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A simplified construction of tempered Boehmians is presented. The new construction
shows that considering delta sequences and convergence arguments is not essential.

1. Introduction

Since Boehmians were introduced, extensions of the Fourier transform to spaces of
Boehmians attracted a lot of attention (see [2, 3, 4, 5, 6, 7, 8, 9]). In some cases, the
range of the extended Fourier transform is a space of functions. In other constructions,
the range is a space of distributions or a space of Boehmians.

In this paper, we would like to consider the space of tempered Boehmians presented
in [8]. In this case, the range of the Fourier transform is the space of all distributions �′.
This work is motivated by [1].

First we recall briefly the construction of the space of tempered Boehmians. A con-
tinuous function f : RN → C is called slowly increasing if there is a polynomial p on RN

such that | f (x)| ≤ p(x) for all x ∈ RN . The space of slowly increasing functions will be
denoted by �(RN ) or simply �.

An infinitely differentiable function f :RN → C is called rapidly decreasing if

sup
|α|≤m

sup
x∈RN

(
1 + x2

1 + ···+ x2
N

)m∣∣Dα f (x)
∣∣ <∞ (1.1)

for every nonnegative integer m, where x = (x1, . . . ,xN ), α= (α1, . . . ,αN ), αn’s are nonneg-
ative integers, |α| = α1 + ···+αN , and

Dα = ∂|α|

∂xα
= ∂|α|

∂xα1
1 ···∂xαNN

. (1.2)

The space of rapidly decreasing functions is denoted by �(RN ) or simply �.
If f ∈� and ϕ∈�, then the convolution

f ∗ϕ(x)=
∫
RN

f (y)ϕ(x− y)dy (1.3)

is well defined and f ∗ϕ∈�.
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A sequence (ϕn)∈�N is called a delta sequence if it satisfies the following conditions:
(a)

∫
RN ϕn(x)dx = 1 for all n∈N,

(b)
∫
RN |ϕn(x)|dx ≤ C for some constant C and all n∈N,

(c) limn→∞
∫
‖x‖≥ε ‖x‖k|ϕn(x)|dx = 0 for every k ∈N and ε > 0.

The space of tempered Boehmians � is defined as the space of equivalence classes of
pairs of sequences ( fn,ϕn), where fn ∈� and (ϕn) is a delta sequence as defined above,
satisfying

fm∗ϕn = fn∗ϕm ∀m,n∈N, (1.4)

with respect to the equivalence relation defined by

(
fn,ϕn

)∼ (gn,γn
)

if fm∗ γn = gn∗ϕm, ∀m,n∈N. (1.5)

It is shown in [8] that the Fourier transform can be defined for tempered Boehmians
and that the range is exactly the space of all distributions �′. Thus, the space of tempered
Boehmians can be identified with the space of ultradistributions �′ (see, e.g., [10]). In
the construction, the particular choice of delta sequences and the fact that the Fourier
transform of a delta sequence converges to 1 uniformly on compact subsets of RN seem
to be essential. In this paper, we show that this is not the case. In fact, we give an equivalent
construction where convergence plays no role. This approach indicates that the results of
[8] follow from a more general principle.

In what follows, we will denote by �′ the space of tempered distributions, that is, the
space of continuous linear functionals on �. If f ∈�′ and ϕ∈�, then the convolution
f ∗ϕ is defined as ( f ∗ϕ)(x) = f (ϕx), where ϕx(z) = ϕ(x− z). It can be shown that, if
f ∈ �′ and ϕ ∈ �, then f ∗ ϕ ∈�. The Fourier transform of a tempered distribution

f , denoted by f̂ , is the functional on � defined by f̂ (ϕ) = f (ϕ̂), where ϕ̂ is the Fourier
transform of ϕ.

2. The exchange property

For a family {ϕj} j∈J = {ϕj}J , where J is an index set and ϕj ∈� for all j ∈ J , we define

M
({
ϕj
}
J

)
= {x ∈RN : ϕ̂ j(x)= 0∀ j ∈ J}. (2.1)

A family of pairs {( f j ,ϕj)}J , where f j ∈ �′ and ϕj ∈ �, is said to have the exchange
property if

f j ∗ϕk = fk ∗ϕj ∀ j,k ∈ J. (2.2)

Theorem 2.1. If {( f j ,ϕj)}J has the exchange property and Ω =M({ϕj}J)c (the comple-
ment of M({ϕj}J) in RN ), then there exists a unique F ∈�′(Ω) such that

f̂ j = Fϕ̂j ∀ j ∈ J. (2.3)

Proof. For every x ∈ Ω there exists a j ∈ J and ε > 0 such that |ϕ̂ j(x)| > ε in an open

neighborhood of x. Then we can define F = f̂ j /ϕ̂ j in that neighborhood. We need to show
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that this definition of F is independent of j. Suppose, for some ε > 0, we have |ϕ̂ j(x)| > ε
for all x ∈U and |ϕ̂k(x)| > ε for all x ∈ V . Then, since f j ∗ϕk = fk ∗ϕj , we have f̂ j ϕ̂k =
f̂kϕ̂ j and

f̂ j
ϕ̂ j
= f̂k
ϕ̂k

(2.4)

on U ∩V . Clearly, F is unique. �

We will denote by � the collection of all families of pairs {( f j ,ϕj)}J , where J is an
index set, f j ∈�′ and ϕj ∈� for all j ∈ J , satisfying the exchange property and such that
M({ϕj}J)=∅.

Note that in the definition of � the index set is not fixed. If f ∈ �′ is arbitrary and
ω(x)= e−x·x, then {( f ,ω)} ∈�. In this case the index set has only one element.

If (ϕj) is a delta sequence, then obviously M({ϕj}N)=∅. However, it is possible that
M({ϕj}J) = ∅ and {ϕj} does not contain any subsequence which is a delta sequence.
Consider, for example, a sequence {ϕj}N such that {ϕ̂ j}N is a partition of unity. More
generally, let {Uj}J be an open covering of RN and let {ϕj}J be such that |ϕ̂ j(x)| > 0 for
x ∈Uj . A family {ϕj}J such that M({ϕj}J)=∅ will be called total.

Lemma 2.2. If {ϕj}J and {γk}K are total, then {ϕj ∗ γk}J×K is total.

Theorem 2.3. {( f j ,ϕj)}J ∈� if and only if there exists a unique F ∈�′(RN ) such that

f̂ j = ϕ̂ jF for all j ∈ J .
Proof. We only need to show that existence of such an F ∈�′(RN ) implies the exchange
property. Indeed, for any j,k ∈ J we have

f̂ j ϕ̂k = Fϕ̂j ϕ̂k = Fϕ̂kϕ̂ j = f̂kϕ̂ j . (2.5)
�

Definition 2.4. If {( f j ,ϕj)}J ∈�, then the unique F ∈�′(RN ) such that f̂ j = ϕ̂ jF for all
j ∈ J will be denoted by �({( f j ,ϕj)}J) and called the Fourier transform of {( f j ,ϕj)}J .
Theorem 2.5. For every F ∈ �′(RN ) there exists {( f j ,ϕj)}J ∈� such that F = �({( f j ,
ϕj)}J).

Proof. Let {ϕj}N be a total sequence such that ϕ̂ j ∈�(RN ) for all j ∈N, where �(RN )
denotes the space of smooth functions with compact support. Then, for every j ∈ N,

there is an f j ∈ �′ such that f̂ j = ϕ̂ jF. Clearly, {( f j ,ϕj)}N ∈� and F =�({( f j ,ϕj)}N).
�

Let {( f j ,ϕj)}J ,{(gk,γk)}K ∈�. If f j ∗ γk = gk ∗ ϕj for all j ∈ J and k ∈ K , then we
write {( f j ,ϕj)}J ∼ {(gk,γk)}K . This relation is clearly symmetric and reflexive. We will
show that it is also transitive.

Let {( f j ,ϕj)}J ,{(gk,γk)}K ,{(hl,ψl)}L ∈�. If {( f j ,ϕj)}J ∼ {(gk,γk)}K and {(gk,γk)}K ∼
{(hl,ψl)}L, then

f j ∗ γk = gk ∗ϕj , gk ∗ψl = hl ∗ γk (2.6)
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for all j ∈ J , k ∈ K , l ∈ L. Hence

f j ∗ γk ∗ψl = gk ∗ϕj ∗ψl, gk ∗ψl ∗ϕj = hl ∗ γk ∗ϕj (2.7)

for all j ∈ J , k ∈ K , l ∈ L. Since ∗ is commutative, we have

f j ∗ψl ∗ γk = hl ∗ϕj ∗ γk (2.8)

for all j ∈ J , k ∈ K , l ∈ L. Now fix j ∈ J and l ∈ L. Since M({γk}K )=∅ and (2.8) holds
for every k ∈ K , we conclude that f j ∗ψl = hl ∗ϕj for all j ∈ J and l ∈ L, which means
that {( f j ,ϕj)}J ∼ {(hl,ψl)}L.

Note that

{(
f j ,ϕj

)}
J ∼

{(
f j ∗ψk, ϕj ∗ψk

)}
J×K (2.9)

for any total family {ψk}K .

Theorem 2.6. Let {( f j ,ϕj)}J , {(gk,γk)}K ∈�. Then

{(
f j ,ϕj

)}
J ∼

{(
gk,γk

)}
K iff �

({(
f j ,ϕj

)}
J

)
=�

({(
gk,γk

)}
K

)
. (2.10)

Proof. Let F =�({( f j ,ϕj)}J) and G=�({(gk,γk)}K ).
If {( f j ,ϕj)}J ∼ {(gk,γk)}K , then

Fϕ̂j γ̂k = f̂ j γ̂k = ĝkϕ̂ j =Gγ̂kϕ̂ j (2.11)

for all j ∈ J and k ∈ K . Hence F =G, by Lemma 2.2.
Now assume F =G. Then

f̂ j γ̂k = Fϕ̂j γ̂k =Gγ̂kϕ̂ j = ĝkϕ̂ j (2.12)

for all j ∈ J and k ∈ K . Hence {( f j ,ϕj)}J ∼ {(gk,γk)}K . �

Now we define � =�/ ∼, the space of equivalence classes. In view of Theorems 2.5
and 2.6, the Fourier transform is a bijection from � to �′. Consequently, � can be iden-
tified with the space of ultradistributions �′. We will show that, with a properly defined
convergence in �, the spaces are isomorphic.

Note that the space �′ can be identified with a subspace of � via f 
→ [{( f ∗ω,ω)}],
where ω(x)= e−x·x.

Theorem 2.7. There exists a delta sequence (ϕn) such that for everyT∈�, T=[{( fn,ϕn)}N]
for some fn ∈�.

Proof. Let (ψn) be a delta sequence such that ψ̂n ∈ �. Then, for any T ∈ �, we have
T̂ψ̂n ∈ �′, since T̂ ∈ �′. Consequently, T̂ψ̂n = ĝn for some gn ∈ �′. It is easy to check
that T = [{(gn∗ψn,ψn∗ψn)}N]. Since fn = gn∗ψn ∈� and (ϕn)= (ψn∗ψn) is a delta
sequence, the proof is complete. Note that (ϕn) does not depend on T . �
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3. Algebraic properties and convergence

� becomes a vector space with the operations defined as follows:

λ
[{(

f j ,ϕj
)}

J

]
=
[{(

λ f j ,ϕj
)}

J

]
, λ∈ C,[{(

f j ,ϕj
)}

J

]
+
[{(

gk,ψk
)}

K

]
=
[{(

f j ∗ψk + gk ∗ϕj ,ϕj ∗ψk
)}

J×K
]
.

(3.1)

If [{( f j ,ϕj)}J], [{(gk,ψk)}K ]∈� and gk ∈� for all k ∈ K , then we can define

[{(
f j ,ϕj

)}
J

]
∗
[{(

gk,ψk
)}

K

]
=
[{(

f j ∗ gk,ϕj ∗ψk
)}

J×K
]
. (3.2)

It is easy to check that these operations are well defined. Note that, in view of
Theorem 2.7, the definition of addition can be simplified.

Definition 3.1. Let T0,T1,T2, . . .∈�. It is said that the sequence (Tn) is convergent to T0

and is written as Tn→ T0 if there exists a total family {ϕj}J such that
(a) there exist tempered distributions f j,n, where j ∈ J and n ∈ N, such that Tn =

[{ f j,n,ϕj}J] for all n= 0,1,2, . . . ,
(b) f j,n→ f j,0 in �′ as n→∞ for every j ∈ J .

Theorem 3.2. The Fourier transform is an isomorphism from � to �′.

Proof. Note that, since Tn→ T0 in � if and only if Tn−T0 → 0, it suffices to prove conti-
nuity at 0.

Assume Tn → 0 in �. Then there exist tempered distributions f j,n, where j ∈ J and
n ∈ N, such that Tn = [{( f j,n,ϕj)}J] for all n = 1,2, . . . and f j,n → 0 in �′ as n→∞ for

every j ∈ J . If ψ ∈�, then there are j1, . . . , jk such that suppψ ⊂⋃k
m=1 supp ϕ̂ jm . Then

lim
n→∞ T̂nψ = lim

n→∞

k∑
m=1

(
T̂nϕ̂ jm

) ϕ̂ jmψ∑k
m=1

∣∣ϕ̂ jm∣∣2

=
k∑

m=1

(
lim
n→∞ f̂ jm,n

) ϕ̂ jmψ∑k
m=1

∣∣ϕ̂ jm∣∣2 = 0,

(3.3)

since limn→∞ f̂ j,n = 0 for every j ∈ J , by continuity of the Fourier transform in �′. This

proves continuity of � : �→�′, because limn→∞ T̂nψ = 0 in �′ for every ψ ∈� implies
limn→∞ T̂n = 0 in �′.

Now assume limn→∞ T̂n = 0 in �′. By Theorem 2.7, there exists a delta sequence (ϕj),
j ∈N, such that for every n∈N we have Tn = [{( f j,n,ϕj)}N] for some f j,n ∈�. Let (ψk),

k ∈N, be a delta sequence such that ψ̂k ∈� for every k ∈N. Then limn→∞ T̂nϕ̂ j ψ̂k = 0 in

�′ for every j,k ∈ N. Since T̂nϕ̂ j = f j,n for every j,k ∈ N, we have limn→∞ f̂ j,nψ̂k = 0 in
�′, which implies limn→∞ f j,n∗ψk = 0 in �′. But

Tn =
[{(

f j,n,ϕj
)}

J

]
=
[{(

f j,n∗ψk,ϕj ∗ψk
)}

J×K
]

(3.4)

for all n= 0,1,2, . . . , so we have Tn→ 0 in �. �
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