f (rz) is a normalized biholomorphic starlike mapping. According to
Theorem 2.1, we obtain that

Φα2,β2,...,αn+1,βn+1 (g)(x)

= g(x∗1 (x)
)
x1 +

n∑
j=2

(
g
(
x∗1 (x)

)
x∗1 (x)

)αj(
g′
(
x∗1 (x)

))βj x∗j (x)xj

+

(
g
(
x∗1 (x)

)
x∗1 (x)

)αn+1(
g′
(
x∗1 (x)

))βn+1

[
x−

n∑
j=1

x∗j (x)xj

] (2.55)

is a starlike mapping on Ω, thus

f
(
x∗1 (rx)

)
x1 +

n∑
j=2

(
f
(
x∗1 (rx)

)
x∗1 (rx)

)αj(
f ′
(
x∗1 (rx)

))βj x∗j (rx)xj

+

(
f
(
x∗1 (rx)

)
x∗1 (rx)

)αn+1(
f ′
(
x∗1 (rx)

))βn+1

[
rx−

n∑
j=1

x∗j (rx)xj

] (2.56)

is a starlike mapping on Ω, too. Set y = rx, then

f
(
x∗1 (y)

)
x1 +

n∑
j=2

(
f
(
x∗1 (y)

)
x∗1 (y)

)αj(
f ′
(
x∗1 (y)

))βj x∗j (y)xj

+

(
f
(
x∗1 (y)

)
x∗1 (y)

)αn+1(
f ′
(
x∗1 (y)

))βn+1

[
y−

n∑
j=1

x∗j (y)xj

] (2.57)

is a starlike mapping on Ωr
n(p2, . . . , pn+1). From Theorem 2.1, we have r∗($1)= tanh(π/4)

= (eπ/2− 1)/(eπ/2 + 1)≈ 0.65579, and the proof is complete. �
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