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ON SMOOTH FUZZY SUBSPACES
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We introduce a new concept of smooth topological subspaces, which coincides with the
usual definition in the case where µ = χY , Y ⊂ X. Also, we introduce some concepts such
as q-nbd systems, continuity, separation axioms, compactness, and connectedness in this
sense. Also, various characterization for some fuzzy topological concepts in this sense are
given.
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1. Introduction and preliminaries. The concept of fuzzy topology was first defined

in 1968 by Chang [2] and later redefined in somewhat different way by Lowen [8] and

Hutton [7]. According to Šostak [11], these definitions, a fuzzy topology is a crisp sub-

family of family of fuzzy sets and fuzziness in the concept of openness of a fuzzy set

has not been considered, which seems to be a drawback in the process of fuzzification

of the concept of topological spaces. Therefore, Šostak introduced a new definition of

fuzzy topology in 1985 [11], which we will call “smooth topology.” Later on he has de-

veloped the theory of smooth topological spaces in [11, 12]. After that, several authors

[1, 3, 4, 5, 6, 10] have reintroduced the same definition and studied smooth topologi-

cal spaces being unaware of Šostak’s work. They referred to the fuzzy topology in the

sense of Chang as the topology of fuzzy subsets.

Throughout this paper, let X be a nonempty set, I = [0,1], I◦ = (0,1], and I1 = [0,1).
For α∈ I, α(x)=α for all x ∈X. The family of all fuzzy sets on X is defined by IX . For

x ∈X and t ∈ I◦, a fuzzy point xt is defined by

xt(y)=


t if y = x,
0 if y ≠ x.

(1.1)

A fuzzy point xt is said to be quasicoincident with the fuzzy set U with respect to

µ ∈ IX if and only if t+U(x) > µ(x). We write this as xtqU[µ]. For U,V ∈ IX , U is

quasicoincident with V with respect to µ. We denote this as UqV[µ], if there exists

x ∈X such that U(x)+V(x) > µ(x). Otherwise we denote the case as U �qV[µ].
Let (X,T) be a Chang fuzzy topological space and xt ∈ µ. Then we say that V ∈�µ

is a fuzzy µ-q-nbd of xt if there is U ∈ Tµ such that xtqU[µ] and U ≤ V [13].

A smooth topological space (STS) [10, 11] is an ordered pair (X,�), where X is a

nonempty set and � : IX → I is a mapping satisfying the following conditions:

(O1) �(0)=�(1)= 1;

(O2) for all A,B ∈ IX , �(A∧B)≥�(A)∧�(B);
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(O3) for every subfamily {Ai : i∈ J} ⊆ IX , �(
∨
i∈J Ai)≥

∧
i∈J �(Ai).

The number �(A) is called the degree of openness of A.

Let (X,�) be an STS and Y ⊆X. Then the mapping �Y : IY → I defined by

�Y (U)=
∨{

�(V) : V ∈ IX, V |Y =U
}

(1.2)

is the induced smooth topology on Y from �, and (Y ,�Y ) is a subspace of (X,�) [10, 11].

Let (X,�) and (Y ,�∗) be two STSs. A mapping f :X → Y is called fuzzy continuous

[10, 11] if and only if �(f−1(A))≥�∗(A) for every A∈ IY .

2. Smooth topological subspaces. For µ ∈ IX we call �µ = {U ∈ IX :U ≤ µ}.
Definition 2.1. Let (X,�) be an STS andµ ∈ IX . The mapping �µ : �µ → I defined by

�µ(U)=
∨{

�(V) : V ∈ IX, V ∧µ =U} (2.1)

is a smooth µ-topology induced over µ by �. For any U ∈ �µ , the number �µ(U) is

called the µ-openness degree of U .

It is easy to show that the above definition makes sense and to prove the following

theorems.

Theorem 2.2. �µ verifies the following properties:

(µO1) �µ(0)=�µ(µ)= 1;

(µO2) for all A,B ∈�µ , �µ(A∧B)≥�µ(A)∧�µ(B);
(µO3) for every subfamily {Ai : i∈ J} ⊆�µ , �µ(

∨
i∈J Ai)≥

∧
i∈J �µ(Ai).

Remark 2.3. If Y ⊂ X and µ = χY , we just have the usual concept of smooth sub-

space. Given �µ and ν ∈�µ we can define (�µ)ν , the smooth ν-topology induced over

ν by �µ , in the obvious way. We have trivially �ν = (�µ)ν , that is, a smooth subspace

of a smooth subspace is also a smooth subspace.

Remark 2.4. (1) Let (X,�) be an STS and µ ∈ IX . Then, for each α ∈ I◦, �α
µ = {U ∈

�µ : �µ(U) ≥ α} is the fuzzy µ-topology in the sense of Macho Stadler and De Prada

Vicente [9]. Moreover, α1 ≤ α2 implies �
α1
µ ≥ �

α2
µ . Also, �µ(A) = sup{α : A ∈ �α

µ } is a

smooth µ-topology.

(2) From a Chang fuzzy topological space (X,�α
µ ), we can identify a smooth µ-

topology �αµ : �µ → I,

�αµ(A)=



1 if A∈�α
µ ,

0 if A �∈�α
µ ,

(2.2)

for each A∈�µ .

Theorem 2.5. Let (X,�) be an STS and µ ∈ IX . Then, for each α∈ I◦, U ∈�µ , define

an operator Clµ : �µ×I◦ →�µ as follows:

Clµ(U,α)=
∧{

V ∈�µ :U ≤ V, �µ(µ−V)≥α
}
. (2.3)
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For U1,U2 ∈�µ and α,β∈ I◦, the operator Clµ satisfies the following conditions:

(µC1) Clµ(0,α)= 0;

(µC2) U1 ≤ Clµ(U1,α);
(µC3) Clµ(U1,α)∨Clµ(U2,α)= Clµ(U1∨U2,α);
(µC4) Clµ(U1,α)≤ Clµ(U1,β) if α≤ β;

(µC5) Clµ(Clµ(U1,α),α)= Clµ(U1,α).

Theorem 2.6. Let (X,�) be an STS and µ ∈ IX . Then, for each α∈ I◦, U ∈�µ , define

an operator Intµ : �µ×I◦ →�µ as follows:

Intµ(U,α)=
∨{

V ∈�µ :U ≥ V, �µ(V)≥α
}
. (2.4)

For U1,U2 ∈�µ and α,β∈ I◦, the operator Intµ satisfies the following conditions:

(µI1) Intµ(µ−U1,α)= µ−Clµ(U1,α) and Clµ(µ−U1,α)= µ− Intµ(U1,α);
(µI2) Intµ(µ,α)= µ;

(µI3) Intµ(U1,α)≤U1;

(µI4) Intµ(U1,α)∧ Intµ(U2,α)= Intµ(U1∧U2,α);
(µI5) Intµ(U1,α)≥ Intµ(U1,β) if α≤ β;

(µI6) Intµ(Intµ(U1,α),α)= Intµ(U1,α).

Theorem 2.7. Let (X,�) be an STS, α ∈ I◦, µ ∈ IX , xt ∈ µ, and U ∈ �µ . Then xt ∈
Clµ(U,α) if and only if for each V ∈ �µ such that �µ(V) ≥ α and xtqV[µ], UqV[µ]
holds.

Proof. Let xt ∈ Clµ(U,α), V ∈ �µ such that �µ(V) ≥ α, xtqV[µ]. Suppose that

U �qV[µ] which implies U ≤ µ−V . From xtqV[µ] we have xt �∈ µ−V ≥ U . Since �µ(µ−
(µ−V))≥α, then xt �∈ Clµ(U,α) which is a contradiction. Hence UqV[µ].

Conversely, let V ∈ �µ such that �µ(V) ≥ α, xtqV[µ], and UqV[µ]. Suppose that

xt �∈ Clµ(U,α). Then there is W ∈ �µ such that �µ(µ−W) ≥ α, W ≥ U , and xt �∈ W .

From xt �∈W we have xtq(µ−W)[µ]. Then, from our hypotheses Uq(µ−W)[µ] which

implies that U �≤W . This is a contradiction. Hence xt ∈ Clµ(U,α).

3. Fuzzy µ-q-neighborhood systems. Here we build a fuzzy µ-q-neighborhood

system of a fuzzy set in an STS and we introduce some of its properties. For a mapping

� : �µ→I�µ ,A∈�µ , andα∈I1, we define the family �αA={B∈�µ : �A(B)=�(A)(B)>α},
which will play an important role in this section.

Definition 3.1. Let (X,�) be an STS, µ ∈ IX , and A ∈ �µ . Then the mapping � :

�µ → I�µ is called the fuzzy µ-q-neighborhood (µ-q-nbd, for short) of A with respect

to �µ if and only if for each α∈ I1,

�αA =
{
B ∈�µ :

(∃C ∈�µ :�µ(C)≥α
) (
AqC[µ]≤ B)}. (3.1)

Remark 3.2. The real number �A(B) is called the degree of µ-q-nbdness of the

fuzzy set B to the fuzzy set A. If the fuzzy µ-q-nbd system of a fuzzy set A has the

following property: �A(�µ) ⊆ {0,1}, then �A is called the µ-q-nbd system of A (given

by Zahran [13]).



3590 S. E. ABBAS

Theorem 3.3. Let (X,�) be an STS, µ ∈ IX , andA∈�µ . Then the mapping �A : �µ → I
is the fuzzy µ-q-nbd system of A with respect to the �µ if and only if

�A(B)=



sup
{
�µ(C) : C ∈�µ, AqC[µ]≤ B

}
, AqB[µ],

0, A �qB[µ]. (3.2)

Proof. “If” part. Suppose that the mapping �A : �µ → I is the fuzzy µ-q-nbd system

of A with respect to �µ and consider the following cases.

(a) For the case A �qB[µ], suppose that �A(B) > 0. From Definition 3.1, there exists

C ∈ �µ with �µ(A) ≥ α for all α ∈ I◦ such that AqC[µ] ≤ B, that is, AqB[µ] is a

contradiction. Thus, �A(B)= 0.

(b) For the case AqB[µ], we may have �A(B) = 0 or �A(B) > 0. If �A(B) = 0, then

it is obvious that �A(B) = 0 ≤ sup{�µ(C) : C ∈ �µ, AqC[µ] ≤ B}; if sup{�µ(C) : C ∈
�µ, AqC[µ]≤ B} = s > o, then there exists C ∈�µ such that �µ(C) > 0 and AqC[µ]≤
B. We obtain �A(B) > 0, which is a contradiction. Therefore,

�A(B)= 0= sup
{
�µ(C) : C ∈�µ, AqC[µ]≤ B

}
. (3.3)

Now suppose that �A(B)= s > 0. For an arbitrary 0< ε≤ s, we have �A(B) > s−ε, that

is, B ∈ �s−εA . Since the mapping �A : �µ → I is a fuzzy µ-q-nbd system of A, there exists

C ∈ �µ with �µ(C) ≥ s− ε and AqC[µ] ≤ B, that is, sup{�µ(C) : C ∈ �µ, AqC[µ] ≤
B}> s−ε. Since ε > 0 is arbitrary, we have

sup
{
�µ(C) : C ∈�µ, AqC[µ]≤ B

}≥ s = �A(B). (3.4)

On the other hand, let sup{�µ(C) : C ∈ �µ, AqC[µ] ≤ B} = n > 0. Then for every

0 < ε ≤ n, there exists C ∈ �µ such that �µ(C) > n− ε and AqC[µ] ≤ B. Therefore

B ∈ �n−εA , that is, �A(B)≥n−ε. Since ε is arbitrary we have

�A(B)≥n= sup
{

�µ(C) : C ∈�µ, AqC[µ]≤ B
}
. (3.5)

Hence the inequality follows.

“Only if” part. For α ∈ I1, let B ∈ �αA, that is, �A(B) ≥ α. Then we can write α ≤
�A(B)= sup{�µ(C) : C ∈�µ, AqC[µ]≤ B}. Then we have

�αA ⊆
{
B ∈�µ :

(∃C ∈�µ :�µ(C)≥α
) (
AqC[µ]≤ B)}. (3.6)

By the same way we can show that

{
B ∈�µ :

(∃C ∈�µ :�µ(C)≥α
) (
AqC[µ]≤ B)}⊆ �αA. (3.7)

Hence, �αA = {B ∈�µ : (∃C ∈�µ such that �µ(C)≥α) (AqC[µ]≤ B)}.
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Remark 3.4. In Theorem 3.3, the fuzzy subset A of X can be replaced by the fuzzy

point on X, that is, by the special fuzzy subsets xt . In this case,

�xt (B)=



sup
{
�µ(C) : C ∈�µ, xtqC[µ]≤ B

}
, xtqB[µ],

0, xt �qB[µ].
(3.8)

Theorem 3.5. Let (X,�) be an STS, µ ∈ IX , and A∈�µ . If the mapping �A : �µ → I
is the fuzzy µ-q-nbd system of A with respect to �µ , then the following properties hold:

(µQ1) �0(0)= �µ(µ)= 1 and �A(B) > 0 implies A≤ B;

(µQ2) if A1 ≤A and B ≤ B1, then �A(B)≤ �A1(B1);
(µQ3) �A(B1)∧�A(B2)≤ �A(B1∧B2);
(µQ4) �A(B)≤ supAqC[µ]≤B{�A(C)∧�C(B)}, for all A,B ∈�µ ;

(µQ5) sup{�A(U) :U ∈�µ} = 1.

Proof. (µQ1), (µQ2), and (µQ5) follow directly from Definition 3.1 and Theorem 3.3.

(µQ3) Suppose that �A(B1)=m> 0 and �A(B2)=n> 0. Then for a fixed ε > 0 such

that ε≤m∧n implies �A(B1) >m−ε ≥ 0 and �A(B2) > n−ε ≥ 0. From Definition 3.1,

it is clear that there exists C1,C2 ∈ �µ such that �µ(C1) > m−ε, �µ(C2) > n−ε and

AqC1[µ] ≤ B1, AqC2[µ] ≤ B2. Therefore, �µ(C1∧C2) ≥ �µ(C1)∧�µ(C2) > (m− ε)∧
(n− ε) = (m∧n)− ε and Aq(C1∧C2)[µ] ≤ B1∧B2. Thus, �A(B1∧B2) ≥ (m∧n)− ε.
Since ε is arbitrary, we find that

�A
(
B1∧B2

)≥ �A
(
B1
)∧�A

(
B2
)
. (3.9)

(µQ4) �A(B) = sup{�µ(C) : C ∈ �µ, AqC[µ] ≤ B}. From Theorem 3.3, we obtain

�µ(C)≤ �A(C) and �µ(C)≤ �C(B). Thus,

sup
{
�µ(C) : C ∈�µ, AqC[µ]≤ B

}≤ sup
{
�A(C)∧�C(B)

}
. (3.10)

Hence

�A(B)≤ sup
AqC[µ]≤B

{
�A(C)∧�C(B)

}
. (3.11)

Theorem 3.6. If the mapping �A : �µ → I satisfies the conditions (µQ1)–(µQ5), then

the mapping �µ : �µ → I, defined by

�µ(U)=




∧

AqU[µ]
�A(U), U ≠ 0,

1, U = 0,
(3.12)

where U ∈�µ , is a smooth µ-topology on X.

Proof. It is obvious that �µ(0) = 1. Using (µQ2) and (µQ5) we obtain that

sup{�A(B) : B ∈�µ} = �A(µ)= 1, for all A∈�µ , that is, �µ(µ)= 1.

For U1,U2 ∈�µ , if U1∧U2 = 0, then it is clear that �µ(U1∧U2)= 1≥�µ(U1)∧�µ(U2).
Now we assume that U1 ∧U2 ≠ 0. Since Aq(U1 ∧U2)[µ] if and only if AqU1[µ] and
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AqU2[µ], and applying (µQ3) we may write

�µ
(
U1∧U2

)=
∧

Aq(U1∧U2)[µ]
�A
(
U1∧U2

)

≥
∧

Aq(U1∧U2)[µ]

[
�A
(
U1
)∧�A

(
U2
)]

=

 ∧

Aq(U1∧U2)[µ]
�A
(
U1
)

∧


 ∧

Aq(U1∧U2)[µ]
�A
(
U2
)



≥

 ∧

AqU1[µ]
�A
(
U1
)

∧


 ∧

AqU2[µ]
�A
(
U2
)



=�µ
(
U1
)∧�µ

(
U2
)
.

(3.13)

Let {Ui : i∈ J} ⊆�µ . If
∨
i∈J Ui = 0, then it is obvious that

�µ


∨

i∈J
Ui


= 1≥

∧

j∈J
�µ
(
Ui
)
. (3.14)

Now suppose that
∨
i∈J Ui ≠ 0. Considering (µQ4) and using the fact thatAq(

∨
i∈J Ui)[µ]

if and only if there exists i◦ ∈ J such that AqUi◦[µ] we observe that

�A


∨

i∈J
Ui


≥ �A

(
Ui◦
)≥

∧

AqUi◦ [µ]
�A
(
Ui◦
)=�µ

(
Ui◦
)
. (3.15)

Hence,

�µ


∨

i∈J
Ui


=

∧

Aq(
∨
i∈J Ui)[µ]

�A


∨

i∈J
Ui


≥

∧

i∈J
�µ
(
Ui
)
. (3.16)

4. Fuzzy µ-continuity

Definition 4.1. Let (X,�) and (Y ,�) be STSs, µ ∈ IX , and f : X → Y . f is fuzzy

µ-continuous if for each A∈�f(µ), �µ(µ∧f−1(A))≥�f(µ)(A) holds.

Remark 4.2. Clearly, if f is fuzzy continuous, then it is also fuzzy µ-continuous,

but the reciprocal is not in general true as shown by the following example.

Example 4.3. LetX = Y = I andµ = 0.5. Consider the smooth topologies �,� : IX → I
as follows:

�(A)=



1 if A= 1,0,

0 otherwise,
�(A)=




1 if A= 1,0,
1
2

if A= 0.5,

0 otherwise.

(4.1)

Then, the identity mapping idX : (X,�)→ (X,�) is fuzzy µ-continuous. However it is

not fuzzy continuous because 1/2=�(0.5) �≤�(f−1(0.5))=�(0.5)= 0.
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Lemma 4.4. Let (X,�) and (Y ,�) be STSs and f :X → Y . Let {µj : j ∈ J} ⊂ IX such that∨
j∈J µj = 1. Then f is µj -continuous for each j ∈ J if and only if f is fuzzy continuous.

Proof. Due to Remark 4.2, it suffices to show that if f is µj-continuous for each

j ∈ J, then f is fuzzy continuous. For each B ∈ IY and j ∈ J, we have

�µj
(
f−1(B)∧µj

)≥�f(µj)
(
B∧f (µj

))
(4.2)

then,
∨{�(U) :U ∈ IX, U∧µj = f−1(B)∧µj} ≥

∨{�(V) : V ∈ IY , V∧f(µj)= B∧f(µj)}.
By
∨
j∈J µj = 1 we have U = f−1(B) and V = B, then

�
(
f−1(B)

)≥�(B) ∀B ∈ IY . (4.3)

Hence f is fuzzy continuous.

Theorem 4.5. Let (X,�) and (Y ,�) be STSs, µ ∈ IX , and f : X → Y an injective

mapping. The following statements are equivalent.

(1) f is fuzzy µ-continuous.

(2) For each B ∈�f(µ), �µ(µ−(µ∧f−1(B)))≥�f(µ)(f (µ)−B).
(3) For each A∈�µ and α∈ I◦, f(Clµ(A,α))≤ Clf(µ)(f (A),α).
(4) For each B ∈�f(µ) and α∈ I◦, Clµ(µ∧f−1(B),α)≤ f−1(Clf(µ)(B,α))∧µ.

(5) For each B ∈�f(µ) and α∈ I◦, µ∧f−1(Intf(µ)(B,α))≤ Intµ(µ∧f−1(B),α).
(6) For each xt ∈ µ and each B ∈ �f(µ), α ∈ I◦ such that �f(µ)(B) ≥ α with

f(xt)qB[f(µ)], there is A∈�µ such that τµ(A)≥α with xtqA[µ] and f(A)≤ B.

(7) For each xt ∈ µ and B ∈ �αf(xt), α∈ I◦, there is A∈ �αxt such that f(A)≤ B.

(8) For each xt ∈ µ and each B ∈ �αf(xt), f
−1(B)∈ �αxt .

Proof. (1)⇒(2). For each B ∈�f(µ), we have

�f(µ)
(
f(µ)−B)≤�µ

(
µ∧f−1(f(µ)−B)) (

by (1)
)

=�µ
(
µ∧(f−1f(µ)−f−1(B)

))

=�µ
(
µ−(µ∧f−1(B)

))
.

(4.4)

(2)⇒(3). Suppose there exist A∈�µ and α∈ I◦ such that

f
(
Clµ(A,α)

) �≤ Clf(µ)
(
f(A),α

)
. (4.5)

There exist y ∈ Y and t ∈ I◦ such that

f
(
Clµ(A,α)

)
(y) > t > Clf(µ)

(
f(A),α

)
(y). (4.6)

If f−1({y}) = φ, it is a contradiction because f(Clµ(A,α))(y) = 0. If f−1({y}) ≠ φ,

there exists x ∈ f−1({y}) such that

f
(
Clµ(A,α)

)
(y)≥ Clµ(A,α)(x) > t > Clf(µ)

(
f(A),α

)
(y). (4.7)
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Since Clf(µ)(f (A),α)(f(x)) < t, there exists B ∈ �f(µ) with �f(µ)(f (µ)−B) ≥ α and

f(A)≤ B such that

Clf(µ)
(
f(A),α

)(
f(x)

)≤ B(f(x))< t. (4.8)

Moreover, f(A) ≤ B implies A ≤ f−1(B). From (2), �µ(µ − f−1(B)) = �µ(µ − (µ ∧
f−1(B)))≥�f(µ)(f (µ)−B)≥α. Thus,

Clµ(A,α)(x)≤ f−1(B)(x)= B(f(x))< t. (4.9)

This is a contradiction for (4.7).

(3)⇒(4). For each B ∈�f(µ), α∈ I◦. Put A= f−1(B)∧µ, and from (3), we have

f
(
Clµ

(
µ∧f−1(B),α

))≤ Clf(µ)
(
f
(
f−1(B)∧µ),α)≤ Clf(µ)

(
B∧f(µ),α). (4.10)

This implies

Clµ
(
µ∧f−1(B),α

)≤ f−1(f (Clµ
(
µ∧f−1(B),α

)))≤ f−1(Clf(µ)(B,α)
)∧µ. (4.11)

Hence, Clµ(µ∧f−1(B),α)≤ f−1(Clf(µ)(B,α))∧µ.

(4)⇒(5). This is easily proved from Theorem 2.6(µI1).

(5)⇒(1). Suppose that �µ(µ ∧ f−1(B)) �≥ �f(µ)(B), for each B ∈ �f(µ). Then there

exists α∈ I◦ such that

�µ
(
µ∧f−1(B)

)
<α≤�f(µ)(B). (4.12)

By Theorem 2.6, B = Intf(µ)(B,α). By (5),

µ∧f−1(B)= µ∧f−1( Intf(µ)(B,α)
)≤ Intµ

(
µ∧f−1(B),α

)
. (4.13)

On the other hand, by Theorem 2.6(µI3), we have µ∧f−1(B)≥ Intµ(µ∧f−1(B),α). Thus,

µ∧f−1(B)= Intµ(µ∧f−1(B),α), that is, �µ(µ∧f−1(B))≥α. This is a contradiction for

(4.12). Hence f is fuzzy µ-continuous.

(1)⇒(6). Let xt ∈ µ, α∈ I◦, and B ∈�f(µ) such that �f(µ)(B)≥α with f(xt)qB[f(µ)].
Then,xtqf−1(B)[µ]. By fuzzy µ-continuity of f , we have �µ(µ∧f−1(B))≥�f(µ)(B)≥α
and so, �µ(f−1(B))≥α. Put A= f−1(B). Then, τµ(A)≥α and f(A)= f(f−1(B))= B.

(6)⇒(3). Let A ∈ �µ , α ∈ I◦, xt ∈ Clµ(A,α), and B ∈ �f(µ) such that �f(µ)(B) ≥ α
with f(xt)qB[f(µ)]. By (6) there is C ∈ �µ such that �µ(C) ≥ α with xtqC[µ] and

f(C) ≤ B. Since xt ∈ Clµ(A,α), �µ(C) ≥ α, and xtqC[µ], then by Theorem 2.7, we

have AqC[µ] which implies that f(A)qf(C)[f(µ)] and hence f(A)qB[f(µ)]. Thus,

f(xt) ∈ Clf(µ)(f (A),α), and xt ∈ f−1(Clf(µ)(f (A),α)) which implies that Clµ(A,α) ≤
f−1(Clf(µ)(f (A),α)). Hence f(Clµ(A,α))≤ Clf(µ)(f (A),α).

(6)⇒(7). Let xt ∈ µ and B ∈ �αf(xt). Then there exists C ∈�f(µ) such that �f(µ)(C)≥α
and f(xt)qC[f(µ)]≤ B. By (6) there is A∈�µ such that �µ(A)≥α with xtqA[µ] and

f(A)≤ C ≤ B. Hence, A∈ �αxt and f(A)≤ B.
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(7)⇒(8). Let xt ∈ µ and B ∈ �αf(xt). By (7), there is C ∈ �αxt such that f(C) ≤ B. So,

there is A∈�µ such that xtqA[µ] and A≤ C ≤ f−1(B). Hence f−1(B)∈ �αxt .

(8)⇒(6). Let xt ∈ µ and B ∈�f(µ) such that �f(µ)(B)≥ α with f(xt)qB[f(µ)]. Then,

B ∈ �αf(xt). By (8), f−1(B) ∈ �αxt and hence there is A ∈ �µ such that �µ(A) ≥ α with

xtqA[µ]≤ f−1(B) and f(A)≤ B.

Theorem 4.6. Let (X,�), (Y ,�), and (Z,�) be STSs, µ ∈ IX , f :X → Y , and g : Y → Z .

If f is fuzzyµ-continuous andg is fuzzy f(µ)-continuous, theng◦f is fuzzyµ-continuous.

Definition 4.7. Let (X,�) be an STS, µ ∈ IX , and A∈�µ . For each α∈ I◦, A is said

to be

(1) α-fuzzy µ-regular open if and only if A= Intµ(Clµ(A,α),α);
(2) α-fuzzy µ-regular closed if and only if A= Clµ(Intµ(A,α),α).

Definition 4.8. Let (X,�) and (Y ,�) be STSs and let µ ∈ IX , α ∈ I◦. Then, the

mapping f : X → Y is fuzzy µ-almost continuous if �µ(µ∧ f−1(A)) ≥ α for each α-

fuzzy f(µ)-regular open set A in �f(µ).

Remark 4.9. One may notice that, if f is fuzzy almost continuous [8], then f is fuzzy

µ-almost continuous, but the converse is not true in general as shown by Example 4.10.

Also, if f is fuzzy µ-continuous, then f is fuzzy µ-almost continuous, but the converse

is not true in general as shown by Example 4.10.

Example 4.10. We consider Example 4.3, and put

�(A)=




1 if A= 0,1,
1
2

if A= 0.5,

1
3

if A= 0.3,

0 otherwise.

(4.14)

For an STS (X,�) and µ = 0.5, we have

(1) the identity mapping idX : (X,�)→ (X,�) is fuzzy µ-almost continuous, but not

fuzzy almost continuous;

(2) the identity mapping idX : (X,�)→ (X,�) is fuzzy µ-almost continuous, but not

fuzzy µ-continuous.

Theorem 4.11. Let (X,�) and (Y ,�) be STSs, µ ∈ IX , and f : X → Y an injective

mapping. The following statements are equivalent.

(1) f is fuzzy µ-almost continuous.

(2) For each α-fuzzy f(µ)-regular closed B ∈ �f(µ), α ∈ I◦, there exists �µ(µ− (µ∧
f−1(B)))≥α.

(3) For each B ∈ �f(µ) and α ∈ I◦ such that �f(µ)(B) ≥ α there exists f−1(B)∧µ ≤
Intµ(f−1(Intf(µ)(Clf(µ)(B,α),α))∧µ,α).

(4) For each B ∈�f(µ) and α∈ I◦ such that �f(µ)(f (µ)−B)≥α there exists f−1(B)∧
µ ≥ Clµ(f−1(Clf(µ)(Intf(µ)(B,α),α))∧µ,α).
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(5) For each xt ∈ µ and each B ∈ �f(µ), α ∈ I◦ such that �f(µ)(B) ≥ α with

f(xt)qB[f(µ)], there is A ∈ �µ such that �µ(A) ≥ α with xtqA[µ] and f(A) ≤
Intf(µ)(Clf(µ)(B,α),α).

(6) For each xt ∈ µ and B ∈ �αf(xt), α ∈ I◦ there is A ∈ �αxt such that f(A) ≤
Intf(µ)(Clf(µ)(B,α),α).

(7) For each xt ∈ µ and each B ∈ �αf(xt), there exists f−1(Intf(µ)(Clf(µ)(B,α),α))∈ �αxt .

Proof. (1)⇒(2) for each α-fuzzy f(µ)-regular closed B and α∈ I◦. Then f(µ)−B is

α-fuzzy f(µ)-regular open. Since f is fuzzy µ-almost continuous, �µ(µ∧f−1(f (µ)−
B))≥α and hence �µ(µ∧(µ−f−1(B)))≥α. Let A(x)= (µ−(f−1(B)∧µ))(x)= µ(x)−
(f−1(B)∧ µ)(x) = µ(x)−min{f−1(B)(x),µ(x)}. If µ(x) ≤ f−1(B)(x), then A(x) =
µ(x)−µ(x) = 0 and �µ(A) = 1 ≥ α and hence �µ(µ− (f−1(B)∧µ)) ≥ α. If µ(x) >
f−1(B)(x), thenA= µ−f−1(B)= (µ−f−1(B))∧µ and hence �µ(A)=�µ(µ−(f−1(B))∧
µ)≥α. Thus, for each α-fuzzy f(µ)-regular closed set B, �µ(µ−(f−1(B)∧µ))≥α.

(2)⇒(1). It is clear.

(1)⇒(3). Let B ∈�f(µ), α∈ I◦ with �f(µ)(B)≥α. Then B ≤ Intf(µ)(Clf(µ)(B,α),α) and

Intf(µ)(Clf(µ)(B,α),α) is α-fuzzy f(µ)-regular open. Since f is fuzzy µ-almost contin-

uous,

f−1(B)∧µ ≤ f−1( Intf(µ)
(
Clf(µ)(B,α),α

))∧µ, (4.15)

and �µ(µ∧f−1(Intf(µ)(Clf(µ)(B,α),α)))≥α. Thus

f−1(B)∧µ ≤ Intµ
(
f−1( Intf(µ)

(
Clf(µ)(B,α),α

))∧µ,α). (4.16)

(3)⇒(4). This follows from Theorem 2.6(µI1).

(4)⇒(2). Let B be α-fuzzy f(µ)-regular closed, α∈ I◦. Then by (4),

f−1(B)∧µ ≥ Clµ
(
f−1(Clf(µ)

(
Intf(µ)(B,α),α

))∧µ,α)

= Clµ
(
f−1(B)∧µ,α). (4.17)

Thus, �µ(µ−(µ∧f−1(B)))≥α (by Theorem 2.5(µC2)).

(1)⇒(5)⇒(3) and (5)⇒(6)⇒(7)⇒(5) are similar to that of Theorem 4.5.

5. Fuzzy µ-separation axioms

Definition 5.1. Let (X,�) be an STS, α ∈ I◦, and µ ∈ IX . µ is said to be α-fuzzy

µ-Hausdorff if for each xt,ys(x ≠ y) ∈ µ, there are U1,U2 ∈�µ such that �µ(U1) ≥ α
and �µ(U2)≥α such that xt ∈U1, ys ∈U2, and U1 �qU2[µ].

Theorem 5.2. Let (X,�) be an STS, α ∈ I◦, and µ ∈ IX . µ is α-fuzzy µ-Hausdorff if

and only if for each xt,ys(x ≠y)∈ µ, ys �∈ {Clµ(U,α) : �µ(U)≥α, xt ∈U}.



ON SMOOTH FUZZY SUBSPACES 3597

Proof. Let xt,ys(x ≠y)∈ µ and m= µ(y)−s. Then xt,ym(x ≠y)∈ µ. Since µ is

α-fuzzy µ-Hausdorff, α ∈ I◦, there are U1,U2 ∈�µ with �µ(U1) ≥ α, �µ(U2) ≥ α such

that xt ∈ U1, ym ∈ U2, and U1 �qU2[µ] and hence U1 ≤ µ−U2 and �µ(µ−(µ−U2))≥ α,

which implies Clµ(U1,α) ≤ µ −U2. Since ym ∈ U2, s = µ(y)−m > µ(y)−U2(y) ≥
(Clµ(U1,α))(y) and hence ys �∈ Clµ(U1,α). Thus, ys �∈

∧{Clµ(U1,α) : �µ(U1) ≥ α,
xt ∈U1}.

Conversely, let xt,ys(x ≠y)∈ µ. Then, xt,yµ(y)−s(x ≠y)∈ µ. By hypothesis, there

is U1 ∈ �µ with �µ(U1) ≥ α such that xt ∈ U1 and yµ(y)−s �∈ Clµ(U1,α) and hence

µ(y)− s > (Clµ(U1,α))(y) which implies ys ∈ µ−Clµ(U1,α) = U2 and �µ(U2) ≥ α.

Since U2 = µ−Clµ(U1,α)≤ µ−U1, U1 �qU2[µ]. Therefore µ is α-fuzzy µ-Hausdorff.

Definition 5.3. Let (X,�) be an STS, α ∈ I◦, and µ ∈ IX . µ is said to be α-fuzzy

µ-regular space if for each F ∈�µ with �µ(µ−F)≥ α and for each fuzzy point xt ∈ µ
with xt �qF[µ], there are U1,U2 ∈ �µ such that �µ(U1) ≥ α and �µ(U2) ≥ α such that

xt ∈U1, F ≤U2, and U1 �qU2[µ].

Example 5.4. Let X = {x,y,z} be a set. Define a smooth topology � : IX → I as

follows:

�(U)=




1 if U = 0 or 1,
1
2

if U = χ{x,y},
1
2

if U = χ{z},
0 otherwise.

(5.1)

Then µ = 0.9 is 1/2-fuzzy µ-regular space.

Theorem 5.5. Let (X,�) be an STS, α∈ I◦, and µ ∈ IX . Then the following are equiv-

alent.

(1) µ is α-fuzzy µ-regular.

(2) For each fuzzy point xt ∈ µ and for each U1 ∈�µ with �µ(U1)≥α, xt ∈U1, there

is U2 ∈�µ with �µ(U2)≥α such that xt ∈U2 ≤ Clµ(U2,α)≤U1.

(3) For each fuzzy point xt ∈ µ and for each F ∈�µ with �µ(µ−F)≥α and xt �qF[µ],
there are U2,U3 ∈ �µ with �µ(U2) ≥ α, �µ(U3) ≥ α such that xt ∈ U2, F ≤ U3, and

Clµ(U2,α)�qU3[µ].

Proof. (1)⇒(2). Let xt ∈ µ be a fuzzy point and U1 ∈�µ with �µ(U1) ≥ α, xt ∈ U .

Then, �µ(µ − (µ −U1)) ≥ α with xt �q(µ −U1)[µ]. By (1), there are U2,U3 ∈ �µ with

�µ(U2)≥α, �µ(U3)≥α such that xt ∈U3, µ−U1 ≤U2, and U2 �qU3[µ]. Since U2 �qU3[µ],
U3 ≤ µ−U2 ≤U1 and hence Clµ(U3,α)≤ µ−U2 ≤U1. Thus xt ∈U3 ≤ Clµ(U3,α)≤U1.

(2)⇒(3). Let xt ∈ µ be a fuzzy point, α∈ I◦, and F ∈�µ with �µ(µ−F)≥α, xt �qF[µ].
Then xt ∈ µ−F . By (2), there is U1 ∈�µ with �µ(U1) ≥ α such that xt ∈ U1 ≤ Clµ(U1,
α) ≤ µ − F . By (2) again, there is U2 ∈ �µ with �µ(U2) ≥ α such that xt ∈ U2 ≤
Clµ(U2,α) ≤ U1 ≤ Clµ(U1,α) ≤ µ−F . Put U3 = µ−Clµ(U1,α). Hence there are U2,U3 ∈
�µ with �µ(U2)≥α, �µ(U3)≥α such that xt ∈U2, F ≤U3, and Clµ(U2,α)�qU3[µ].

(3)⇒(1). It is clear.
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6. Fuzzy µ-compactness

Definition 6.1. Let (X,�) be an STS, α ∈ I◦, and µ ∈ IX . Then, µ is α-fuzzy µ-

compact (resp., α-fuzzy µ-almost compact) if and only if for each family {Ui ∈ �µ :

�µ(Ui) ≥ α, i ∈ Γ} such that (
∨
i∈Γ Ui)(x) = µ(x) for all x ∈ X, there exists a finite

index set Γ◦ ⊂ Γ such that (
∨
i∈Γ◦ Ui)(x) = µ(x) (resp., (

∨
i∈Γ◦ Clµ(Ui,α))(x) = µ(x)) for

all x ∈X.

It is clear that if µ is α-fuzzy µ-compact, then it is α-fuzzy µ-almost compact. But

the converse need not be true in general as shown by the following example.

Example 6.2. Let X be any nonempty set and let � : IX → I be a smooth topology

defined as

�(U)=




1 if U = 0 or 1,
1
3

if U =α, for 0.4<α< 0.8,

0 otherwise.

(6.1)

Then, µ = 0.8 is 1/3-fuzzy µ-almost compact but not 1/3-fuzzy µ-compact.

In order to investigate for the condition under which α-fuzzy µ-almost compact is

α-fuzzy µ-compact, we set the following definition.

Definition 6.3. Let (X,�) be an STS,α∈ I◦, and µ ∈ IX . Then, µ isα-fuzzy µ-regular

if and only if for each U1 ∈�µ with �µ(U1)≥α,

U1 =
∨{

U2 ∈�µ : �µ
(
U2
)≥α, Clµ

(
U2,α

)≤U1
}
. (6.2)

Theorem 6.4. Let (X,�) be an STS, α ∈ I◦, and µ ∈ IX be α-fuzzy µ-regular. Then,

µ is α-fuzzy µ-almost compact if and only if µ is α-fuzzy µ-compact.

Proof. Let {Ui ∈�µ : �µ(Ui) ≥ α, i ∈ Γ} be a family such that (
∨
i∈Γ Ui)(x) = µ(x)

for all x ∈X. Since, µ is α-fuzzy µ-regular, for each �µ(Ui)≥α,

Ui =
∨

ik∈Ki

{
Uik ∈�µ : �µ

(
Uik
)≥α, Clµ

(
Uik ,α

)≤Ui
}
. (6.3)

Hence (
∨
i∈Γ (

∨
ik∈Ki Uik))(x)= µ(x) for all x ∈X. Since µ is α-fuzzy µ-almost compact,

there exists a finite index J×KJ such that


∨

i∈J


 ∨

ik∈KJ
Clµ

(
Uik ,α

)



(x)= µ(x) ∀x ∈X. (6.4)

For i ∈ J, since (
∨
ik∈Kj Clµ(Uik ,α)) ≤ Ui we have (

∨
i∈J Ui)(x) = µ(x) for all x ∈ X.

Hence µ is α-fuzzy µ-compact.

Definition 6.5. A collection σ ⊂ �µ is said to be from a fuzzy µ-filterbasis, if

for each finite subcollection {U1,U2, . . . ,U2} of σ , (
∧n
i=1Ui)(x) > 0 for some x ∈ X. If

�µ(U)≥α for each U ∈ σ and α∈ I◦, then σ is said to form an α-fuzzy µ-filterbasis.
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Theorem 6.6. Let (X,�) be an STS, α∈ I◦, and µ ∈ IX . µ is α-fuzzy µ-compact if and

only if for each fuzzy µ-filterbasis σ in µ, (
∧
U∈σ Clµ(U,α))(x) > 0 for some x ∈X.

Proof. Let σ = {Ui ∈�µ : �µ(Ui)≥α, i∈ Γ} be a family such that (
∨
Ui∈σ Ui)(x)=

µ(x) for all x ∈X, and suppose that for each finite subcollection {U1,U2, . . . ,Un} of σ ,

there is x ∈X such that Ui(x) < µ(x) for each i= 1,2, . . . ,n. Then µ(x)−Ui(x) > 0 for

each i= 1,2, . . . ,n. So,
∧n
i=1(µ(x)−Ui(x)) > 0 and hence {µ−Ui :Ui ∈ σ} forms a fuzzy

µ-filterbasis. Then, (
∧
Ui∈σ Clµ(µ−Ui,α))(x) = (

∧
Ui∈σ (µ−Ui))(x) = 0 for each x ∈ X,

which is a contradiction. Hence µ is α-fuzzy µ-compact.

Conversely, suppose that there is fuzzy µ-filterbasis σ such that (
∧
U∈σ Clµ(U,

α))(x) = 0 for each x ∈ X, so that (
∨
U∈σ (µ−Clµ(U,α)))(x) = µ(x) for each x ∈ X

and hence �µ(µ−Clµ(U,α)) ≥ α. Since µ is α-fuzzy µ-compact, there is a finite sub-

set {U1, . . . ,Un} (say) and hence (
∨n
i=1(µ−Clµ(Ui,α)))(x) = µ(x) for all x ∈ X, which

implies (
∨n
i=1(µ−Ui))(x) = µ(x) for all x ∈ X. So that (

∧n
i=1Ui)(x) = 0 for all x ∈ X

which is a contradiction. Therefore (
∧
U∈σ (Clµ(Ui,α)))(x) > 0 for each x ∈X.

Theorem 6.7. Let (X,�) be an STS,α∈ I◦, and µ ∈ IX . µ isα-fuzzy µ-almost compact

if and only if for each α-fuzzy µ-filterbasis σ in µ, (
∧
U∈σ Clµ(U,α))(x) > 0 for some

x ∈X.

Proof. Let σ = {Ui ∈�µ : �µ(Ui)≥α, i∈ Γ} be a family such that (
∨
Ui∈σ Ui)(x)=

µ(x) for all x ∈ X, and suppose that for each finite subcollection {U1,U2, . . . ,Un} of

σ , (
∨n
i=1 Clµ(Ui,α))(x) < µ(x) for some x ∈ X. Then,

∧n
i=1(µ(x)−Clµ(Ui,α)(x)) > 0

for some x ∈ X. Thus, β = {µ−Clµ(Ui,α) : Ui ∈ σ} forms α-fuzzy µ-filterbasis. Since

(
∨
Ui∈σ Ui)(x)= µ(x) for all x ∈X, hence (

∧
Ui∈σ Clµ(µ−Clµ(Ui,α),α))(x)= 0 for each

x ∈X, which is a contradiction. Hence (
∨n
i=1 Clµ(Ui,α))(x)= µ(x) for some x ∈X, and

µ is α-fuzzy µ-almost compact.

Conversely, suppose that there is α-fuzzy µ-filterbasis σ such that (
∧
U∈σ Clµ(U,

α))(x)= 0 for each x ∈X, so that (
∨
U∈σ (µ−Clµ(U,α)))(x)= µ(x) for each x ∈X and

hence �µ(µ−Clµ(U,α))≥α. Since µ is α-fuzzy µ-almost compact, there is a finite sub-

family {µ−Clµ(Ui,α) : i = 1,2, . . . ,n} (say) such that (
∨n
i=1 Clµ(µ−Clµ(Ui,α),α))(x) =

µ(x) for allx ∈X, which implies (
∧n
i=1µ−Clµ(µ−Clµ(Ui,α),α))(x)= 0 for allx ∈X. So

that (
∧n
i=1Ui)(x) = 0 for all x ∈ X, which is a contradiction. Therefore (

∧
U∈σ (Clµ(Ui,

α)))(x) > 0 for each x ∈X.

Theorem 6.8. Let (X,�) and (Y ,�) be STSs, α ∈ I◦, µ ∈ IX , and f : X → Y be a

fuzzy µ-continuous bijective mapping. If µ is α-fuzzy µ-compact, then f(µ) is α-fuzzy

f(µ)-compact.

Proof. Let σ = {Ui ∈�f(µ) : �f(µ)(Ui)≥α} such that (
∨
Ui∈σ Ui)(y)= f(µ)(y) for

ally ∈ Y . Since f is fuzzy µ-continuous, then �µ(µ∧f−1(Ui))≥α for eachUi ∈ σ . Since

f is injective map, (
∨
Ui∈σ (µ∧f−1(Ui)))(x) = µ(x) for all x ∈ X. Since µ is α-fuzzy

µ-compact, there is a finite subfamily {µ∧f−1(Ui) : i= 1,2, . . . ,n} such that (
∨n
i=1(µ∧

f−1(Ui)))(x)= µ(x) for all x ∈X and hence µ(x)= (µ∧∨ni=1f−1(Ui))(x) for all x ∈X
which implies f(µ∧(∨ni=1f−1(Ui))) = f(µ) and hence f(µ)∧(∨ni=1ff−1(Ui)) = f(µ).
Since f is bijective, f(µ)∧ (∨ni=1Ui) = f(µ) and hence (

∨n
i=1Ui)(y) = f(µ)(y) for all

y ∈ Y . Thus f(µ) is α-fuzzy f(µ)-compact.
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Theorem 6.9. Let (X,�) and (Y ,�) be STSs, α∈ I◦, µ ∈ IX , and f :X → Y be a fuzzy

µ-continuous bijective mapping. If µ is α-fuzzy µ-almost compact, then f(µ) is α-fuzzy

f(µ)-almost compact.

Proof. Let σ = {Ui ∈ �f(µ) : �f(µ)(Ui) ≥ α} such that (
∨
Ui∈σ Ui)(y) = f(µ)(y)

for all y ∈ Y . Since f is fuzzy µ-continuous, then �µ(µ∧ f−1(Ui)) ≥ α for each Ui
∈ σ . Since f is injective map, (

∨
Ui∈σ (µ∧f−1(Ui)))(x) = µ(x) for all x ∈ X. Since µ

is α-fuzzy µ-almost compact, there is a finite subfamily {µ∧f−1(Ui) : i = 1,2, . . . ,n}
such that (

∨n
i=1 Clµ(µ∧f−1(Ui),α))(x) = µ(x) for all x ∈ X, and hence by Theorem

4.5(4), we have µ(x) = (∨ni=1f−1(Clf(µ)(Ui,α))∧ µ)(x) for all x ∈ X which implies

f(
∨n
i=1f−1(Clf(µ)(Ui,α))∧ µ) = f(µ) and hence f(µ)∧ (∨ni=1ff−1(Clf(µ)(Ui,α))) =

f(µ). Since f is bijective, f(µ)∧(∨ni=1 Clf(µ)(Ui,α)) = f(µ) and hence (
∨n
i=1 Clf(µ)(Ui,

α))(y)= f(µ)(y) for all y ∈ Y . Thus f(µ) is α-fuzzy f(µ)-almost compact.

7. Fuzzy µ-connected sets

Definition 7.1. Let (X,�) be an STS, α ∈ I◦, µ ∈ IX , and U1,U2 ∈�µ . Then, U1, U2

are said to be α-fuzzy µ-separated if U1 �qClµ(U2,α)[µ] and U2 �qClµ(U1,α)[µ].

Theorem 7.2. Let U1,U2 ∈�µ and α∈ I◦. Then,

(1) if U1 and U2 are α-fuzzy µ-separated and V1,V2 ∈ �µ such that φ ≠ V1 ≤ U1,

φ≠ V2 ≤U2, then V1 and V2 are α-fuzzy µ-separated;

(2) if U1 �qU2[µ], and either �µ(U1)≥α, �µ(U2)≥α or �µ(µ−U1)≥α, �µ(µ−U2)≥
α, then U1 and U2 are α-fuzzy µ-separated;

(3) if either �µ(U1) ≥ α, �µ(U2) ≥ α or �µ(µ−U1) ≥ α, �µ(µ−U2) ≥ α, then U1∧
(µ−U2) and U2∧(µ−U1) are α-fuzzy µ-separated.

Proof. (1) Since V1 ≤ U1. Then Clµ(V1,α) ≤ Clµ(U1,α) hence U2 �qClµ(V1,α)[µ],
which implies V2 �qClµ(U1,α)[µ]. Thus V1 and V2 are α-fuzzy µ-separated.

(2) Let �µ(µ−U1) ≥ α, �µ(µ−U2) ≥ α, and U1 �qU2[µ]. Then U1 = Clµ(U1,α) and

U2 = Clµ(U2,α) since U1 �qU2[µ], U1 �qClµ(U2,α)[µ], and U2 �qClµ(U1,α)[µ]. Thus U1 and

U2 are α-fuzzy µ-separated.

Let �µ(U1)≥α, �µ(U2)≥α, and U1 �qU2[µ]. Then, U1 ≤ µ−U2 and hence Clµ(U1,α)≤
µ−U2 which implies U2 �qClµ(U1,α)[µ]. Similarly, U1 �qClµ(U2,α)[µ]. Thus, U1 and U2

are α-fuzzy µ-separated.

(3) Let �µ(U1) ≥ α, �µ(U2) ≥ α. Then, �µ(µ− (µ−U1)) ≥ α, �µ(µ− (µ−U2)) ≥ α,

and hence Clµ(U1∧ (µ−U2),α) ≤ µ−U2. Thus Clµ(U1∧ (µ−U2),α)�qU2[µ] and hence

Clµ(U1∧(µ−U2),α)�q(U2∧(µ−U1))[µ], sinceU2∧(µ−U1)≤U2. Similarly, Clµ(U2∧(µ−
U1),α)�q(U1∧(µ−U2))[µ]. ThusU1∧(µ−U2) andU2∧(µ−U1) areα-fuzzy µ-separated.

Let �µ(µ−U1)≥α, �µ(µ−U2)≥α. Then, U1 = Clµ(U1,α), U2 = Clµ(U2,α), and hence

Clµ(U2,α)�q(U1∧(µ−U2))[µ] since U2∧(µ−U1)≤U2, Clµ(U2∧(µ−U1),α)�q(U1∧(µ−
U2))[µ]. Similarly, Clµ(U1 ∧ (µ −U2),α)�q(U2 ∧ (µ −U1))[µ]. Thus, U1 ∧ (µ −U2) and

U2∧(µ−U1) are α-fuzzy µ-separated.

Theorem 7.3. Let (X,�) be an STS, α∈ I◦, and µ ∈ IX . Then U1,U2 ∈�µ are α-fuzzy

µ-separated if and only if there are V1,V2 ∈ �µ with �µ(V1) ≥ α and �µ(V2) ≥ α such

that U1 ≤ V1, U2 ≤ V2, U1 �qV2[µ], and U2 �qV1[µ].
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Proof. Let U1,U2 ∈�µ be α-fuzzy µ-separated. Then U1 ≤ µ−Clµ(U2,α)= V1, U2 ≤
µ−Clµ(U1,α)= V2, �µ(V1)≥α, �µ(V2)≥α, U2 �qV1[µ], and U1 �qV2[µ].

Conversely, let V1,V2 ∈�µ with �µ(V1) ≥ α, �µ(V2) ≥ α such that U1 ≤ V1, U2 ≤ V2,

U1 �qV2[µ], and U2 �qV1[µ]. Then, �µ(µ− (µ−V1)) ≥ α, �µ(µ− (µ−V2)) ≥ α and hence

Clµ(U1,α) ≤ µ−V2 ≤ µ−U2 and Clµ(U2,α) ≤ µ−V1 ≤ µ−U1. Thus, Clµ(U1,α)�qU2[µ]
and Clµ(U2,α)�qU1[µ]. Hence U1, U2 are α-fuzzy µ-separated.

Definition 7.4. U ∈�µ is said to be α-fuzzy µ-connected if it cannot be expressed

as the union of two α-fuzzy µ-separated sets.

Example 7.5. Let X = {a,b,c}, µ ∈ IX , and U1,U2,U3,A∈�µ be defined as

µ(a)= 0.9, µ(b)= 0.8, µ(c)= 0.7,

U1(a)= 0.5, U1(b)= 0.2, U1(c)= 0.6,

U2(a)= 0.0, U2(b)= 0.4, U2(c)= 0.0,

U3(a)= 0.0, U3(b)= 0.0, U3(c)= 0.1,

A(a)= 0.0, A(b)= 0.4, A(c)= 0.1.

(7.1)

Clearly � : IX → I, defined as

�(U)=




1 if U = 0 or 1,
1
2

if U =U1,

0 otherwise,

(7.2)

is a smooth topology on X.

(1) We easily show that Clµ(U2,1/2) = Clµ(U3,1/2) = µ−U1. So, U2qClµ(U3,1/2)[µ]
and U3 �qClµ(U2,1/2)[µ]. Thus U2 and U3 are not 1/2-fuzzy µ-separated.

(2) We show that A is 1/2-fuzzy µ-connected. In fact, let A=A1∨A2, where A1,A2 ∈
�µ −{0}. Then either A1(b) = 0.4 or A2(b) = 0.4. If A1(b) = 0.4, then Clµ(A2,1/2) =
µ−U1. So, A1qClµ(A2,1/2)[µ]. If A2(b)= 0.6, similarly, A2qClµ(A1,1/2)[µ]. Thus, A1

and A2 can not be 1/2-fuzzy µ-separated. Hence A is 1/2-fuzzy µ-connected.

Theorem 7.6. Let (X,�) and (Y ,�) be STSs, α∈ I◦, µ ∈ IX and f :X → Y be a fuzzy

µ-continuous injective mapping. If U ∈�µ is α-fuzzy µ-connected, then f(U) is α-fuzzy

f(µ)-connected.

Proof. Suppose that there areα-fuzzy f(µ)-separated sets U1,U2 ∈�f(µ) such that

f(U)=U1∨U2. By Theorem 7.3, there areV1,V2 ∈�f(µ) with �f(µ)(V1)≥α, �f(µ)(V2)≥
α such that U1 ≤ V1, U2 ≤ V2, U1 �qV2[f (µ)], and U2 �qV1[f (µ)]. Since f is fuzzy µ-

continuous, �µ(µ∧f−1(V1)) ≥ α, �µ(µ∧f−1(V2)) ≥ α. Since f is injective and V1 ≤
f(µ), f−1(V1)≤ f−1(f (µ))= µ and hence f−1(U1)≤ µ∧f−1(V1). Similarly, f−1(U2)≤
µ ∧ f−1(V2). Since f is injective map, f−1(U1)(x)+ (µ ∧ f−1(V2))(x) = U1(f (x))+
f−1(V2)(x) = U1(f (x)) + V2(f (x)) = U1(y) + V2(y) ≤ f(µ)(y) ≤ µ(x) and hence

f−1(U1)�qµ ∧ f−1(V2)[µ]. Similarly, f−1(U2)�q(µ ∧ f−1(V1))[µ]. From Theorem 7.3,
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f−1(U1) and f−1(U2) areα-fuzzy µ-separated sets. Since f is injective,U=f−1(f (U))=
f−1(U1∨U2) = f−1(U1)∨f−1(U2), which is a contradiction with the fact that U is α-

fuzzy µ-connected. Hence f(U) is α-fuzzy f(µ)-connected.
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