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ON SMOOTH FUZZY SUBSPACES
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We introduce a new concept of smooth topological subspaces, which coincides with the
usual definition in the case where u = xy, Y C X. Also, we introduce some concepts such
as g-nbd systems, continuity, separation axioms, compactness, and connectedness in this
sense. Also, various characterization for some fuzzy topological concepts in this sense are
given.
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1. Introduction and preliminaries. The concept of fuzzy topology was first defined
in 1968 by Chang [2] and later redefined in somewhat different way by Lowen [8] and
Hutton [7]. According to Sostak [11], these definitions, a fuzzy topology is a crisp sub-
family of family of fuzzy sets and fuzziness in the concept of openness of a fuzzy set
has not been considered, which seems to be a drawback in the process of fuzzification
of the concept of topological spaces. Therefore, Sostak introduced a new definition of
fuzzy topology in 1985 [11], which we will call “smooth topology.” Later on he has de-
veloped the theory of smooth topological spaces in [11, 12]. After that, several authors
[1, 3, 4, 5, 6, 10] have reintroduced the same definition and studied smooth topologi-
cal spaces being unaware of Sostak’s work. They referred to the fuzzy topology in the
sense of Chang as the topology of fuzzy subsets.

Throughout this paper, let X be a nonempty set, I = [0,1], I. = (0,1],and I, = [0,1).
For & € I, ®(x) = « for all x € X. The family of all fuzzy sets on X is defined by I¥*. For
x € X and t €I, a fuzzy point x; is defined by

xi(y) = tty=x, (1.1)
0 if y+x.

A fuzzy point x; is said to be quasicoincident with the fuzzy set U with respect to
p € IX if and only if t + U(x) > u(x). We write this as x;qU[u]. For U,V € IX, U is
quasicoincident with V with respect to yu. We denote this as UqV[u], if there exists
x € X such that U(x) +V(x) > u(x). Otherwise we denote the case as UqV[u].
Let (X, T) be a Chang fuzzy topological space and x; € u. Then we say that V € s,
is a fuzzy p-g-nbd of x; if there is U € T, such that x;qU[u] and U <V [13].
A smooth topological space (STS) [10, 11] is an ordered pair (X,7), where X is a
nonempty set and J : I* — I is a mapping satisfying the following conditions:
(01) (0) =9(1) = 1;
(02) forall A,BcIX, T(AAB) =T (A) AT (B);
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(03) for every subfamily {A;:i¢€ J} cI¥, T (ViegAi) = Nieg T (A)).
The number J (A) is called the degree of openness of A.
Let (X,7) be an STS and Y < X. Then the mapping Jy : I' — I defined by

Ty =\/{T(V):velX Vly=U} (1.2)

is the induced smooth topology on Y from 7, and (Y, Jy) is a subspace of (X,J) [10, 11].
Let (X,9) and (Y,J*) be two STSs. A mapping f: X — Y is called fuzzy continuous
[10, 11]if and only if T(f1(A)) = T*(A) for every A € I".

2. Smooth topological subspaces. For p € IX we call d, = {U € I¥: U < p}.

DEFINITION 2.1. Let (X,J) bean STS and p € I*X. The mapping 7, : sd,, — I defined by
T =\/{T(V):VelX, VAau=U} (2.1)

is a smooth p-topology induced over u by J. For any U € s, the number 7,(U) is
called the p-openness degree of U.

It is easy to show that the above definition makes sense and to prove the following
theorems.

THEOREM 2.2. J, verifies the following properties:
(HO1) T,(0) =T, (n) =1;
(O2) forall A,B e sy, Tu(AAB) = T, (A) AT (B);
(uO3) for every subfamily {A;:i€ J} € Ay, Tu(Vicj Ai) = Nieg Tu(A)).

REMARK 2.3. If Y ¢ X and u = Xy, we just have the usual concept of smooth sub-
space. Given 7, and v € s{, we can define (J,),, the smooth v-topology induced over
v by J, in the obvious way. We have trivially 7, = (J,),, that is, a smooth subspace
of a smooth subspace is also a smooth subspace.

REMARK 2.4. (1) Let (X,7) be an STS and u € IX. Then, for each « € I., Ih= {U e
Ay 1T, (U) = o} is the fuzzy p-topology in the sense of Macho Stadler and De Prada
Vicente [9]. Moreover, «; < «; implies I = T3%. Also, 7, (A) = sup{a: A€ Tg} is a
smooth p-topology.

(2) From a Chang fuzzy topological space (X,7(), we can identify a smooth u-
topology T oy : sy — 1,

1 ifAeTY,
(2.2)

0 ifA¢JTg,

gzxu (A) = {

for each A € 5.

THEOREM 2.5. Let (X,9) be an STS and u € I*. Then, for each « € 1., U € s, define
an operator Cl : sly X1, — s as follows:

Cly(U,) = \{Ved,:U=<V, Ty(u-V) = «l. (2.3)
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For Uy,U; € sl and «, B € L., the operator Cl, satisfies the following conditions:
(uC1) Cl, (0, ) =0;

(uC2) Uy < Cly(Uy, 00);

(uC3) Cl(Uy,x) vCly (U2, x) = Cly (Ur v Uz, &);

(uC4) Cl,(Uy, ) <Cl, (U, B) if x < B;

(uC5) Cl,(Cly(Uy, ), ) = Cl, (Uy, ).

THEOREM 2.6. Let (X,J) be an STS and u € I*. Then, for eachx € 1., U € Ay, define
an operator Inty, : sy x 1, — s, as follows:

Int, (U, ) =\/{Vest,: U=V, Tu(V) = a}. (2.4)

For U;,U; € i, and «, B € 1., the operator Int,, satisfies the following conditions:
(p11) Int,(u—-U, ) = u—Cl,(Uy, ) and Cl,(u - Uy, ) = p—Int, (Up, );

(u12) Inty, (g, @) = p;

(uI3) Int”(Ul,(x) <Uy;

(p14) Int, (Ur, @) AlInt, (Uz, &) = Int, (U AUz, &);

(uI5) Int, (U, ) = Int, (Uy, B) if @ < B;

(p16) Inty, (Int, (U, ®), &) = Int, (Uy, ).

THEOREM 2.7. Let (X,T) be an STS, x € L., p € IX, x; € y, and U € . Then x; €
Cl, (U, ) if and only if for each V € s, such that J,(V) = & and x:qV[ul, UqV[u]
holds.

PROOF. Let x; € Cl,(U,x), V € s, such that 7,(V) = &, x;qV[u]. Suppose that
U¢V[u] which implies U < y—V. From x;qV[u] we have x; ¢ u—V = U. Since T, (u —
(L—V)) = &, then x; ¢ Cl, (U, x) which is a contradiction. Hence UgV [u].

Conversely, let V € s, such that 7,(V) = «, x,qV[u], and UqV[u]. Suppose that
xt ¢ Cl, (U, ). Then there is W € s, such that J,(u—W) = «, W = U, and x; € W.
From x; ¢ W we have x:q(u—W)[u]. Then, from our hypotheses Ugq(u—W)[u] which
implies that U £ W. This is a contradiction. Hence x; € Cl, (U, ). |

3. Fuzzy p-g-neighborhood systems. Here we build a fuzzy p-g-neighborhood
system of a fuzzy set in an STS and we introduce some of its properties. For a mapping
99y, — I, Acdy,, and x € I, we define the family 9§ ={B € s, : 24(B) =2(A) (B) > «},
which will play an important role in this section.

DEFINITION 3.1. Let (X,9) be an STS, u € I¥, and A € sAy. Then the mapping 9 :
Ay — I is called the fuzzy p-g-neighborhood (u-g-nbd, for short) of A with respect
to 9 if and only if for each x € I,

9% ={Bes,: (IC € dy:T,(C) > «) (AqClul < B)}. (3.1)

REMARK 3.2. The real number 24(B) is called the degree of u-g-nbdness of the
fuzzy set B to the fuzzy set A. If the fuzzy u-g-nbd system of a fuzzy set A has the
following property: 94 (sd,) < {0,1}, then 24 is called the p-g-nbd system of A (given
by Zahran [13]).
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THEOREM 3.3. Let(X,J) bean STS,u € 1X,and A e Ay. Then the mapping 4 : sy — 1
is the fuzzy p-q-nbd system of A with respect to the I, if and only if

0B - 1sup (T,(C):C esdy, AqClul <B}, AqBlul, 32

0, AdBlu].

PROOF. “If” part. Suppose that the mapping 94 : s, — I is the fuzzy p-g-nbd system
of A with respect to 7, and consider the following cases.

(a) For the case A¢B[u], suppose that 9,4(B) > 0. From Definition 3.1, there exists
C € d, with 7,(A) = « for all x € I, such that AqC[u] < B, that is, AgB[u] is a
contradiction. Thus, 924 (B) = 0.

(b) For the case AgB[u], we may have 24(B) = 0 or 24(B) > 0. If 24(B) = 0, then
it is obvious that 24(B) = 0 < sup{J,(C) : C € Ay, AqC[u] < B}; if sup{T,(C) : C €
Ay, AqC[u] < B} = s > o, then there exists C € s, such that 7,(C) > 0 and AqC[u] <
B. We obtain 2 4(B) > 0, which is a contradiction. Therefore,

924(B)=0=sup{J,(C):C e dy,, AqC[u] <B}. (3.3)
Now suppose that 24 (B) = s > 0. For an arbitrary 0 < € < 5, we have 94 (B) > s —¢€, that
is, B € 93 €. Since the mapping 24 : s, — I is a fuzzy p-g-nbd system of A, there exists
C € dy with 7,(C) = s —€ and AqC[u] < B, that is, sup{JT,(C) : C € Ay, AqC[u] <
B} > s —e€. Since € > 0 is arbitrary, we have

sup {T,(C):C € dy, AqC[u] <B} =5 =924(B). (3.4)

On the other hand, let sup{J,(C) : C € #,, AqC[u] < B} = n > 0. Then for every
0 < € < n, there exists C € s, such that 7,(C) > n—¢€ and AqC[u] < B. Therefore
B e 9l7¢, thatis, 24 (B) = n—e€. Since € is arbitrary we have

94(B) =n=sup{T,(C):C e sy, AqC[u] <B}. (3.5)

Hence the inequality follows.
“Only if” part. For « € I, let B € 94, that is, 24(B) > «. Then we can write & <
94(B) =sup{JT,(C):C e dy, AqC[u] < B}. Then we have

9% c{Bedy,: (3C € s4y:T,(C) = &) (AqClul <B)}. (3.6)
By the same way we can show that
Besd,:(3C €A, T,(C) = x) (AqC[ul <B)} < 25. (3.7)

Hence, 2§ = {B € o, : (3C € A, such that T,(C) = x) (AqC[u] <B)}. O
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REMARK 3.4. In Theorem 3.3, the fuzzy subset A of X can be replaced by the fuzzy
point on X, that is, by the special fuzzy subsets x;. In this case,

6, (B) = {sup {7u(C): € € sy, xeaClul < B}, xiaBlul, 59

0, Xt dBp].

THEOREM 3.5. Let (X,7) be an STS, u € 1%, and A € Ay. If the mapping 24 1 Ay — 1
is the fuzzy p-q-nbd system of A with respect to 7, then the following properties hold:
(pQ1) 25(0) =92, (u) =1 and 24(B) > 0 implies A < B;

(uQ2) if Ay <A and B < By, then 24 (B) <24, (B1);

(UQ3) 24(B1) A24(B2) <924(B1 AB2);

(HQ4) 2.4(B) < SUPAyc(1=5124(C) AOc(B)}, for all A,B € si;
(Q5) sup{24(U):U € Ay} =1.

PROOF. (uQl),(uQ2), and (uQ5) follow directly from Definition 3.1 and Theorem 3.3.

(uQ3) Suppose that 24(B;) =m > 0 and 24(B2) = n > 0. Then for a fixed € > 0 such
that €e < m An implies 24(B;) >m —€ >0 and 24 (B2) > n—€ = 0. From Definition 3.1,
it is clear that there exists C;,(> € o, such that 7,(Cy) > m—¢€, T,(C2) > n—e€ and
AqCi[u] < By, AqCo[u] < By. Therefore, T,(Ci A Co) = T,(C1) AT (Co) > (m—€) A
(m—€)=(man)—c and Aq(Cy AC2)[u] < By ABy. Thus, 24(B1 ABy) = (mAN) —€.
Since € is arbitrary, we find that

.QA(Bl /\Bz) ZQZA(Bl)/\QA(Bz). 3.9)

(1Q4) 24(B) = sup{T,(C) : C € Ay, AqCl[u] < B}. From Theorem 3.3, we obtain
Tu(C) =24(C) and T, (C) < 2¢(B). Thus,

sup{%,(C) :Cedy, AqClul < B} <sup {24(C) A2¢(B)}. (3.10)

Hence
94(B) < sup {24(C)A2¢(B)}. (3.11)
AqClul<B O

THEOREM 3.6. If the mapping 24 : sl — I satisfies the conditions (uQ1)-(uQ5), then
the mapping 7, : A, — 1, defined by

/\ 24(U), U=0,
Tu(U) = 1 AqUlu] (3.12)
1, U =0,

where U € dA,, is a smooth u-topology on X.

PROOF. It is obvious that I u(ﬁ) = 1. Using (uQ2) and (uQ5) we obtain that
sup{24(B):Be Ay}t =2a(u) =1, for all A € A, thatis, T, (u) =1.

For Uy, Us € s, if Uy AU> = 0, thenitis clear that T, (U; AU) =1 > T, (Uy) AT, (Uz).
Now we assume that U; A U = 0. Since Aq(U; A U)[u] if and only if AqU;[u] and
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AqU>[u], and applying (uQ3) we may write

Tu(Uy AUR) = N\ 24U AD)
Aq(Uy AU2)[1]

A [24(U1) A24(U2)]
a(Uy AU2)[u]

(Ul)}{ A QA(UZ):| (3.13)
(U AU2) 1] Aq(Uy AU2) ]

[t
£ A 2 Ul} [ A ElA(Uz)]

v

AqUy (] AqUz[u]

AT, (U2).
Let {Ui:i € J} < oy If \/ic; U = 0, then it is obvious that
ﬁu<v Ui> =1> N\ 7,(Uy). (3.14)
ieJ JeJ

Now suppose that \/;c; U; = 0. Considering (uQ4) and using the fact that Aq (Viey U]
if and only if there exists i, € J such that AqU;, [u] we observe that

QA(\/Ui) 294(Ui) = N\ 24(UL.) =T, (U). (3.15)

ie] AqUi, [p]
Hence,
9,,(\/Ui> = A ng<\/Ui) > N\ T.(U). (3.16)
ieJ Aq(Viey Up)lul ieJ i€ O

4. Fuzzy p-continuity

DEFINITION 4.1. Let (X,J) and (Y aL) be STSs uelX and f:X — Y. f is fuzzy
p-continuous if for each A € Ay, Tu(UA f71H(A)) = WUs( (A) holds.

REMARK 4.2. Clearly, if f is fuzzy continuous, then it is also fuzzy u-continuous,
but the reciprocal is not in general true as shown by the following example.

EXAMPLE 4.3. LetX =Y =TI and u = 0.5. Consider the smooth topologies 7, : IX —
as follows:

e 1 ifA=T1,0,
1 ifA=T,0, 1 .
J(A) = ) UA)=1= if A=0.5, 4.1)
10 otherwise, 2
0 otherwise.

Then, the identity mapping idy : (X,7) — (X,U) is fuzzy p-continuous. However it is
not fuzzy continuous because 1/2 = U(0.5) £ T(f1(0.5)) = J(0.5) =
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LEMMA 4.4. Let(X,7) and (Y,U) be STSsand f:X — Y.Let{u;j:jeJ} C IX such that
Viesuj = 1. Then f is uj-continuous for each j € J if and only if f is fuzzy continuous.

PROOF. Due to Remark 4.2, it suffices to show that if f is pj-continuous for each
j € J, then f is fuzzy continuous. For each B € IY and j € J, we have

Ty (f B A ;) = Wiy (BA S (115)) (4.2)

then, V{T(U): U eI*, Unp; = fHB)Apj} = V{WWV) VeI, VAF(u;) =BAf(uj)}.
By \Vjeyuj =1 wehave U = f~!(B) and V = B, then

J(f"(B))=UB) VBel. (4.3)

Hence f is fuzzy continuous. O

THEOREM 4.5. Let (X,9) and (Y,W) be STSs, u € 1%, and f : X — Y an injective
mapping. The following statements are equivalent.

(1) f is fuzzy u-continuous.

(2) For each B € A (), Ty — (A F7H(B))) = WUs (f (1) —B).

(3) Foreach A € A, and x € L., f(Cl (A, ) < Cly (f(A), x).

(4) For each B € A s,y and & € 1., Cly (u A f71(B), &) < f~1(Cly(y (B, ) A .

(5) For each B € sy and x € L, u A f~1(Inty ) (B, &) < Int, (u A f~1(B), ).

(6) For each x; € p and each B € dlyy), « € I, such that Uysy)(B) = « with
F(x)gBLf(u)], there is A € s, such that T,(A) = & with x;qA[u] and f(A) <B.

(7) For each x; € uy and B € Q}((xm x €I, thereis A € 2% such that f(A) < B.

(8) For each x; € p and each B € 9.5, ,, f1(B)eag.

PROOF. (1)=(2). For each B € s y(,), we have
)

=Tu(uA(fFfF - f1(B))) (4.4)
T

(2)=(3). Suppose there exist A € s, and « € I, such that
F(CL(A, &) £ Cly (f(A),x). (4.5)
There exist y € Y and t € I, such that
S(Clu(A,00)(¥) > t > Clp (f(A), ) (). (4.6)

If f~1({y}) = ¢, it is a contradiction because f(Cl, (A, @) (y) = 0.If f~1({y}) = ¢,
there exists x € f~1({y}) such that

S(Clu(A,@) () = Clu (A, &) (x) >t > Clygy (F(A),x) (). (4.7)
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Since Clg) (f(A), ) (f(x)) < t, there exists B € sl s, with AUs) (f () —B) = « and
f(A) < B such that

Cly (f(A), &) (f(x)) <B(f(x)) <t. (4.8)

Moreover, f(A) < B implies A < f~1(B). From (2), T,(u — f~5(B)) = Tu(u — (u A
S7HB))) = WUp( (f (1) —B) = . Thus,

Cly(A,00(x) < f1(B)(x) =B(f(x)) <t. (4.9)

This is a contradiction for (4.7).
(3)=(4). For each B € df(,), ® € I,. Put A = f~1(B) Ay, and from (3), we have

F(Cly (uA f7HB), ) < Clyy (F(fFHB) Ap), &) < Cley (BAf(1), ). (4.10)
This implies
Cly (AL (B),0) < fHF(Cly (A S (B), ) < f7H(Clygn (Bye)) A (4.11)

Hence, Cl (A f~1(B),®) < f~1(Clp (B, X)) A .

(4)=(5). This is easily proved from Theorem 2.6(uI1).

(5)=(1). Suppose that T,(u A f~1(B)) # WUs(B), for each B € sif(. Then there
exists « € I, such that

Tu(uAfHB)) < x <Up (B). (4.12)
By Theorem 2.6, B = Inty(,) (B, ). By (5),
PUASTHB) = p A fH(Intg) (B,«) <Inty (A f7H(B), ). (4.13)

On the other hand, by Theorem 2.6(u13), we have A f~1(B) = Int, (uA f~1(B), o). Thus,
UAfHB) =Int, (uA f~1(B),x), thatis, T, (uA f~1(B)) > «. This is a contradiction for
(4.12). Hence f is fuzzy u-continuous.

(1)=(6). Let x; € 4, x € I, and B € sl ¢(,) such that g, (B) = awith f(x)gB[f(u)].
Then, x;qf~*(B)[u]. By fuzzy u-continuity of f, we have I, (uA f~1(B)) = Us()(B) = &
and so, T, (f~1(B)) = o. Put A = f~1(B). Then, T,(A) > «w and f(A) = f(f~1(B)) = B.

6)=(3). Let A € Ay, x € I, x; € Cly(A, ), and B € sl such that Up) (B) = «
with f(x:)gB[f(u)]. By (6) there is C € s, such that 7,(C) = « with x;qC[u] and
f(C) = B. Since x; € Cl (A, &), 7,(C) = «, and x;qC[u], then by Theorem 2.7, we
have AqC[u] which implies that f(A)qf(C)[f(u)] and hence f(A)gB[f(u)]. Thus,
S (xt) € Cly (f(A),x), and x; € f~1(Cls) (f(A),®)) which implies that Cl, (A, &) <
SHCly ) (f(A),00). Hence f(Cl, (A, &) < Clp (f(A), ®).

(6)=(7). Let x; € pand B € 27, . Then there exists C € sd () such that Uy, (C) = «
and f(x:)qC[f(u)] < B. By (6) there is A € s, such that 7,(A) > « with x;qA[u] and
f(A) <C <B.Hence, A € 9%, and f(A) <B.
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(7)=(8). Let x; € y and B € Slj‘i?(x”. By (7), there is C gzgt such that f(C) < B. So,
there is A € si;, such that x;gA[u] and A < C < f~!(B). Hence f~'(B) € 25,.

(8)=(6). Let x; € p and B € Ay, such that Uy, (B) = « with f(x;)gB[f (u)]. Then,
B e Sl;’c‘(Xt). By (8), f1(B) € 9¢, and hence there is A € s, such that 7,(A) > « with
x:qA[u] < f~1(B) and f(A) <B. O

THEOREM 4.6. Let (X,7), (Y, W), and (Z,V) be STSs,ucI*, f: X - Y,andg:Y — Z.
If f is fuzzy u-continuous and g is fuzzy f (u)-continuous, then g o f is fuzzy u-continuous.

DEFINITION 4.7. Let (X,J) bean STS, u€IX,and A € sAy. For each ox € I, A is said
to be

(1) a-fuzzy p-regular open if and only if A = Int, (Cl, (A, &), &);

(2) «o-fuzzy p-regular closed if and only if A = Cl, (Int, (A, &), ).

DEFINITION 4.8. Let (X,9) and (Y,U) be STSs and let u € IX, « € I.. Then, the
mapping f : X — Y is fuzzy p-almost continuous if J,(u A f~1(A)) > « for each o-
fuzzy f(u)-regular open set A in sdr(,).

REMARK 4.9. One may notice that, if f is fuzzy almost continuous [8], then f is fuzzy
u-almost continuous, but the converse is not true in general as shown by Example 4.10.
Also, if f is fuzzy p-continuous, then f is fuzzy pu-almost continuous, but the converse
is not true in general as shown by Example 4.10.

EXAMPLE 4.10. We consider Example 4.3, and put

1 ifA=0,1,
1 if A=0.5,
V(A) = f (4.14)
=~ ifA=03
3 i 0.3,
0 otherwise.

For an STS (X,¥) and u = 0.5, we have
(1) the identity mapping idy : (X,7) — (X,U) is fuzzy p-almost continuous, but not
fuzzy almost continuous;
(2) the identity mapping idy : (X,9) — (X,¥) is fuzzy u-almost continuous, but not
fuzzy p-continuous.

THEOREM 4.11. Let (X,7) and (Y,WU) be STSs, u € IX, and f : X — Y an injective
mapping. The following statements are equivalent.

(1) f is fuzzy u-almost continuous.

(2) For each «-fuzzy f(u)-regular closed B € sl¢(), « € I, there exists T, (p— (U A
Sf71B))) = a.

(3) For each B € sl and « € I, such that Uy, (B) = « there exists f~1(B) A <
Il’lt“ (f71 (Il’ltf(u) (le(lJ) (B,x),x)) A M, ).

(4) For each B € Ay, and « € I, such that Uy (f (1) —B) = « there exists f~1(B) A
p = Cl, (f "1 (Clyy (Int gy (B, ®), &) A [, ).
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(5) For each x; € pu and each B € dlyy), o« € I, such that Ug)(B) = « with
SF(x)gBlLf(u)], there is A € sy such that T,(A) = « with x,qA[u] and f(A) <
Intf(u)(le(“)(B,(X),(X).

(6) For each x; € u and B € Sl}‘(
Il’ltf(u)(le(“)(B,O(),O().

(7) Foreach x; € y and eachB € Q\?‘(Xt), there existsffl(lntf(m(le(u) (B,x),x)) € 9.

« € I, there is A € 2%, such that f(A) <

x¢)’

PROOF. (1)=(2) for each x-fuzzy f(u)-regular closed B and « € I,. Then f(u)—B is
a-fuzzy f(u)-regular open. Since f is fuzzy p-almost continuous, T, (A f=1(f (1) —
B)) > «and hence T, (uA (u—f1(B))) = a. Let A(x) = (u— (f1(B) Ap)) (x) = pu(x) -
(f71(B) Ap)(x) = p(x) —min{f~1(B)(x),u(x)}. If pu(x) < f~1(B)(x), then A(x) =
p(x)—p(x) =0 and T,(A) =1 > « and hence T, (u— (f~H(B) Ap) > & If p(x) >
S71(B)(x),then A= pu—f~1(B) = (u—f~1(B)) Apand hence T, (A) = T, (u—(f~1(B)) A
1) > . Thus, for each a-fuzzy f(u)-regular closed set B, T, (u— (f 1 (B) Ap)) = .

(2)=(1). It is clear.

(1)=(3). Let B € s (), x € I, with U g,y (B) = . Then B < Intp(y) (Clr) (B, ®), ) and
Inty(, (Clyq (B, ), o) is a-fuzzy f(u)-regular open. Since f is fuzzy p-almost contin-
uous,

SEB) Ap < fH(Int g (Clp (B, 00, &) AU, (4.15)

and T, (U A It gy (Cly (B, o), ))) > . Thus

F7HB) Ap <ty (f 1 (Int gy (Clp (B, @), &) A l, ). (4.16)

(3)=(4). This follows from Theorem 2.6(uIl).
(4)=(2). Let B be x-fuzzy f(u)-regular closed, « € I.. Then by (4),

SEB) Ap=Cl, (f 1 (Clp (Intp) (B, &), ) A, )

., (4.17)
=Cl, (f "B Al &).
Thus, T, (1 —(u Af~HB))) = & (by Theorem 2.5(uC2)).
(1)=(5)=(3) and (5)=(6)=(7)=(5) are similar to that of Theorem 4.5. O

5. Fuzzy u-separation axioms

DEFINITION 5.1. Let (X,J) be an STS, « € I, and pu € I*. u is said to be «-fuzzy
p-Hausdorff if for each x¢, ys(x # ») € , there are Uy, U, € s, such that 7,(U;) = «
and 7,(U>) = « such that x; € Uy, ys € Uy, and U, gUz [ p].

THEOREM 5.2. Let (X,7) be an STS, « € I, and u € I*X. u is «-fuzzy p-Hausdor(f if
and only if for each xt,ys(x = y) e p, ¥s ¢ {Cl,(U,x) : T, (U) = &, x; € U}.
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PROOF. Let x¢,vs(x #y) € uand m = u(y)—s. Then x¢, yim (x + y) € u. Since u is
«-fuzzy p-Hausdorff, « € I., there are Uy,U; € o, with J,(U;) = «, T,(U>) = « such
that x; € Uy, ¥m € Uz, and U, ¢Uz[p] and hence Uy < py—Uz and T, (u— (u—10>)) = «,
which implies Cl, (Ui, &) < p—U,. Since yy € Uz, s = p(y) —m > p(y) —Ux(y) =
(Cly (U1, ) (y) and hence ys ¢ Cl,(Up,x). Thus, ys ¢ NCl, (Ui, ) 1 T,(U1) = «,
Xt € U]}

Conversely, let x¢, ys(x # ) € p. Then, x¢, yu(y)—s(x # ) € p. By hypothesis, there
is Uy € sd, with 7,(U1) = « such that x; € Uy and yy(y)-s € Cly (U, @) and hence
u(y) —s > (Cly (U, ) () which implies y; € u—Cl,(Ui,«) = U> and J,(U>2) = «.
Since U, = p—Cl, (U, ) < u—Uy, Uy qUz[p]. Therefore p is a-fuzzy p-Hausdorff. O

DEFINITION 5.3. Let (X,%) be an STS, « € I, and p € IX. u is said to be x-fuzzy
p-regular space if for each F € o, with 7, (u—F) = « and for each fuzzy point x; € u
with x:4F[u], there are U;,U; € #d, such that 7,(U;) = « and J,(U>) > « such that
Xt € U], F <U,, and U]ﬂiUg[Ll]

EXAMPLE 5.4. Let X = {x,y,z} be a set. Define a smooth topology J : IX — I as
follows:

1 ifU=0orl1,
1 .
5 if U= X{X,y}:
JWU) = 1 (5.1)
> if U= xyz,
0 otherwise.

Then u = 0.9 is 1/2-fuzzy p-regular space.

THEOREM 5.5. Let (X,7) be an STS, « € I, and p € IX. Then the following are equiv-
alent.

(1) p is x-fuzzy u-regular.

(2) For each fuzzy point x; € u and for each Uy € sl with J,(Uy) = &, x; € Uy, there
is U € sy with T, (Uz) = « such that x; € Uy < Cl, (U, x) < Uy.

(3) For each fuzzy point x; € pu and for each F € A, with I, (u—F) = o and x; ¢F[ ],
there are Uy, Uz € A, with J,(Uz) = «, T,(U3) = « such that x; € Uy, F < U3, and
Cly (U2, ) U3 [ u].

PROOF. (1)=(2). Let x; € u be a fuzzy point and U; € 4, with 7,(U;) = &, x; € U.
Then, T, (4 — (u—Uy)) = « with x;¢(p — Uy)[u]. By (1), there are U,,Us € A, with
T, (U2) = &, T, (Uz) = «x such that x; € Us, u—U; < Uy, and U> U3 [ u]. Since U g Us[ ],
Us < u—U, < U; and hence Cl, (U3, ®) < u—U, < Uy. Thus x; € Uz < Cl,(Usz, ) < Uy.

(2)=(3). Let x; € p be a fuzzy point, x € I, and F € A, with T, (u—F) = &, x; dF[u].
Then x; € u—F. By (2), there is U; € o, with 7,(U;) = « such that x; € U; < Cl, (U,
«) < pu —F. By (2) again, there is U, € s, with J,(U2) = « such that x; € U; <
Cly(Uz,x) < Uy < Cly(Uy,x) < u—F.Put U3 = u—Cl, (U, x). Hence there are Up,Us €
Ay with T, (Uz) = «, T, (Us) = « such that x; € U, F < Us, and Cl, (U2, ) qUs[u].

(3)=(1). It is clear. |
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6. Fuzzy p-compactness

DEFINITION 6.1. Let (X,9) be an STS, « € I, and u € IX. Then, u is «-fuzzy u-
compact (resp., x-fuzzy p-almost compact) if and only if for each family {U; € s, :
TJu(Ui) = &, i € T'} such that (\;erUi)(x) = p(x) for all x € X, there exists a finite
index set I, c I' such that (V;cr, Ui) (x) = p(x) (resp., (Vier, Cly (Ui, @) (x) = p(x)) for
all x € X.

It is clear that if y is «-fuzzy p-compact, then it is x-fuzzy p-almost compact. But
the converse need not be true in general as shown by the following example.

EXAMPLE 6.2. Let X be any nonempty set and let 7 : I¥ — I be a smooth topology
defined as

1 ifU=0o0r1,
JWU) = % if U=, for 0.4 < x<0.8, (6.1)
0 otherwise.

Then, p = 0.8 is 1/3-fuzzy p-almost compact but not 1/3-fuzzy u-compact.

In order to investigate for the condition under which «-fuzzy u-almost compact is
x-fuzzy p-compact, we set the following definition.

DEFINITION 6.3. Let (X,7)beanSTS, « € I, and u € IX. Then, u is «-fuzzy p-regular
if and only if for each Uy € s, with 7, (Uy) = «,
U1=V{U2€ﬂu:gu(U2)ZO(, Clu(Uz,(X) SUl}. (6.2)
THEOREM 6.4. Let (X,9) be an STS, x € 1., and u € IX be «-fuzzy u-regular. Then,
u is x-fuzzy p-almost compact if and only if u is «x-fuzzy p-compact.
PROOF. Let {U; € o, :T,(U;) = &, i €'} be a family such that (\/;cr U;) (x) = p(x)

for all x € X. Since, u is a-fuzzy p-regular, for each 7, (U;) = «,

U=\ {Ui €,:T,(U;,) = & Cl, (U, x) < U} (6.3)

ireK;

Hence (\/ier(\/ikeKi Ui, )) (x) = p(x) for all x € X. Since p is «-fuzzy p-almost compact,
there exists a finite index J x K; such that

(\/( \/ Clu(Uik,(x)))(x):u(x) Vx € X. (6.4)

ie] \ix€Ky

For i € J, since (VikeKj Cl, (U, x)) < U; we have (\;c;Ui)(x) = u(x) for all x € X.
Hence u is o-fuzzy p-compact. O

DEFINITION 6.5. A collection o C s, is said to be from a fuzzy p-filterbasis, if
for each finite subcollection {Uy,Uy,..., U2} of o, (AL, U;)(x) > 0 for some x € X. If
Ju(U) = x for each U € 0 and « € I, then o is said to form an «-fuzzy p-filterbasis.
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THEOREM 6.6. Let (X,7) be an STS, « € I, and u € I*X. u is x-fuzzy u-compact if and
only if for each fuzzy p-filterbasis o in u, (A\yco Cly(U,x)) (x) > O for some x € X.

PROOF. Leto ={U; € s, :9,(U;) = , i €I'} be a family such that (\/UIE(, Ui)(x) =
u(x) for all x € X, and suppose that for each finite subcollection {Uy,Us,...,U,} of o,
there is x € X such that U;(x) < u(x) foreach i = 1,2,...,n. Then u(x) —U;(x) > 0 for
eachi=1,2,...,n.So0, A?:l(u(x) —Ui(x)) > 0and hence {u—U;:U; € o} forms a fuzzy
u-filterbasis. Then, (/\Uieg Cly(p-Ui, ) (x) = (/\Uieg(u —U;))(x) =0 for each x € X,
which is a contradiction. Hence u is «-fuzzy u-compact.

Conversely, suppose that there is fuzzy p-filterbasis o such that (Ayey, Cly (U,
«))(x) = 0 for each x € X, so that (Vyc, (4 —Cly(U,x)))(x) = p(x) for each x € X
and hence 7, (u—Cl,(U,x)) = «. Since u is x-fuzzy p-compact, there is a finite sub-
set {Uy,...,U,} (say) and hence (\/?:1(;1 —Cl, (Ui, x))) (x) = p(x) for all x € X, which
implies (V11 (u—U;))(x) = p(x) for all x € X. So that (Al U;)(x) =0 for all x € X
which is a contradiction. Therefore ( Ay, (Cl, (Ui, ®)))(x) > 0 for each x € X. O

THEOREM 6.7. Let (X,7) be an STS, « € I, and u € IX. p is «-fuzzy p-almost compact
if and only if for each x-fuzzy p-filterbasis o in y, (A\yeys Cly(U,x))(x) > O for some
x eX.

PROOF. Let o ={U; e A, :T,(U;) = , i €T’} be a family such that (\/UL.EU Ui)(x) =
u(x) for all x € X, and suppose that for each finite subcollection {U;,U,...,U,} of
o, (VL Cl, (Ui, ) (x) < p(x) for some x € X. Then, A" (u(x) —Cl, (Uj, ) (x)) > 0
for some x € X. Thus, = {u—Cl,(U;, ) : U; € o} forms «-fuzzy p-filterbasis. Since
(\/Uie(, U;)(x) = u(x) for all x € X, hence (/\Uiea- Cly (u—Cly (Ui, @), x)) (x) = 0 for each
x € X, which is a contradiction. Hence (\/Z‘:1 Cly (Ui, ) (x) = p(x) for some x € X, and
u is «-fuzzy p-almost compact.

Conversely, suppose that there is x-fuzzy p-filterbasis o such that (A\ye, Cl, (U,
«))(x) =0 for each x € X, so that (\/ye, (u—Cl, (U, x)))(x) = p(x) for each x € X and
hence 7, (u—Cl, (U, x)) = «. Since p is «-fuzzy p-almost compact, there is a finite sub-
family {y —Cl,(U;j,x) :i=1,2,...,n} (say) such that (\/?:lClu(u - Cly (Ui, ), ) (x) =
u(x) forall x € X, which implies (A", u—Cl, (u—Cl, (Ui, ), x))(x) = 0forall x € X. So
that (A, Uy (x) = 0 for all x € X, which is a contradiction. Therefore ( Ayc, (Cl, (U,
®)))(x) > 0 for each x € X. O

THEOREM 6.8. Let (X,7) and (Y,U) be STSs, x € I,, u € IX, and f : X — Y be a
fuzzy u-continuous bijective mapping. If u is o-fuzzy p-compact, then f(u) is «-fuzzy
f(u)-compact.

PROOF. Let 0 = {U; € sy :Up) (Ui) = «} such that (\/UL.EU U;)(y) = f(u)(y) for
all y € Y. Since f is fuzzy p-continuous, then 5, (u A f~1(U;)) > « for each U; € 0. Since
S is injective map, (Vy,cq (1 ASfHUD)) (x) = u(x) for all x € X. Since u is «-fuzzy
p-compact, there is a finite subfamily {u A f~1(U;) :i=1,2,...,n} such that (\//; (u A
F7HUN)) (x) = u(x) for all x € X and hence pu(x) = (uA Vi, f~H(U)) (x) forall x € X
which implies f(u A (ViZ, f~1(Ui))) = f(u) and hence f(u) A (Vi ff7HU)) = £ ().
Since f is bijective, f(u) A (ViL, U;) = f(u) and hence (7L, U;) () = f(u) () for all
v €Y. Thus f(u)is ax-fuzzy f(u)-compact. |
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THEOREM 6.9. Let (X,7) and (Y,WU) be STSs, x € I, u € IX, and f : X — Y be a fuzzy
u-continuous bijective mapping. If u is x-fuzzy u-almost compact, then f (u) is «-fuzzy
f(u)-almost compact.

PROOE. Let 0 = {U; € sy : Up (Ui) = o} such that (Vy,eqo U (¥) = f(p) ()
for all y € Y. Since f is fuzzy p-continuous, then J,(u A f~1(U;)) > « for each U;
€ 0. Since f is injective map, (\/Uieg(u A L1 UN)) (x) = p(x) for all x € X. Since u
is «-fuzzy p-almost compact, there is a finite subfamily {u A f~1(U;) :i = 1,2,...,n}
such that (\/1L; Cly(u A f~1(Uy), @) (x) = p(x) for all x € X, and hence by Theorem
4.5(4), we have u(x) = (\/?:lf“(le(m(Ui,a)) A ) (x) for all x € X which implies
FVi f 1 (Clpg (Ui, 0) A p) = f(u) and hence f(u) A (Vily ff 7 (Clpg (Ui, ) =
f(w). Since f is bijective, f (1) A (Vit; Clyq (Ui, ) = f () and hence (VL Cly, (U;,
o)) (y) = f(u)(y) forall y € Y. Thus f(u) is x-fuzzy f(u)-almost compact. |

7. Fuzzy p-connected sets

DEFINITION 7.1. Let (X,J) be an STS, « € I, u € I*, and Uy, Uz € . Then, Uy, Uz
are said to be «-fuzzy p-separated if U, f Cl, (U, ) [u] and Up ¢ Cl, (U, ) [p].

THEOREM 7.2. Let U;,U; € sy, and « € I.. Then,

(1) if Uy and U, are x-fuzzy u-separated and V1,V> € #A, such that ¢ + V, < Uy,
¢ + Vo < Uy, then Vy and V, are x-fuzzy u-separated;

(2) ifUrqUz[u], and either T, (Uy) = &, T (Uz) =z x or T, (u—Uy) =2 &, T, (u—U>) =
«, then Uy and U, are x-fuzzy u-separated;

(3) if either T, (Uy) 2 &, Ty (Uz) =z x or T (u—Uy) =2 &, T (u—Uz) = &, then Uy A
(u—Uz) and Uy A (u—Uy) are x-fuzzy u-separated.

PROOF. (1) Since V; < U;. Then Cl,(V;,x) < Cl, (U, &) hence U, Cl, (Vh,c)[u],
which implies V> Cl, (U, «)[p]. Thus V; and V, are x-fuzzy p-separated.

() Let Ty(u—-Uy) 2 & T, (u—Uz) = &, and U, gUz[p]. Then U; = Cl, (U, ) and
U, = Cl, (U2, ) since Uy qUa[u], Uy  Cly (Uz, ) [u], and U2 Cl, (Uy, o) [p]. Thus U, and
U, are x-fuzzy p-separated.

Let T, (U)) = &, T, (U2) = &, and U; qUz[u]. Then, U; < pu—U, and hence Cl, (U, ) <
u — U, which implies U, ¢ Cl, (Uy, o)[p]. Similarly, U, ¢ Cl,(Uz, )[p]. Thus, U; and U,
are x-fuzzy p-separated.

(3) Let T,(U1) =z &, T,(Uz) = . Then, T,(u— (u—-U1)) =2 &, Ty(u—(u—-02)) = «,
and hence Cl,(Uy A (u—Uz),&) < pu—Us. Thus Cl, (U A (u—Uz),x)qU[p] and hence
Cly (Ui A(u=U2), ) (Ua A(u—Un))[u], since Up A (u—Uy) < Uy. Similarly, Cl, (Ua A (11—
Up), o) d(Up A(u—Uz))[u]. Thus Uy A (u—U>) and Uz A (u— Uy ) are xx-fuzzy p-separated.

LetT,(u—-Uy) =z &, T, (u—U>) = &. Then, U; = Cl, (Ui, ), U = Cl, (Uz, ), and hence
Cly(Uz, 00 d(Uy A (= U2))[p] since Uz A (p—Uy) <Uz, Cly(Uz A (u—=U1), 00 d(Ur A (p—
U))[u]. Similarly, Cl,(Uy A (1 —Uz), @) d(Uz A (u —Uyp))[u]. Thus, Uy A (u—Uz) and
U A (u—Uq) are x-fuzzy p-separated. O

THEOREM 7.3. Let (X,9) be an STS, x € I, and u € IX. ThenUy,U, € Ay are x-fuzzy
u-separated if and only if there are Vi,V> € s, with J,(Vy) = « and T ,(V2) = « such
that U, < Vi, U < Vo, U ﬂVZ[[J], and Uzdivl [u]
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PROOF. Let Uy, U; € s, be x-fuzzy p-separated. Then U; < u—Cl,(Uz, &) = Vi, Uz <
H—Clu(Ul,O() =Vo, g“(vl) > K, g“(VZ) > Uz(livl[u], and U101V2[[1].

Conversely, let V1,V, € A, with 7, (V1) = &, T,(V2) = o such that Uy < Vq, Up < V>,
UidVa[ul, and Uz Vi [p]. Then, Ty (u—(u—-V1)) = & Ty — (1 —V>2)) = « and hence
Cly(U), &) < u—Vo < u—U, and Cl, (Uz,x) < u—Vy < pu—U. Thus, Cl,(Uy,x)qU[u]
and Cl, (Uz, x)¢U;[u]. Hence Uy, U are «-fuzzy p-separated. |

DEFINITION 7.4. U € ¢, is said to be «-fuzzy p-connected if it cannot be expressed
as the union of two x-fuzzy u-separated sets.

EXAMPLE 7.5. Let X = {a,b,c}, u € I*, and Uy, U, Us, A € sd, be defined as

u(a) =0.9, u(b) =0.8, u(c) =0.7,
Ui (a) =0.5, U, (b) =0.2, Ui (c) = 0.6,
Us(a) = 0.0, Us(b) = 0.4, Us(c) = 0.0, 7.1)
Us(a) = 0.0, Us(b) = 0.0, Us(c) =0.1,

A(a) = 0.0, A(b) =0.4, A(c) =0.1.

Clearly I : IX — I, defined as

ifU=0or1,

JW) = if U =0, (7.2)

1
1
2
0 otherwise,

is a smooth topology on X.

(1) We easily show that Cl,(U»,1/2) = Cl,(U3,1/2) = p—Uy. So, U2qCl, (U3, 1/2)[u]
and U3¢ Cl, (Uz,1/2)[u]. Thus U, and Us are not 1/2-fuzzy p-separated.

(2) We show that A is 1/2-fuzzy u-connected. In fact, let A = A; v Ay, where A, A, €
Ay — {0}. Then either A;(b) = 0.4 or A»(b) = 0.4. If A;(b) = 0.4, then Cly(A2,1/2) =
u—=Ui.So, A1qCl, (A, 1/2)[u]. If Ax(b) = 0.6, similarly, A2qCl,(A1,1/2)[u]. Thus, A;
and A, can not be 1/2-fuzzy u-separated. Hence A is 1/2-fuzzy u-connected.

THEOREM 7.6. Let (X,9) and (Y,U) be STSs, x €I,,u € IX and f: X — Y be a fuzzy
u-continuous injective mapping. If U € A, is x-fuzzy p-connected, then f(U) is x-fuzzy
f(u)-connected.

PROOF. Suppose that there are x-fuzzy f(u)-separated sets Uy, Uz € sdy(,) such that
S (U) =U; vU,.By Theorem 7.3, there are V1, V2 € sl gy WithWUp ) (V1) = o, Wp () (V2) =
o such that Uy < Vy, Uz < Vo, U Vo[ f(u)], and UxgVi[f (u)]. Since f is fuzzy u-
continuous, T, (U A fF7HV)) = o, Tu(puA f7H(V2)) = «. Since f is injective and V; <
S, 71V < f71(f (W) = p and hence f~1(Uy) < p A f1(V1). Similarly, f~1(Uz) <
pu A fH(V2). Since f is injective map, f~1(U1)(x) + (u A f7H(V2))(x) = Ui (f(x)) +
STHV2) () = Ui (f () + Va(f(x)) = Ur(y) + Va(y) < f(u)(y) < p(x) and hence
SR U du A fH(V2)[p]. Similarly, f~'(U2)d(u A f~1(V1))[u]. From Theorem 7.3,
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F~Y(Uy) and f~1(U,) are x-fuzzy u-separated sets. Since f is injective, U = f~1(f(U)) =
YU vU) = f~1(Uy) v f~1(U), which is a contradiction with the fact that U is «-
fuzzy p-connected. Hence f(U) is «x-fuzzy f(u)-connected. |
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