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The concepts of basis and frame are studied in the classical literature of functional anal-
ysis, Fourier analysis, and wavelet theory in a wide range. In this paper, we consider an
operator-theoretic approach to discrete frame theory on a separable Hilbert space. For
this purpose, we define a special type of frames and bases, called wavelet-type frames and
wavelet-type bases, obtained by acting with a family of bounded linear operators on some
vectors, and then investigate the elementary properties of these concepts.

1. Introduction

The idea of this paper comes from wavelets theory. In classical functional analysis, a basis
of a separable Hilbert space is a countable subset of H with certain properties. In the
wavelet theory, a basis is made by a countable family of unitary operators and a single
number (or finite number) of vectors in H . In fact, if U is a unitary system on H and Ψ is
the mother wavelet corresponding to it, then UΨ is an orthonormal basis for H . In other
words, the bases which one studies in the wavelet theory are of this form.

Hence generally, a frame {xn : n∈ J} for H is called a wavelet-type frame if there exist
a family { fi : i∈ J} of bounded operators on H and a vector h∈H such that xi = fih for
each i∈ J. The vector h is called a framer vector.

Similarly, a normalized tight frame (Riesz basis, orthonormal basis) {xj : j ∈ J} is
called a wavelet-type normalized tight frame (wavelet-type Riesz basis, wavelet-type or-
thonormal basis) if there exist a family { fi : i∈ J} of bounded linear invertible operators
on H and a vector h∈H such that xi = fih for each i∈ J.

Our idea in this paper is based on the wavelet-type frames, which we organize as fol-
lows.

In Section 2, definitions and some elementary properties of framers and wavelet-type
frames, basers and wavelet-type bases are given. Then, we will explain the relations be-
tween, framers and normal framers, normal framers and orthonormal basers, framers
and Riesz basers, and finally, framers and the canonical dual of it. These results will be
needed in Section 3.
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Section 3 is devoted to the study of the structure of framers and basers, by defining the
concepts of complement, strong complement, strongly disjoint complement, and similar-
ity. We will show that the complement of each wavelet-type frame is of wavelet-type. The
same result will be proven for the strong complement, the strongly disjoint complement,
and similarity. Also, the problem of construction of a baser from a framer on a Hilbert
space will be considered in this section. Indeed by using a complement framer, we can
find a (Riesz or orthonormal) baser.

2. Elementary properties of framers and basers

Let H be a separable Hilbert space, and let B(H) denote the algebra of all bounded linear
operators on H . Let J denote a generic countable (or finite) index set such asN, Z, and so
forth.

In the notations, we follow [8].

Definition 2.1. Let H be a separable complex Hilbert space and B(H) the algebra of all
bounded linear operators on H . If U = { f j : j ∈ J} is a countable subset of bounded
operators on H , and λ∈H , then the following hold.

(i) ({ f j},λ) is a framer on H if Uλ= { f jλ : f j ∈U} is a frame with frame bounds A,
B, for H . Also A, B are called framer bounds.

(ii) ({ f j},λ) is a tight framer on H if the f j ’s are invertible, for each j ∈ J, and Uλ=
{ f jλ : f j ∈U} is a tight frame for H .

(iii) ({ f j},λ) is a normal framer on H if the f j ’s are invertible, for each j ∈ J, and
Uλ= { f jλ : f j ∈U} is a normalized tight frame for H .

(iv) Finally, ({ f j},λ) is called (an orthonormal-Riesz) baser on H if the f j ’s are in-
vertible, for each j ∈ J, and Uλ= { f jλ : f j ∈ U} is (an orthonormal-Riesz) basis
for H .

2.1. Examples.
(a) LetH= l2(N∪{0}) and T : l2(N∪{0})→ l2(N∪{0}) is defined by T(x1,x2, . . .)=

(0,x1,x2, . . .), then T is a bounded invertible operator with ‖T‖ = 1. Set Tn = Tn

with

Tn
(
x1,x2, . . .

)= (0,0, . . . ,0︸ ︷︷ ︸
n times

,x1,x2, . . .
)
, T0 = T , λ= (1,0,0, . . .), (2.1)

then ({Tn : n∈N∪{0}},λ) is an orthonormal baser on H .
(b) Let H = L2[0,1], define T(x(t)) = ∫ t0 x(q)dq and by induction, Tn(x(t)) =

(1/n)Tn−1(x(t)), if x(t)= 1, then T(x(t))= t, T2(x(t))= (1/2)t2, . . . , Tn(x(t))=
(1/n!)tn, and {1, t, (1/2)t2, . . . , (1/n!)tn, . . .} is a tight frame (see [8]), so if we define
Tn = Tn, n∈N, then ({Tn : n∈N}, x(t)) is a tight framer on H .

(c) Let Ψ be the mother wavelet corresponding to unitary system U for Hilbert space
H , then (U ,Ψ) is an orthonormal baser on H .

Theorem 2.2. Let { fn : n∈ J} be a normal framer on H . Then there exist a Hilbert space K
and a normal baser U = {Tn : n∈ J} of K such that θ fnθ∗ = PTn, or θ fn(x)= PTn(θ(x)),
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n∈ J, where θ : H → θ(H) is a unitary operator and P : K → θ(H) is the orthogonal projec-
tion of H onto θ(H).

Proof. Since { fn : n ∈ J} is a normal framer, there exists h ∈ H such that { fnh : n ∈
J} is a normalized tight frame for H . Set K = l2(J) and define θ0 : H → K by θ0(x) =
(〈x, fnh〉)n∈J as the usual frame transform which is an isometry. Thus, H can be embed-
ded into K by identifying H with θ0(H). Since θ : H → θ0(H) ⊂ K with θ(x) = θ0(x) is
onto, so it is unitary. Define T1 : K → K as identity and

T2
((
xn
)
n∈J
)= (0,x1,x2, . . .

)
, . . . ,Tm

((
xn
)
n∈J
)= (0,0, . . . ,0︸ ︷︷ ︸

m−1 times

,x1,x2, . . .
)
, (2.2)

then {Tn}n∈J with e1 = (1,0,0, . . .) is an orthonormal baser on K . Since P is a projection,
so P=P∗, and we have 〈θ fm(x),PTn(θ(x))〉=〈Pθ fm(x),Tn(θ(x))〉=〈θ fm(x),Tn(θ(x))〉=
〈 fm(x), fn(θ(x))〉 = 〈θ( fm(x)),θ fn(θ(x))〉, hence 〈θ fm(x),PTn(θ(x)) − θ fn(θ(x))〉 = 0.
But by definition of framer, we have 〈θ(y),Tn(e1)〉 = 〈y, fn(h)〉. On the other hand, since
fm(h)’s span H , thus vectors θ fm(h) span θ(H), so (PTne1− θ( fnh)) ⊥ θ(H), and hence
(PTnθ(x)− θ( fn(x)))⊥ θ(H). However, the range of P is θ(H), and therefore PTnθ(x)−
θ( fn(x))= 0 and PTnθ(x)= θ( fn(x)). �

The relation between normal framers and orthonormal basers will be shown in the
following theorem.

Theorem 2.3. Let H be a Hilbert space, then ({ fn : n∈ J},h1) is a normal framer on H if
and only if there exist a Hilbert space M and a normal framer ({gn : n∈ J},h2) on M such
that ({ fn⊕ gn : n∈ J},h1⊕h2) is an orthonormal baser on H ⊕M.

Proof. By Theorem 2.2, there exist a Hilbert space K and an orthonormal baser ({un : n∈
J},e1) on K such that θ0( fn(x)) = Pun(θ0(x)), where θ0 : H → K is the frame transform
corresponding to normalized tight frame { fnh1 : n ∈ J}, which is an isometry. Now set
M = (I − P)K and gn = (I − P)un, where I is the identity operator on K , then the set
{gne1 : n∈ J} is a normalized tight frame forM, hence ({gn : n∈ J},e1) is a normal framer
on M and ({θ0( fn)⊕ gn : n ∈ J},θ0(h1)⊕ h2) is an orthonormal baser on θ0(H)⊕M.
Since θ0 : H → K is an isometry, if we define θ : H → θ0(H) by θ(x) = θ0(x), then θ is
unitary, so θ⊕ I and θ−1⊕ I are unitaries. Since ({θ0( fn)⊕ gn : n∈ J}, θ0(h1)⊕ h2) is an
orthonormal baser on θ0(H)⊕M, hence

({(
θ−1⊕ I

)(
θ0
(
fn
)⊕ gn

)
: n∈ J},

(
θ−1⊕ I

)(
θ0
(
h1
)⊕h2

))

= ({ fn⊕ gn : n∈ J},h1⊕h2
) (2.3)

is an orthonormal baser on (θ−1⊕ I)(θ0(H)⊕M)=H ⊕M as required. �

The next theorem show that a Riesz baser is the image of an orthonormal baser under
a bounded invertible operator.

Theorem 2.4. Let ({vn : n∈ J},λ1) be a Riesz baser on Hilbert space H , then there exist a
bounded invertible operator θ and an orthonormal baser ({un :n∈J},λ2) such that θvn(x)=
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un(θ(x)). Likewise, a framer is the image of a normal framer under a bounded invertible
operator.

Proof. Let ({vn : n ∈ J},λ1) be a Riesz baser on Hilbert space H , then by the proof of
Theorem 2.2, we have θ0(H)=K and θ−1

0 (K)=H , hence if ({un :n∈J},λ2) is the normal
baser as mentioned in Theorem 2.2, then θ−1

0 (un(θ0(x)))= vn(x), or θ0vn(x)= un(θ0(x)).
Let ({un :n∈J},h) be a normal framer on H and T a bounded linear invertible opera-

tor. Define fn(x)=Tun(x), then for x0∈H , we have
∑

j |〈x0, f j(h)〉|2=∑ j |〈x0,Tuj(h)〉|2=∑
j〈T∗x0,uj(h)〉|2 = ‖T∗x0‖2.
But

∥∥T∗x0
∥∥≤ ∥∥T∗∥∥∥∥x0

∥∥= ‖T‖∥∥x0
∥∥. (2.4)

Since T−1 exists, so T∗ is invertible and T∗−1 = (T−1)∗, thus ‖T∗−1‖ = ‖(T−1)∗‖ =
‖T−1‖, hence

∥∥x0
∥∥= ∥∥T∗−1

T∗
(
x0
)∥∥≤ ∥∥T−1

∥∥∥∥T∗
(
x0
)∥∥. (2.5)

Now (2.4) and (2.5) imply that ‖T−1‖−1‖x0‖ ≤ ‖T∗(x0)‖ ≤ ‖T‖‖x0‖. Therefore,
‖T−1‖−2‖x0‖2 ≤∑ j |〈x0, f j(h)〉|2 ≤ ‖T‖2‖x0‖2, hence { fn(Th) : n ∈ J} is a frame with
frame bounds A≥ ‖T−1‖−2 and B ≤ ‖T‖2, and consequently ({ fn : n∈ J},h) is a framer.

�

In Theorem 2.3, we showed that each normal framer is the direct summand of a nor-
mal baser. We will prove the same result for Riesz basers as follows.

Theorem 2.5. Let ({ fn : n ∈ J},h) be a framer on Hilbert space H . Then there exist a
Hilbert space M and a normal framer ({un : n ∈ J},λ) on M such that ({ fn ⊕ un : n ∈
J},h⊕ λ) is a Riesz baser on H ⊕M.

Proof. Since by Theorem 2.4 each framer is the image of a normal framer under a
bounded invertible operator, there exist a normal framer ({vn : n∈ J},λ1) on H and in-
vertible operator T : H → H such that Tvn(x) = fn(x) for all n ∈ J. So by Theorem 2.3,
there are a Hilbert space M and a normal framer ({un : n ∈ J},λ2) on M such that
({θ(vn)⊕ un : n ∈ J},θ(λ1)⊕ λ2) is an orthonormal baser on θ(H)⊕M. Since T and
θ−1 are invertible, so Tθ−1 is invertible, (Tθ−1⊕ I)(θ(λ1)⊕ λ2)= Tλ1⊕ λ2, and (Tθ−1⊕
I)(θ(vn)⊕ un) = T(vn)⊕ un = fn ⊕ un. Hence, Theorem 2.4 implies that ({ fn ⊕ un : n ∈
J},Tλ1⊕ λ2) is a Riesz baser on H ⊕M. �

Lemma 2.6. Let ({un : n ∈ J},λ2) be a Riesz baser on H and let P be a projection from H
onto a subspace PH of H , then {Pun : n∈ J} is a framer on PH .

Proof. Let T : H →H be a bounded invertible operator on H , and let Q be a selfadjoint
projection, set P = TQT−1 and let vn = T−1un, another Riesz baser on H . For x ∈ QH ,
we have

∑
n |〈x,Qvn(T−1λ2)〉|2 =∑n |〈Qx,vn(T−1λ2)〉|2 =∑n |〈x,vn(T−1λ2)〉|2, so by the

definition of framer, {Qvn : n∈ J} is a framer on H . Now, since T|QH is a bounded invert-
ible operator from QH onto PH , so {TQvn : n∈ J} is a framer on PH . �
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Theorem 2.7. A pair ({ fn : n∈ J},λ1) is a framer on a Hilbert space H if and only if there
exist a Hilbert space M and a normal framer ({un : n ∈ J},λ2) on M such that ({ fn ⊕ un :
n ∈ J},λ1 ⊕ λ2) is a Riesz baser on H ⊕M. In short , framers are precisely the inner direct
summands of Riesz basers.

The proof is obvious.

Remark 2.8. The last theorem allows us to generalize the concept of framer in Banach
spaces to be simply an inner direct summand of a Riesz baser. In this case, the index set
should be N. For instance, a Schauder framer would be an inner direct summand of a
Schauder baser. Similarly, the bounded unconditional framer would be an inner direct
summand of a bounded unconditional baser.

In the following theorems, we will prove that coisometries preserve the structure of
framers, that is, the image of framers under coisometries are framers.

Theorem 2.9. Let {Aj} j∈J be a family of coisometries on H and let ({ f j : j ∈ J},λ) be a
framer for which { f jλ} j∈J is a frame with frame bounds {B1,B2}. Set Cj = Aj f j , then ({Cj :
j ∈ J},λ) is a framer with framer bounds {B1,B2}. If ({ f j : j ∈ J},λ) is tight (normal), then
({Cj : j ∈ J},λ) is tight (normal), respectively.

Proof. Let x ∈ H be given, then
∑

j |〈x,Cjλ〉|2 =
∑

j |〈x,Aj f j(λ)〉|2 =∑ j |〈A∗j x, f jλ〉|2.
Since ({ f j : j ∈ J},λ) is a framer for which { f jλ} j∈J is a frame with frame bounds {B1,B2},
so B1‖A∗j x‖2 <

∑
j |〈A∗j x, f jλ〉|2 < B2‖A∗j x‖2. But Aj is coisometry, for all j, hence

‖A∗j x‖=‖x‖, and then B1‖x‖2 <
∑

j |〈A∗j x, f jλ〉|2 < B2‖x‖2, or B1‖x‖2 <
∑

j |〈x,Cjλ〉|2 <
B2‖x‖2. So ({Cj : j ∈ J},λ) is a framer with bounds {B1,B2}.

If ({ f j : j ∈ J},λ) is a tight framer, then a similar calculation shows that
∑

j |〈x,
Cjλ〉|2 =

∑
j |〈A∗j x, f jλ〉|2 = B1‖A∗j x‖2 = B1‖x‖2, that is, ({Cj : j ∈ J},λ) is a tight framer

on H .
And finally, if ({ f j : j ∈ J},λ) is normal, then ({Cj : j ∈ J},λ) is a normal framer on H .

�

We can generalize this theorem as follows.

Theorem 2.10. Let {A1
j} j∈J,{A2

j} j∈J, . . . ,{An
j } j∈J be families of coisometries, and let ({ f j :

j ∈ J},λ) be a framer with framer bounds {B1,B2}. If Cj = A1
jA

2
j ···An

j f j , then ({Cj : j ∈
J},λ) is a framer with framer bounds {B1,B2}. If ({ f j : j ∈ J},λ) is tight (normal), then
({Cj : j ∈ J}λ) is tight (normal), respectively.

Proof. The proof is an easy consequence by Theorem 2.9 and induction. �
Remark 2.11. For a tight framer ({ f j : j ∈ J},λ) with framer bound A, the reconstruction
formula is x = (1/A)

∑
j〈x, f jλ〉 f jλ. If framer is not tight, then there is a similar recon-

struction formula in terms of dual framers.
Let ({ f j : j ∈ J},λ) be given. A framer ({gj : j ∈ J},λ) is called a dual framer of ({ f j :

j ∈ J},λ) if for each x ∈H , x =∑ j〈x,gjλ〉 f jλ.

Theorem 2.12. Let ({ f j : j ∈ J},λ) be a framer on a Hilbert space H . Then there exists
a unique operator S : H →H such that x =∑ j∈N〈x,S f jλ〉 f jλ, for all x ∈H . If A : H → K
is any invertible operator for some Hilbert space K such that ({A fj : j ∈ J},λ) is a normal
framer, then S= A∗A. In particular, S is an invertible positive operator.
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Proof. Since ({ f j : j ∈ J},λ) is a framer, so { f jλ : j ∈ J} is a frame for H , now the theorem
is trivial.

We call ({S f j : j ∈ J},λ) the canonical dual of ({ f j : j ∈ J},λ), and for each x ∈H , one
can write x =∑ j∈N〈x,S f jλ〉 f jλ=

∑
j∈N〈x, f jλ〉S f jλ. �

The last theorem proves that the canonical dual of each wavelet-type frame can be of
wavelet-type as the following theorem proves the same results for the dual of a frame.

Theorem 2.13. Let ({ f j : j ∈ J},h) and ({gj : j ∈ J},λ) be framers on a Hilbert space H ,
such that x =∑ j〈x,gjλ〉 f jh for all x ∈H . Then x =∑ j〈x, f jh〉gjλ, for all x ∈H .

The proof is obvious.

3. Complement in framers and basers

This section investigates some additional properties of framers and basers. First, we give
some definitions.

Definition 3.1. Let ({ f j : j ∈ J},λ1) be a framer on a Hilbert space H . A framer ({gj : j ∈
J},λ2) on a Hilbert space M is called a complement to ({ f j : j ∈ J},λ1) if ({ f j ⊕ gj : j ∈
J},λ1⊕ λ2) is a Riesz baser on H ⊕M. Note that by Theorem 2.7, the complement to each
framer ({ f j : j ∈ J},λ1) exists.

If ({ f j : j ∈ J},λ1) is a normal framer, then a normal framer ({gj : j ∈ J},λ2) on a
Hilbert spaceM is called a strong complement to ({ f j : j ∈ J},λ1) if ({ f j ⊕ gj : j ∈ J},λ1⊕
λ2) is an orthonormal baser on H ⊕M.

Two framers ({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) on Hilbert spaces H , K , respec-
tively, are similar if there exists a linear bounded invertible operator T : H → K such
that T fjT∗ = gj for each j ∈ J . In this case, if T is unitary, then ({ f j : j ∈ J},λ1) and
({gj : j ∈ J},λ2) are called unitarily equivalent.

A framer ({gj : j ∈ J},λ2) is called strong complement to ({ f j : j ∈ J},λ1) if there
exist a pair of strong complement normal framers ({ f ′j : j ∈ J},λ1) and ({g′j : j ∈ J},λ2)
and linear bounded invertible operators T1 and T2 such that f ′j =T1 f jT

∗
1 and g′j=T2gjT

∗
2

for all j ∈ J.
Theorem 3.2. Let ({ f j : j ∈ J},λ1) be a framer on H , and let ({gj : j ∈ J},λ2) and ({ej :
j ∈ J},λ3) be strong complements to ({ f j : j ∈ J},λ1) in Hilbert spaces M, N , respectively.
Then there exists an invertible operator ∆ : M→N such that ej = ∆gj∆∗ for all j ∈ J.

The proof is immediate.
In the next theorem, we will show that the strong complementary of normal framers

are preserved under coisometries.

Theorem 3.3. Let ({ f j : j ∈ J},λ1) be a normal framer on H , and let {Aj : j ∈ J} be a
family of coisometries operators onH . Then there exist a Hilbert spaceM with normal framer
({gj : j ∈ J},λ2), and a family of coisometries operators {Bj : j ∈ J} on M such that ({gj :
j ∈ J},λ2) is a strong complement to ({ f j : j ∈ J},λ1) and ({Bjgj : j ∈ J},λ2) is a strong
complement to ({Aj f j : j ∈ J},λ1).

Proof. Let ({ f j : j ∈ J},λ1) be a normal framer and {Aj : j ∈ J} is a family of coisome-
tries. With notations as in Theorem 2.2, since θ : H → θ0(H) is unitary, so θ⊕I and θ−1⊕ I
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are unitaries. Hence by Theorems 2.3 and 2.9, there exist a Hilbert space M and a nor-
mal framer ({ej : j ∈ J},λ3) such that ({Aj f j ⊕ ej : j ∈ J},λ1 + λ3) is an orthonormal
baser on H ⊕M. On the other hand, since ({ f j : j ∈ J},λ1) is normal framer, so there
exists a normal framer ({gj : j ∈ J},λ2) which is a strong complement to ({ f j : j ∈ J},λ1),
that is, ({ f j ⊕ gj : j ∈ J},λ1⊕ λ2) is an orthonormal baser on H ⊕M. Set Bj = ejg

−1
j since

‖B∗j y‖2=∑ j∈J |〈B∗j y,gjλ3〉|2=
∑

j∈J |〈y,Bjgjλ3〉|2=
∑

j∈J |〈y,ejλ3〉|2=‖y‖2. So Bj , for
each j ∈ J, is a bounded invertible coisometry. Now, Bjgj = ej and ({ej : j ∈ J},λ3) is a
strong complement to ({Aj f j : j ∈ J},λ1), so ({Bjgj : j ∈ J},λ3) is a strong complement
to ({Aj f j : j ∈ J},λ1). �

A similar conclusion holds for framers as follows.

Theorem 3.4. Let ({ f j : j ∈ J},λ1) be a framer on H , and let {Aj : j ∈ J} be a family of
coisometry operators on H . Then there exist a Hilbert space M with normal framer ({gj : j ∈
J},λ2), and a family of coisometry operators {Cj : j ∈ J} on M such that ({gj : j ∈ J},λ2)
is complement to ({ f j : j ∈ J},λ1) and ({Cjgj : j ∈ J},λ3) is complement to ({Aj f j : j ∈
J},λ1).

Proof. Let ({ f j : j ∈ J},λ1) be a framer and {Aj : j ∈ J} are coisometries, so ({Aj f j : j ∈
J},λ1) is a framer on H . On the other hand, there are normal framers ({gj : j ∈ J},λ2) and
({ej : j ∈ J},λ3) on M such that ({ f j ⊕ gj : j ∈ J},λ1 ⊕ λ2) and ({Aj f j ⊕ ej : j ∈ J},λ1 ⊕
λ3) are Riesz basers on H ⊕M, that is, ({gj : j ∈ J},λ2) is complement to ({ f j : j ∈ J},λ1).

For the other part of theorem, set Cj = ejg
−1
j , then a calculation such as Theorem 3.3

shows that {Cj : j ∈ J} are coisometries and since ({Aj f j ⊕ Cjgj : j ∈ J},λ1 ⊕ λ3) is a
Riesz baser on H ⊕M, hence ({Cjgj : j ∈ J},λ3) is a complement to ({Aj f j : j ∈ J},λ1).

�

In the following, we will prove that the strong complement of a wavelet-type normal-
ized tight frame is of wavelet-type.

Theorem 3.5. Let {xj : j ∈ J} be a normalized tight wavelet-type frame for a Hilbert space
H , and let {yj : j ∈ J} be a strong complement to {xj : j ∈ J} in the frame sense, then {yj :
j ∈ J} is a wavelet-type frame.

Proof. Let {xj : j ∈ J} be a normalized tight wavelet-type frame for a Hilbert space H , so
there exists a normal framer ({ f j : j ∈ J},λ1) on H such that xj = f jλ1 for all j ∈ J. Since
({ f j : j ∈ J},λ1) is normal framer, so there exists a normal framer ({gj : j ∈ J},λ2) such
that ({ f j ⊕ gj : j ∈ J},λ1 ⊕ λ2) is an orthonormal baser on H ⊕M. So {gjλ2 : j ∈ J} is a
strong complement to { f jλ1 : j ∈ J} in the sense of frames. But {yj : j ∈ J} is another
strong complement to { f jλ1 : j ∈ J}, so by Theorem 3.2, there exists a unitary operator
U : M→N such that yj =Ugj(λ2) and yj =UgjU∗(λ3), for λ3 ∈N . Set ej =UgjU∗, then
({ej : j ∈ J},λ3) is a normal framer and ejλ3 = yj , that is, {yj : j ∈ J} is wavelet-type. �

For the case that {xj : j ∈ J} is a general wavelet-type frame, first we prove the follow-
ing lemma, stated that the similar of a wavelet-type frame is of wavelet-type.

Lemma 3.6. Let {xj : j ∈ J} be a wavelet-type frame for a Hilbert space H , and let {yj : j ∈
J} be a frame similar to it. Then {yj : j ∈ J} is wavelet-type.
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Proof. Since {xj : j ∈ J} is similar to {yj : j ∈ J}, there exists a bounded invertible oper-
ator T : H →H such that Txj = yj , since {xj : j ∈ J} is a wavelet-type frame, there exists
a framer ({ f j : j ∈ J},λ1) such that xj = f jλ1, hence T fjλ1 = yj . Now set gj = T fj , then
({gj : j ∈ J},λ1) is a framer and gjλ1 = yj , for all j ∈ J. Thus, {yj : j ∈ J} is wavelet-
type. �

The following theorem shows that the strong complement of each wavelet-type frame
is of wavelet-type.

Theorem 3.7. Let {xj : j ∈ J} be a wavelet-type frame for a Hilbert space H , let {yj : j ∈ J}
be a strong complement to {xj : j ∈ J}, then {yj : j ∈ J} is wavelet-type.

Proof. Since {xj : j ∈ J} and {yj : j ∈ J} are strong complements, so by the definition,
there exists normalized tight frames {x′j : j ∈ J} and {y′j : j ∈ J} such that {xj : j ∈ J}
is similar to {x′j : j ∈ J}, {yj : j ∈ J} is similar to {y′j : j ∈ J}, and {x′j ⊕ y′j : j ∈ J} is an
orthonormal basis. Since {xj : j ∈ J} is a wavelet-type frame and {x′j : j ∈ J} is similar
to it, so by Lemma 3.6, the frame {x′j : j ∈ J} is wavelet-type. On the other hand, since
{y′j : j ∈ J} is a strong complement to {x′j : j ∈ J} and {x′j : j ∈ J} is wavelet-type, so
by Theorem 3.5, the frame {y′j : j ∈ J} is wavelet-type. Therefore, there exists a normal
framer ({gj : j ∈ J},λ2) such that gjλ2 = y′j . Since {y′j : j ∈ J} and {yj : j ∈ J} are similar,
so there is a bounded invertible operator T such that Tyj = y′j = gjλ2. Thus yj = T−1gjλ2.
Now set ej = T−1gj , then yj = ejλ2. That is, {yj : j ∈ J} is wavelet-type. �

Definition 3.8. Let ({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) be normal framers on Hilbert
spaces H and K , respectively. ({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) are strongly disjoint
(strongly completely disjoint) if ({ f j ⊕ gj : j ∈ J},λ1⊕ λ2) is a normal framer (orthonor-
mal baser) on H ⊕M.

If ({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) are framers (not necessarily tight or normal),
({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) are disjoint if ({ f j ⊕ gj : j ∈ J},λ1⊕ λ2) is a framer
on H ⊕M.

Two framers ({ f j : j ∈ J},λ1) and ({gj : j ∈ J},λ2) are called strongly disjoint (strongly
completely disjoint) if they are similar to a pair of strongly disjoint (strongly completely
disjoint) normal framers.

Finally our last task in this paper is to prove that the strongly disjointness of each
wavelet-type normalized tight frame is of wavelet-type. This will be shown in the follow-
ing theorem.

Theorem 3.9. Let {xj : j ∈ J} be a wavelet-type normalized tight frame for a Hilbert space
H , and let {yj : j ∈ J} be a strongly disjoint frame to it. Then there exists a normalized tight
frame {zj : j ∈ J} such that {yj ⊕ zj : j ∈ J} is of wavelet-type.

Proof. Let {xj : j ∈ J} be a wavelet-type normalized tight frame. So there exists a normal
framer ({ f j : j ∈ J},λ1) such that xj = f jλ1 for all j ∈ J. Since {yj : j ∈ J} is strongly
disjoint to {xj : j ∈ J}, thus {xj ⊕ yj : j ∈ J} is a normalized tight frame and there exists
a normalized tight frame {zj : j ∈ J} such that {(xj ⊕ yj)⊕ zj : j ∈ J} is an orthonormal
basis.
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But {(xj ⊕ yj)⊕ zj : j ∈ J} and {xj ⊕ (yj ⊕ zj) : j ∈ J} are unitarily equivalent, hence
{xj ⊕ (yj ⊕ zj) : j ∈ J} is an orthonormal basis. Since {xj : j ∈ J} is a normalized tight
frame, so {yj ⊕ zj : j ∈ J} is a normalized tight frame, which is a strong complement
to {xj : j ∈ J}. Now {xj : j ∈ J} is a wavelet-type normalized tight frame, so by Theorem
3.7, the frame {yj ⊕ zj : j ∈ J} is wavelet-type as required. �
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