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Stochastic linearization produces a linear system with the same covariance kernel as the
original nonlinear system. The method passes from factorization of finite-dimensional co-
variance kernels through convergence results to the final input/output operator represen-
tation of the linear system.
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1. Introduction. Linearization and hence stochastic linearization of a nonlinear sys-

tem is about local behavior of the system in time and space. Since the system functions

of monitoring and control are concerned with local behavior, they are usually based on

linearizations of the underlying nonlinear system [19]. The nonparametric methods of

linearization which are the subject of this investigation are based on the covariances of

the input and output processes for the system. The data typically looks like Figure 1.1.

Existence of the covariance is implied by the assumption that the underlying nonlinear

system is point dissipative [3], that is, there is a compact set which each trajectory of

the system without stochastic excitation enters and remains within.

Nonparametric methods of linearization which only require observations of inputs

and outputs rather than models of the nonlinear system are potentially useful in two

situations [5]: first, when the system is evolving in time or is frequently reconfigured

and model updates are difficult or expensive to obtain; second, when the monitoring or

control functions are to be exercised at a low level by smart devices without the high

level logic required for choosing or changing the system model.

The covariance function R of a zero-mean output process determines a reproducing

kernel Hilbert (RKH) space with kernel R. This RKH space is said to represent the out-

put process [21] and has been exploited in signal analysis [28]. In a reasonable sense,

the RKH space representation of the process contains all of the information on the

process available from observations. Starting with a known linear system excited by a

Wiener process [24] provides an explicit representation of the RKH space as a space

of Hellinger integrable functions. Further, the linear input/output operator for the sys-

tem provides a factorization of the nonnegative Hermitian operator on the space of

Hellinger integrable functions with matrix representation R.

When the underlying system is nonlinear, we show, in Section 3, that factoring dis-

crete versions of R yields in the limit the matrix representation of a linearization of the

nonlinear system. This stochastic linearization is the best possible in that when excited
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Figure 1.1. Sample covariance kernel, where 0≤ x ≤ 1, 0≤y ≤ 1, and z = R(x,y).

by a Wiener process the linearization yields a process with covariance R, that is, one

which is indistinguishable from the original process. A natural way to proceed, build-

ing on our experience with linear systems, is to seek a factorization of R in terms of

limits of the Cholesky factors [11] of discrete approximations Rt of R. The next section

provides the background for a reasonable notion of convergence required to make this

approach feasible.

2. Background. The RKH space approach to linear system modeling [24] provides

discrete nonparametric model representations in terms of factorizations of the discrete

covariances of the input and output processes for the system. Thus the representations

are in terms of data, avoiding the dimension or order problem associated with para-

metric approaches. The RKH space method eliminates decisions about the form of the

model, such as the number of terms to be included, which require a high level logic.

Let Rd denote the space of d-tuples of real numbers with the usual inner product

〈·,·〉 and norm |·|. LetG denote the class of continuous functions f from [0,∞) into Rd

such that f(0) = 0. We define a family of pseudonorms {Nx, x ≥ 0} on G by Nx(f) =
supz≤x |f(z)| for each f inG and x ≥ 0. Two classes of linear operators defined initially

on G are introduced. These operators are used to describe the systems of interest. Let

� denote the set of linear operators on G to which B belongs only when

(1) [Bf](0)= 0 for each f in G,

(2) for each T > 0 there is a number b such that

∣∣[Bf](t)−[Bf](s)∣∣≤ b
∫ t
s
Nx(f)dx (2.1)

for each f in G and 0≤ s ≤ t ≤ T .

Let � denote the set of linear operators on G to which A belongs only in case A− I
is in �. If B is in �, then I−B is an invertible operator from G onto G and (I−B)−1 is

in �. If A is in �, then A is an invertible operator from G onto G and I−A−1 is in �.
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The classes of operators � and � can serve to describe linear systems, but what is

their relation with nonlinear systems? In particular, how do we relate these operators

to the available observation process {Y(t), 0 ≤ t}? The next three theorems provide

answers to these questions.

In general, the covariance function R of a stochastic process {Y(t), 0≤ t} defined by

R(s,t)= E((Y(s)−E(Y(s)))(Y(t)−E(Y(t)))T ), (2.2)

where E denotes the expectation operator, is nonnegative, that is,

n∑
p,q=0

〈
R
(
tp,tq

)
xq,xp

〉≥ 0 (2.3)

for each sequence {tp}n0 in [0,∞) and each sequence {xp}n0 in Rd [18, 21].

From this point we will reserve R to denote the covariance function of some obser-

vation process {Y(t), 0 ≤ t}. In order to see the structure of the problem, modeling

the process {Y(t), 0 ≤ t} from partial information, we begin by assuming complete

information, that is, R(s, t) is known exactly for 0≤ s,t.
Theorem 2.1 [1, 18]. For each covariance function R from [0,∞)× [0,∞) into the

d×d matrices, there is a Hilbert space {GR,QR} of functions from [0,∞) into Rd with

reproducing kernel R, that is,

(1) R(·, t)x is in GR for each t in [0,∞) and x in Rd,

(2) QR(f ,R(·, t)x)= 〈f(t),x〉 for each f in GR , x in Rd, and t in [0,∞).
The theorem only asserts the existence of the RKH space {GR,QR} with kernel R.

When our observation process is of the form Y =AW , where A is an invertible opera-

tor in �∪�,W is the standardd-dimensional Wiener process, andR(s,t)= EY(s)Y(t)T ,

we can obtain more, namely, an explicit representation of {GR,QR}. (See [21] for an al-

ternative representation.)

In order to accomplish this we will introduce another RKH space, this time associated

with the input process. Let k denote an increasing scalar function with k(0)= 0. Let GK
denote the subspace of functions in G which are Hellinger integrable with respect to k,

that is, f is in GK only in case there is a number M such that

n∑
p=1

∣∣f (tp)−f (tp−1
)∣∣2(

k
(
tp
)−k(tp−1

)) =
∑
t

|df |2
dk

≤M (2.4)

for each increasing sequence {tp}n0 in [0,∞). The least such number M is denoted by∫∞
0 |df |2/dk. Finally, let QK denote the inner product for GK defined by QK(f ,g) =∫∞
0 df dg/dk, the limit through refinement of sums

∑
t dfdg/dk. We will use the short

notation dk(x,y) for the difference k(y)−k(x).
The space {GK,QK} is an RKH space with kernel given by K(s,t) = k(min(s,t))I,

where I is the d×d identity matrix [18]. Elements of � map G into GK and elements of

� map GK onto GK . From now on, we will be concerned primarily with the restrictions

of elements of � and � to GK .
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Let L denote the function from �∪� into the space of d×dmatrix-valued functions

on [0,∞)×[0,∞) defined by LD(s,t)= [D∗K(·, t)](s)= [DK(·,s)](t)T , for D in �∪�

and (s,t) in [0,∞)×[0,∞). We useD∗ to denote the adjoint in {GK,QK} of the restriction

of D to GK and call LD the matrix representation of D. Notice that 〈[Df](t),x〉 =
QK(f ,LD(·, t)x), for each f in GK and x in [0,∞).

In general, the variance of a scalar input process is an increasing function k. When

the input process is the standard scalar Wiener process, we can use the special case

k(t)= t. Note that, when d= 1, K is the covariance function of the Wiener process.

Theorem 2.2 [24]. Suppose R is the covariance of the process Y = AW , where A is

an invertible operator in �∪�, and W is the d-dimensional Wiener process. For 0 ≤
s,t, R(s,t) = [AA∗K(·, t)](s), where A∗ is the adjoint of A in {GK,QK} and K is the

reproducing kernel of {GK,QK}, that is, R is the matrix representation of AA∗.

Let LA denote the matrix representation of the assumed operator A. We can write

R(s,t)=QK
(
LA(·, t),LA(·,s)) (2.5)

for 0≤ s,t, that is, we can use A to obtain a representation of R.

The following example illustrates this last observation. Note that a state space for-

mulation of the model would have to be infinite dimensional; however, the input and

output processes are scalar.

Example 2.3. Suppose W is the standard scalar Wiener process and

Y(t)= [AW](t)=
∫ t

0

1
t−u+1

dW(u). (2.6)

Direct calculation for s ≤ t yields

R(s,t)= EY(s)Y(t)=
∫ s

0

1
s−u+1

1
t−u+1

du

=




1
t−s ln

[
(s+1)(t−s+1)

t+1

]
if 0≤ s < t,

s
s+1

if s = t.

(2.7)

If s ≤ t, then

LA(s,t)= [AK( ,s)](t)=
∫ t

0

1
t−u+1

dK(u,s)

=
∫ s

0

1
t−u+1

du= ln(t+1)− ln(t−s+1).
(2.8)

If t ≤ s, then LA(s,t)= LA(t,t). Assuming s ≤ t, Theorem 2.2 yields

R(s,t)=QK
(
LA(,s),LA(,t)

)=
∫ s

0

1
s−u+1

1
t−u+1

du (2.9)

which agrees with the direct calculation.
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Theorem 2.4 [24]. Given that A in �∪� is invertible and R is represented in terms

of A (see (2.5)), the RKH space with kernel R is given by GR = GK and QR(f ,g) =
QK(f ,(AA∗)−1g), for each f and g in GR .

For our problem, that is, R associated with a general observation process {Y(t), 0≤
t}, the underlying system might be nonlinear and the linear operator A assumed in

Theorems 2.2 and 2.4 unavailable. We seek a linearization in �∪� of the underlying

system, which will play the role of A, through a factorization of the covariance function

R. Since R can be factored in many different ways, we will have to justify our choice

in the end. The method returns an element of �∪�, which we will denote by A, with

matrix representation LA.

Finite-dimensional approximations. For calculations, the matrix representa-

tions of the operators have to be projected down to finite-dimensional spaces. A more

detailed explication appears in [24].

A class of polygonal functions, the K-polygonal functions, arises naturally in RKH

spaces and can be used along with projection methods to develop finite-dimensional

approximations to system operators. Any function f on [0,∞) of the form

f(s)=
n∑
p=0

K
(
s,tp

)
xp, (2.10)

where t = {tp}n0 is an increasing sequence in [0,∞) and {xp}n0 is a sequence in Rd, is

called a K-polygonal function. The subspace of all K-polygonal functions based on a

fixed increasing finite sequence t in [0,∞) is a closed linear subspace of GK . We let

Πt denote the orthogonal projection of GK onto this subspace. Also, let Pt denote the

projection on GK defined by

[
Ptf

]
(s)=



f(s) if s ≤ t,
f (t) if t < s,

(2.11)

for each f in GK and 0≤ s,t.
Theorem 2.5 [1, 18]. For each positive number T , the union of the finite-dimensional

subspaces ΠtGK , t a partition of [0,T ], is dense in PTGK with respect to the inner product

norm NK(f)=QK(f ,f )1/2.

For convenience and clarity we restrict our attention in the rest of the paper to

the case d = 1 (observations and inputs are both scalar). This, of course, does not

restrict the underlying dynamical system to be one-dimensional. (See Example 2.3.) Fur-

thermore, we assume k is an increasing function on [0,∞) with k(0) = 0. Recall that

K(s,t)= k(min(s,t)).
For f in GK and {tp}n0 an increasing sequence in [0,∞), let ft = (f (t0),f (t1), . . . ,

f (tn))T . Similarly, let Kt denote the (n+1)× (n+1) matrix whose (p,q) element is
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given by Kt(p,q)=K(tp−1, tq−1) for 1≤ p,q ≤n+1. If

[
Πtf

]
(s)=

n∑
p=0

K
(
s,tp

)
xp (2.12)

and x = (x0,x1, . . . ,xn)T , then x = (Kt)−1ft [24]. Here (Kt)−1 is a pseudoinverse of Kt ,
that is, (Kt)−1 = M is an (n+1)× (n+1) matrix such that M(1,q) = M(p,1) = 0 for

1≤ p,q ≤n+1, and M(2 :n+1,2 :n+1) is the inverse of Kt(2 :n+1,2 :n+1).
Suppose A is in �∪� with matrix representation LA. Let LAt denote the (n+1)×

(n+1) matrix whose (p,q) element is given by LAt(p,q)= LA(tp−1, tq−1), where {tp}n0
is an increasing sequence in [0,∞). We will use the same notation for various functions

without comment. For instance, Rt(p,q) = R(tp−1, tq−1) for 1 ≤ p,q ≤ n+1. With this

understanding, for s in [0,∞),

[
AΠtf

]
(s)=

n∑
q=0

[
AK

(·, tq)](s)xq =
n∑
q=0

LA
(
tq,s

)Txq (2.13)

and, for p = 1,2, . . . ,n+1,

[
AΠtf

](
tp−1

)= [(LAt)T (Kt)−1ft
]
(p). (2.14)

Thus if h = ΠtAΠtf , then ht = (LAt)T (Kt)−1ft . Note that the finite-dimensional ap-

proximations converge [24] but covergence is not a sequential convergence but rather

a net convergence, that is, through refinements of partitions.

Theorem 2.6. Suppose A is in �∪� and R is the matrix representation of AA∗. For

each pair of positive numbers c and T , there is a partition s of [0,T ] such that if {tq}n0
refines s, then

∣∣Rt(p,q)−QK(ΠtA∗K(·, tp−1
)
,ΠtA∗K

(·, tq−1
))∣∣< c (2.15)

for p,q = 1,2, . . . ,n+1.

Indication of proof. Let {rp}m0 be a partition of [0,T ] such that

(
dk
(
rp−1,rp

))1/2 <
c

8k(T)
(
NK
(
PTA∗

))2 (2.16)

for p = 1,2, . . . ,m. If rp−1 ≤u< v ≤ rp , then

NK
(
K(·,v)−K(·,u))= (

∫ v
u

|dk|2
dk

)1/2
= (dk(u,v))1/2 <

c
8k(T)

(
NK
(
PTA∗

))2 .

(2.17)
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Let s be a partition of [0,T ] refining r such that if {tp}n0 refines s, then

NK
(
PTA∗K

(·,rp)−ΠtA∗K(·,rp))< c
4k(T)NK

(
PTA∗

) (2.18)

for p = 0,1,2, . . . ,m. If rp−1 < tq ≤ rp , then

NK
(
PTA∗K

(·, tq)−ΠtA∗K(·, tq))
≤NK

(
PTA∗K

(·, tq)−PtA∗K(·,rp))
+NK

(
PTA∗K

(·,rp)−ΠtA∗K(·,rp))+NK(ΠTA∗K(·,rp)−ΠtA∗K(·, tq))
< 2NT

(
PTA∗

)
dk
(
tq,rp

)+ c
4k(T)NK

(
PTA∗

)
<

c
2k(T)NK

(
PTA∗

) .

(2.19)

Hence

∣∣Rt(p,q)−QK(ΠtA∗K(·, tp−1
)
,ΠtA∗K

(·, tq−1
))∣∣

= ∣∣QK(PTA∗K(·, tp−1
)
,PTA∗K

(·, tq−1
))

−QK
(
ΠtA∗K

(·, tp−1
)
,ΠtA∗K

(·, tq−1
))∣∣

≤ ∣∣QK(PTA∗K(·, tp−1
)−ΠtA∗K(·, tp−1

)
,PTA∗K

(·, tq−1
))∣∣

+∣∣QK(ΠtA∗K(·, tp−1
)
,PTA∗K

(·, tq−1
)−ΠtA∗K(·, tq−1

))∣∣
≤NK

(
PTA∗K

(·, tp−1
)−ΠtA∗K(·, tp−1

))
NK
(
PTA∗K

(·, tq−1
))

+NK
(
ΠtA∗K

(·, tp−1
))
NK
(
PTA∗K

(·, tq−1
)−ΠtA∗K(·, tq−1

))
< c.

(2.20)

Cholesky factorizations. The upper Cholesky factor of a nonnegative symmet-

ric matrix S is an upper triangular matrix Su with nonnegative diagonals such that

(Su)TSu = S.

We can tie R to {GK,QK} without supposing the existence of a continuous linear

transformation A by assuming in the rest of the paper that for each positive number

T there is a positive number c such that if [x,y] and [u,v] are subintervals of [0,T ],
then

∣∣R(y,v)−R(y,u)−R(x,v)+R(x,u)∣∣≤ cdk(x,y)dk(u,v). (2.21)

With this assumption R is the matrix representation of a nonnegative Hermitian mem-

ber of �∪� [24] which we will denote by H in the rest of the paper. What happens

when H =AA∗ and A is time-invariant?
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Theorem 2.7 [24]. Suppose A is a time-invariant operator in �∪�. There is a con-

tinuous function M on [0,∞) such that for each positive number T and partition t of

[0,T ],

(
Kut
)−TLAt

=




∫ t1
0 M

(
t1−u

)
du√

kt(2)

∫ t1
0 M

(
t2−u

)
du√

kt(2)

∫ t1
0 M

(
t3−u

)
du√

kt(2)

∫ t1
0 M

(
t4−u

)
du√

kt(2)
···

0

∫ t2
t1 M

(
t2−u

)
du√

dkt(2,3)

∫ t2
t1 M

(
t3−u

)
du√

dkt(2,3)

∫ t2
t1 M

(
t4−u

)
du√

dkt(2,3)
···

0 0

∫ t3
t2 M

(
t3−u

)
du√

dkt(3,4)

∫ t3
t2 M

(
t4−u

)
du√

dkt(3,4)
···

0 0 0

∫ t4
t3 M

(
t4−u

)
du√

dkt(4,5)
···

...
...

...
...

...




.

(2.22)

Therefore, assuming equally spaced partition points, the diagonal elements of

(Kut )−TLAt all have the same sign. Hence ±(Kut )−TLAt is an upper Cholesky factor.

Further,

((
Kut
)−TLAt)T (Kut )−TLAt ≈ Rt. (2.23)

In our problem the underlying system is nonlinear and we do not start with a fac-

torization of H. Furthermore, the factorization we seek is not necessarily in terms of

time-invariant linear operators. Even so, this result suggests that we seek a factoriza-

tion of R as a limit in some sense of the upper Cholesky factors Rut of Rt . We want

convergence in terms of finite-dimensional linear operators associated with the upper

Cholesky factors Rut in the following way.

For each positive number T and partition t of [0,T ], let At denote the linear trans-

formation of GK defined for each f in GK by

[
Atf

]
(u)= k

(
tp
)−k(u)

k
(
tp
)−k(tp−1

)[(Rut )T (Kut )−T ft](p)

+ k(u)−k
(
tp−1

)
k
(
tp
)−k(tp−1

)[(Rut )T (Kut )−T ft](p+1),

(2.24)

where tp−1 ≤u< tp for some p = 1,2, . . . , t−1(T). If T ≤u, then [Atf ](u)= [Atf ](T).
Theorem 2.8. For each positive number T and partition t of [0,T ],

[(
At
)∗f ](u)= k

(
tp
)−k(u)

k
(
tp
)−k(tp−1

)[(Kut )TRut (Kut )−1ft
]
(p)

+ k(u)−k
(
tp−1

)
k
(
tp
)−k(tp−1

)[(Kut )TRut (Kut )−1ft
]
(p+1)

(2.25)
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for each f in GK and 0≤ tp−1 ≤u< tp ≤ T . If T ≤u, then

[(
At
)∗f ](u)= [(Kut )TRut (Kut )−1ft

](
t−1(T)+1

)
. (2.26)

Indication of proof.

QK
((
At
)∗f ,g)=QK(f ,Atg)

= (ft)T (Kt)−1((Kut )TRut )T (Kt)−1gt

= ((Kut )TRut (Kt)−1ft
)T (Kt)−1gt.

(2.27)

Hence the result.

Summary of standing assumptions and notation for the rest of the pa-

per. (1) Assume d = 1 and k is an increasing function on [0,∞) with k(0) = 0. Recall

that K(s,t)= k(min(s,t)) is the reproducing kernel of {GK,QK}.
(2) Let R denote the covariance function for a scalar observation process {Y(t), 0≤

t}. R is nonnegative (see (2.3)). Assume that R satisfies inequalities (2.21) and is the

matrix representation of nonnegative Hermitian operator H in �∪�.

(3) Pt and Πt are projections given by (2.11) and (2.12), respectively.

(4) Kt and Rt are discretizations of K and R, respectively. For instance, Rt(p,q)=
R(tp−1, tq−1).

(5) Kut and Rut are upper Cholesky factors of Kt and Rt , respectively. For instance, Kut
is an upper triangular matrix with nonnegative diagonal such that (Kut )TK

u
t =Kt .

(6) {At} is a family of continuous linear transformations of {GK,QK} given by (2.24).

(7) dk(x,y) is the difference k(y)−k(x).

3. Main results. The objective is linearization of an unknown underlying nonlinear

system generating the observation process {Y(t), 0≤ t} from data which we interpret

as {Rt}. The quality of the linearization should be measurable in terms of the sampling

rates and statistics of the observations. The first part of this objective can be achieved by

establishing convergence in some reasonable sense of the finite-dimensional operators

{At}. Conditions which imply convergence should be restricted to conditions on the

data {Rt} as opposed to conditions on the underlying system.

Given that A is in �∪�, T is a positive number, and 0≤ x ≤ T , we will say that the

net {((At)∗−ΠtA∗)K(·,x),t a partition of [0,T ] refining {0,x,T}} has limit 0 provided

that for each positive number c there is a partition r of [0,T ] refining {0,x,T} such that

if t refines r , then NK(((At)∗ −ΠtA∗)K(·,x)) < c. Further, given that T is a positive

number and 0 ≤ x ≤ T , we will say that the net {(At)∗K(·,x), t a partition of [0,T ]
refining {0,x,T}} is Cauchy provided there is a partition r of [0,T ] refining {0,x,T}
such that if s refines r and t refines s, then NK(((At)∗−(As)∗)K(·,x)) < c.

Theorem 3.1. (1) If A is in �∪�, and for each positive number T and 0 ≤ x ≤ T
the net

{((
At
)∗−ΠtA∗)K(·,x), t a partition of [0,T ] refining {0,x,T}} (3.1)
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has limit 0, then for each positive number T and 0≤ x ≤ T the net

{(
At
)∗K(·,x), t a partition of [0,T ] refining {0,x,T}} (3.2)

is Cauchy.

(2) If, for each positive number T and 0≤ x ≤ T , the net (3.2) is Cauchy, then there is

a linear operator A in �∪� such that for each positive number T and 0 ≤ x ≤ T , the

net (3.1) has limit 0.

Indication of proof. Assume that the hypothesis of (1) holds, c and T are posi-

tive numbers, and 0≤ x ≤ T . There is a partition r of [0,T ] refining {0,x,T} such that

if s refines r and t refines s, then NK(ΠtA∗K(·,x)−ΠsA∗K(·,x)) < c/3. In addition,

we may assume that NK((As)∗K(·,x)−ΠsA∗K(·,x)) < c/3. Hence

NK
((
At
)∗K(·,x)−(As)∗K(·,x))

≤NK
((
At
)∗K(·,x)−ΠtA∗K(·,x))+NK(ΠtA∗K(·,x)−ΠsA∗K(·,x))

+NK
(
ΠsA∗K(·,x)−

(
As
)∗K(·,x))

< c,

(3.3)

that is, the net (3.2) is Cauchy.

Assume the hypothesis of (2) holds. For each x ≥ 0 choose T > x and let LA(·,x)
denote the limit of (3.2). Note that LA(·,x) is in GK and if x = tq−1 <u, then

[(
At
)∗K(·,x)](u)= [AtK(·,u)](x)

= [(Rut )T (Kut )−T (K(·,u))t](q)
=

q∑
i=1

Rt(i,q)
(
Kut
)−T (i,·)(K(·,u))t

=
q∑
i=1

Rt(i,q)
i∑
j=1

(
Kut
)−Tkt(j)

= [AtK(·,x)](x)
= [(At)∗K(·,x)](x),

(3.4)

that is, LA(u,x)= LA(x,x). Therefore we may define a linear, causal function A on GK
by [Af](x)=QK(f ,LA(·,x)) for each f in GK and x ≥ 0.

Further, note that

NK
((
At
)∗f )2 = (ft)T (Kt)−1(Rut )TKut (Kt)−1(Kut )TRut (Kt)−1ft

= (ft)T (Kt)−1Rt
(
Kt
)−1ft

=QK
(
ΠtAA∗Πtf ,f

)
≤NK

(
AA∗

)
N2
K(f),

(3.5)

that is, NK((At)∗)≤N1/2
K (AA∗).
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Therefore, for each positive number T , pair of subintervals [x,y] and [u,v] of [0,T ],
and positive number c there is a partition t of [0,T ] refining both {0,x,y,T} and

{0,u,v,T} such that

∣∣LA(y,v)−LA(x,v)−LA(y,u)+LA(x,u)∣∣
≤ c+∣∣[(At)∗(K(·,v)−K(·,u))](y)

−[(At)∗(K(·,v)−K(·,u))](x)∣∣
≤ c+NK

((
At
)∗(K(·,v)−K(·,u)))(dk(x,y))1/2

≤ c+NK
((
At
)∗)(dk(u,v))1/2(dk(x,y))1/2

≤ c+N1/2
K (AA∗)

(
dk(u,v)

)1/2(dk(x,y))1/2,

(3.6)

that is, the linear operator defined in terms of LA is in �∪� [24]. Further, R is the

matrix representation of AA∗.

For each pair of positive numbers c and T and 0 ≤ x ≤ T , there is a partition r of

[0,T ] refining {0,x,T} such that if t refines r , then NK(((At)∗ −A∗)K(·,x)) < c/2,

NK((A∗−ΠtA∗)K(·,x)) < c/2 and thus NK(((At)∗−ΠtA∗)K(·,x)) < c. Therefore (3.1)

has limit 0.

Thus showing that {(At)∗K(·,x)} is Cauchy is more basic since we do not need to

assume a factorization AA∗ of the operator with matrix representation R. Our search

then is for conditions on the finite-dimensional covariances {Rt} which allow us to

conclude that {(At)∗K(·,x)} is Cauchy.

Theorem 3.2. The following are equivalent.

(1) For each positive number T and 0≤ x ≤ T , the net (3.2) is Cauchy.

(2) For each pair of positive numbers c and T and 0≤ x ≤ T , there is a partition r of

[0,T ] refining {0,x,T} such that if s refines r and t refines s, then

∣∣R(x,x)−QK((At)∗K(·,x),(As)∗K(·,x))∣∣< c. (3.7)

Indication of proof. Assume (1) and let A be the linear operator defined in the

proof of Theorem 3.2(2). For each positive number T , 0 ≤ x ≤ T , and partition t of

[0,T ] refining {0,x,T},

∣∣R(x,x)−QK((At)∗K(·,x),(As)∗K(·,x))∣∣
≤∣∣R(x,x)−QK(A∗K(·,x),(As)∗K(·,x))∣∣+∣∣QK((A∗−(At)∗)K(·,x),(As)∗K(·,x))∣∣
=∣∣QK(A∗K(·,x),(A∗−(As)∗)K(·,x))∣∣+∣∣QK((A∗−(At)∗)K(·,x),(As)∗K(·,x))∣∣.

(3.8)

And hence (2) follows.
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Assume that (2) holds, T is a positive number, and 0 ≤ x ≤ T . If s is a partition of

[0,T ] refining {0,x,T} and t refines s, then

QK
((
As
)∗K(·,x),(As)∗K(·,x))

= ((Kus )TRus (Ks)−1Ks
(·,s−1(x)+1

))T ·(Ks)−1(Kus )TRus (Ks)−1Ks
(·,s−1(x)+1

)

= (Rus (·,s−1(x)+1
))TKus (Ks)−1Rus

(·,s−1(x)+1
)

= (Rus (·,s−1(x)+1
))TRus (·,s−1(x)+1

)
= R(x,x).

(3.9)

Hence

NK
(((
At
)∗−(As)∗)K(·,x))2

=NK
((
At
)∗K(·,x))2−2QK

((
At
)∗K(·,x),(As)∗K(·,x))

+NK
((
As
)∗K(·,x))2

= 2R(x,x)−2QK
((
At
)∗K(·,x),(As)∗K(·,x))

(3.10)

from which (1) follows.

Theorem 3.3. If T is a positive number, {sp}np=0 is a partition of [0,T ], t refines

s, and {up}np=0 is an increasing integer-valued sequence such that s = t[u], then, for

1≤ p ≤n+1 and 1≤ q ≤u(n)+1,

(
Kus
)−T (Kut (·,u(I−1)+1

))T (p,q)

=




0 if p = 1 or q = 1,

0 if p ≥ 2, q ≤u(p−2)+1,√
dkt(q−1,q)√
dks(p−1,p)

if p ≥ 2, u(p−2)+1< q ≤u(p−1)+1,

0 if p ≥ 2, u(p−1)+1< q.

(3.11)

Furthermore,

((
Kus
)TRus (·,p))T (Ks)−1(Kut (·,u(I−1)+1

))TRut (·,u(q−1)+1
)

=
p∑
i=2

Rus (i,p)√
dks(i−1, i)

u(i−1)∑
j=u(i−2)+1

√
dkt(j,j+1)Rut

(
j+1,u(q−1)+1

)
.

(3.12)
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Indication of proof.

Kut (i,q)=




0, i= 1 or q = 1,√
dkt(i−1, i) if 2≤ i≤ q,

0 if q < i,

(
Kut
)−1(i,q)=




0, i= 1 or q = 1,

−1√
dkt(q−1,q)

if 2≤ i= q−1,

1√
dkt(q−1,q)

if 2≤ i= q,

0 otherwise.

(3.13)

Hence

Kut
(
q,u(I−1)+1

)(
Kus
)−1(·,p)

=Kut
(
q,u(p−1)+1

)(
Kus
)−1(p−1,p)+Kut

(
q,u(p−1)+1

)(
Kus
)−1(p,p)

=




0, p = 1,

0 if q ≤u(p−1)+1,
√
dkt(q−1,q)√
dks(p−1,p)

if p ≥ 2, u(p−1)+1< q ≤u(p)+1,

0 if p ≥ 2, u(p)+1< q.

(3.14)

Furthermore,

((
Kus
)TRus (·,p))T (Ks)−1(Kut (·,u(I−1)+1

))TRut (·,u(q−1)+1
)

= (Rus (·,p))T (Kus )−T (Kut (·,u(I−1)+1
))TRut (·,u(q−1)+1

)

=
p∑
i=2

Rus (i,p)
[(
Kus
)−T (Kut (·,u(I−1)+1

))TRut (·,u(q−1)+1
)]
(i)

=
p∑
i=2

Rus (i,p)√
dks(i−1, i)

u(i−1)∑
j=u(i−2)+1

√
dkt(j,j+1)Rut

(
j+1,u(q−1)+1

)
.

(3.15)
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Corollary 3.4. For each positive number T , 0 ≤ x ≤ T , and partition s of [0,T ]
refining {0,x,T}, if t refines s (s = t[u]), then
∣∣R(x,x)−QK((At)∗K(·,x),(As)∗K(·,x))∣∣

=
∣∣∣∣∣∣
s−1(x)+1∑
i=2

Rus
(
i,s−1(x)+1

)
√
dks(i−1, i)



√
dks(i−1, i)Rus

(
i,s−1(x)+1

)

−
u(i−1)∑

j=u(i−2)+1

√
dkt(j,j+1)Rut

(
j+1, t−1(x)+1

)
∣∣∣∣∣∣.

(3.16)

Theorem 3.5. Assume that for each positive number T and 0 ≤ x ≤ T there is a

positive number M such that if {sp}n0 is a partition of [0,T ] refining {0,x,T}, then

0≤ Rus
(
i,s−1(x)+1

)≤M√dks(i−1, i) (3.17)

for i= 2,3, . . . ,s−1(x)+1. Furthermore, assume that if t refines s (s = t[u]), then

u(i−1)∑
j=u(i−2)+1

√
dkt(j,j+1)Rut

(
j+1, t−1(x)+1

)≤ √dks(i−1, i)Rus
(
i,s−1(x)+1

)
(3.18)

for i= 2,3, . . . ,s−1(x)+1.

Then for each positive number T and 0≤ x ≤ T , the net (3.2) is Cauchy.

Indication of proof. The net

{ s−1(x)+1∑
i=2

√
dks(i−1, i)Rus

(
i,s−1(x)+1

)
, t a partition of [0,T ] refining {0,x,T}

}

(3.19)

is nonincreasing but bounded below. Let L(x) denote the limit. Then

∣∣R(x,x)−QK((At)∗K(·,x),(As)∗K(·,x))∣∣
=
∣∣∣∣∣∣
s−1(x)+1∑
i=2

Rus
(
i,s−1(x)+1

)
√
dks(i−1, i)



√
dks(i−1, i)Rus

(
i,s−1(x)+1

)

−
u(i−1)∑

j=u(i−2)+1

√
dkt(j,j+1)Rut

(
j+1, t−1(x)+1

)
∣∣∣∣∣∣

≤M

 s−1(x)+1∑

i=2

√
dks(i−1, i)Rus

(
i,s−1(x)+1

)

−
t−1(x)+1∑
i=2

√
dkt(i−1, i)Rut

(
i,t−1(x)+1

)

≤M

 s−1(x)+1∑

i=2

√
dks(i−1, i)Rus

(
i,s−1(x)+1

)−L(x)

.

(3.20)
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Hence for each pair of positive numbers c and T and 0 ≤ x ≤ T , there is a partition r
of [0,T ] refining {0,x,T} such that if s refines r and t refines s, then

∣∣R(x,x)−QK((At)∗K(·,x),(As)∗K(·,x))∣∣< c. (3.21)

The conclusion follows from Theorem 3.2.

Corollary 3.6. If m is an increasing function on [0,∞) which is absolutely contin-

uous with respect to k and R(x,y) =m(min(x,y)) for 0 ≤ x,y , then for each positive

number T and 0≤ x ≤ T the net (3.2) is Cauchy.

Theorem 3.7. If R(a,s)R(b,t) = R(b,s)R(a,t) for 0 ≤ a,b ≤ s,t and for each posi-

tive number T and 0≤ x ≤ T there is a positive numberM such that if {sp}n0 is a partition

of [0,T ] refining {0,x,T}, then

0≤ Rus
(
i,s−1(x)+1

)≤M√dks(i−1, i) (3.22)

for i = 2,3, . . . ,n+ 1, then for each positive number T and 0 ≤ x ≤ T the net (3.2) is

Cauchy.

Lemma 3.8. For each integer q ≥ 2,

(1)

Rut (q,q)2 = Rt(q,q)−
Rt(q−1,q)2

Rt(q−1,q−1)
, (3.23)

(2)

Rut (q,k)=
Rt(q,k)
Rt(q,q)

Rut (q,q), (3.24)

for k > q.

Proof of Lemma 3.8. We will proceed by induction. Assume for convenience that

Rt(1,1) = 1. Note that Rut (1,1) = 1, Rut (1,q) = Rt(1,q), and Rut (2,2)2 = Rt(2,2) −
Rut (1,2)2 = Rt(2,2)−Rt(1,2)2. Further,

Rut (2,k)=
Rt(2,k)−Rut (1,2)Rt(1,k)

Rut (2,2)

= Rt(2,k)
Rt(2,2)

(
Rt(2,2)−Rt(1,2)2

)1/2

= Rt(2,k)
Rt(2,2)

Rut (2,2).

(3.25)
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Assume (1) and (2) for q ≥ 2 and k > q.

Rut (q+1,q+1)2 = Rt(q+1,q+1)−Rut (1,q+1)2−···−Rut (q+1,q+1)2 (3.26)

= Rt(q+1,q+1)−Rut (1,q+1)2

− Rt(2,q+1)2

Rt(2,2)2
(
Rt(2,2)−Rt(1,2)2

)

−···− Rt(q,q+1)2

Rt(q,q)2

(
Rt(q,q)− Rt(q−1,q)2

Rt(q−1,q−1)

) (3.27)

= Rt(q+1,q+1)−Rt(1,q+1)2+Rt(1,q+1)2− Rt(2,q+1)2

Rt(2,2)

+ Rt(2,q+1)2

Rt(2,2)
− Rt(3,q+1)2

Rt(2,2)

+···+ Rt(q−1,q+1)2

Rt(q−1,q−1)
− Rt(q,q+1)2

Rt(q,q)

(3.28)

= Rt(q+1,q+1)− Rt(q,q+1)2

Rt(q,q)
. (3.29)

Also, for k > q+1,

Rut (q+1,k)

= (Rt(q+1,k)−Rut (1,q+1)Rut (1,k)

−···−Rut (q,q+1)Rut (q,k)
)(
Rut (q+1,q+1)

)−1

(3.30)

=
(
Rt(q+1,k)−Rut (1,q+1)Rut (1,k)

− Rt(2,q+1)
Rt(2,2)

Rut (2,2)2
Rt(2,k)
Rt(2,2)

−···− Rt(q,q+1)
Rt(q,q)

Rut (q,q)2
Rt(q,k)
Rt(q,q)

)(
Rut (q+1,q+1)

)−1

(3.31)

=
(
Rt(q+1,k)− Rt(1,q+1)2Rt(q+1,k)

Rt(q+1,q+1)

− Rt(2,q+1)2Rt(q+1,k)Rut (2,2)2

Rt(2,2)2Rt(q+1,q+1)

−···− Rt(q,q+1)2Rt(q+1,k)Rut (q,q)2

Rt(q,q)2Rt(q+1,q+1)

)(
Rut (q+1,q+1)

)−1

(3.32)

= Rt(q+1,k)
Rt(q+1,q+1)

(
Rt(q+1,q+1)−Rt(0,q+1)2

− Rt(2,q+1)2Rut (2,2)2

Rt(2,2)

−···− Rt(q,q+1)2Rut (q,q)2

Rt(q,q)2

)(
Rut (q+1,q+1)

)−1

(3.33)
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= Rt(q+1,k)
Rt(q+1,q+1)

(
Rt(q+1,q+1)−Rt(1,q+1)2−Rut (2,q+1)2

−···−Rut (q+1,q+1)2
)(
Rut (q+1,q+1)

)−1
(3.34)

= Rt(q+1,k)
Rt(q+1,q+1)

Rut (q+1,q+1). (3.35)

Thus (1) and (2) hold for all q ≥ 2 and k > q.

Lemma 3.9. If T > 0, {sp}n0 is a partition of [0,T ] with refinement {tq}, 1≤ p ≤n−2,

ti = si for 0≤ i≤ p, sp < tp+1 < sp+1, and ti+1 = si for p+1≤ i≤n, then

(1) Rut (1 : p+1,1 : p+1)= Rus (1 : p+1,1 : p+1),
(2) Rut (1 : p+1,p+3 :n+2)= Rus (1 : p+1,p+2 :n+1),
(3) (Rut (p+2,q))2+(Rut (p+3,q))2 = (Rus (p+2,q−1))2, p+3≤ q ≤n+1,

(4) Rut (p+3 :n+2,p+3 :n+2)= Rus (p+2 :n+1,p+2 :n+1).
Alternately, if ti = si for 0≤ i≤n−1, sn−1 < tn < sn, and tn+1 = sn, then

(5) Rut (1 :n,1 :n)= Rus (1 :n,1 :n),
(6) Rut (1 :n,n+2)= Rus (1 :n,n+1),
(7) (Rut (n+1,n+2))2+(Rut (n+2,n+2))2 = (Rus (n+1,n+1))2.

Proof of Lemma 3.9. The first two parts are immediate. Note that

p+3∑
k=1

Rut (k,p+3)2 = Rt(p+3,p+3)= Rs(p+2,p+2)=
p+2∑
k=1

Rus (k,p+2)2. (3.36)

Hence

Rut (p+2,p+3)2+Rut (p+3,p+3)2 = Rus (p+2,p+2)2. (3.37)

Suppose q > p+3. Then

Rut (p+2,q)2+Rut (p+3,q)2

= Rt(p+2,q)2

Rt(p+2,p+2)2
Rut (p+2,p+2)2

+ Rt(p+3,q)2

Rt(p+3,p+3)2
Rut (p+3,p+3)2

= Rt(p+3,q)2

Rt(p+3,p+3)2

[
Rt(p+2,p+3)2

Rt(p+2,p+2)2
Rut (p+2,p+2)2

+Rut (p+3,p+3)2
]

= Rs(p+2,q−1)2

Rs(p+2,p+2)2
[
Rut (p+2,p+3)2+Rut (p+3,p+3)2

]

= Rs(p+2,q−1)2

Rs(p+2,p+2)2
Rus (p+2,p+2)2

= Rus (p+2,q−1)2.

(3.38)

Parts (4), (5), (6), and (7) follow in a similar way.
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Lemma 3.10. If T > 0, 0≤ x ≤ T , {sp}n0 is a partition of [0,T ] refining {0,x,T}, and

t is a refinement of s (s = t[u]), then

u(i)∑
j=u(i−1)+1

√
dkt(j,j+1)Rut

(
j+1, t−1(x)+1

)≤ √dks(i,i+1)Rus
(
i+1,s−1(x)+1

)
(3.39)

for i= 1,2, . . . ,s−1(x).

Proof of Theorem 3.7. The theorem follows from Lemma 3.10 and Theorem 3.5.

Theorem 3.11. If m is an increasing function on [0,∞) which is absolutely continu-

ous with respect to k,m(0)= 1, andR(x,y)= exp(−c|x−y|)m(min(x,y)) for 0≤ x,y ,

where c is a nonnegative number, then, for each positive number T and 0≤ x ≤ T , the

net (3.2) is Cauchy.

Proof of Theorem 3.11. If 0≤ a,b ≤ s,t, then

R(a,s)R(b,t)= e−c(s−a)m(a)e−c(t−b)m(b)
= e−c(s−b)m(b)e−c(t−a)m(a)
= R(b,s)R(a,t).

(3.40)

We will show that Rt is positive definite (see (2.3)) by developing a Cholesky fac-

torization of Rt . We accomplish this by first defining Rut inductively, a row at a time.

Assuming Rut (1,1) = Rt(1,1)1/2 = 1, Rut (1,k) = Rt(1,k)/Rut (1,1) = et(k) for k > 0, and

for q = 2,3, . . .,
(1)

Rut (q,q)2 = Rt(q,q)−
Rt(q−1,q)2

Rt(q−1,q−1)
=m(tq)−e2c(t(q)−t(q−1))m

(
tq−1

)
> 0,

(3.41)

(2)

Rut (q,k)=
Rt(q,k)
Rt(q,q)

Rut (q,q), (3.42)

for k > q.

We conclude that (Rut )TR
u
t = Rt by reading (2.5), (2.11), (2.12), (2.21) and (2.24), (3.26),

(3.27), (3.28),(3.29), (3.30) in reverse order. Thus Rt is positive definite and satisfies the

hypothesis of Theorem 3.7 and we draw the conclusion that the net is Cauchy.

Theorem 3.11 provides a rich class of examples and we can begin to examine relations

between members of the class. For instance, we can think of c as a damping coefficient

and investigate the effects of c on the linearized system’s behavior. Figure 3.1 shows a

collection of examples with the graph of m in the upper left corner and, in a clockwise

direction, the graph for Rt for c = 4,2,0. We look at the question of system behavior in

the next section.
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Figure 3.1. Covariance kernels, with Ri(x,x), 0 ≤ x ≤ 3, plotted in (a) and
(b), (c), and (d) represent various versions of possible kernels. For clarity, the
x and y axes are labeled 0,1, . . . ,7 for the partition xj =yj = 3j/7.

4. Simulations. Starting with such a nice model for the covariance kernel in Theorem

3.7, one might ask if stochastic linearization contributes anything. That is, if the only

information available for the discrete process Yt is the mean mt and the covariance ker-

nel Rt , then everything we can know of the approximating normal process determined

by the first two moments is captured by the discrete distribution function obtained as

follows. The finite-dimensional density function is given by

ft(x)= (2π)−n/2 det
(
Rt
)−1/2

exp
(
− 1

2

(
x−mt

)TR−1
t
(
x−mt

))
. (4.1)

The finite-dimensional distribution function is then given by

�
(
a ≤ Yt ≤ b

)=
∫ b

a
ft(x)dx=

∫ b(0)
a(0)

···
∫ b(n)
a(n)

ft(x0, . . . ,xn)dx0 ···dxn. (4.2)

However, a problem remains with the slow convergence of numerical evaluation of the

iterated integral, especially when n is large, bigger than eight. Many methods rely on

some kind of simulation to speed convergence [20].
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Figure 4.1. Simulations.

Basic discussion. We propose another simulation methodology based on stochas-

tic linearization. Let Xt be an n-dimensional normally distributed random row vector.

Note that EXt = 0 and EXTt Xt = In. If Kut is the upper Cholesky factor of Kt , then

Wt(p)= [XtKut ](p).
To see this, note that EXtKut = 0 and

E
(
XtKut

)TXtKut = (Kut )TEXTt XtKut =Kt. (4.3)

For a given finite-dimensional stochastic linearization At with matrix representation

(Kut )TR
u
t , we have

[
AtW

](
tp
)= [WT

t
(
Kt
)−1(Kut )TRut ](p)= [WT

t
(
Kut
)−1Rut

]
(p)= [XtRut ](p). (4.4)

In Figure 4.1 we can compare the behavior of the system examples with c = 8 and 0.

The probability of a sample path generated by the first system on the interval [0,3]
exceeding a= 1.0 is 0.3750. For the second system, the probability is 0.2262.

Operator norm. In the system monitoring problem, there is a need to measure

the distance between two nonlinear systems. One possiblity is to measure the distance

between the systems’ discrete linearizations rather than between the systems directly.

If the systems have covariance kernels R1 and R2, respectively, with upper Cholesky

factorizations Ru1 and Ru2 , then an approximate operator norm for the difference of
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Table 4.1. Table of distances.

Ru1 Ru2 Ru3

Ru1 0.0 — —

Ru2 0.7961 0.0 —

Ru3 1.3039 0.5471 0.0

the discrete linearizations could be computed with the following scrap of MatLab code:

% input: InvKt, Ru1, Ru2

x = randn(1000, n);

y = x*(Ru1 - Ru2);

z = diag(y*InvKt*y’);

w = diag(x*x’);

max((z./w).ˆ.5)

The distances between the systems represented by the covariance kernels given in

Figure 3.1 are given in Table 4.1.

In the absence of an absolute scale, we can only conclude that the third system is

further from the first than it is from the second. This certainly fits our intuition.

5. Significance of work. We need a more robust condition on the finite-dimensional

covariances {Rt} implying convergence of the finite-dimensional operators {At}. Theo-

rems 3.5 and 3.7 are too delicate for application to estimates ofRt . That is, the theorems

assume we know Rt exactly or, in other words, we have an infinite amount of data at

our disposal.

One can easily move from statistics of observations of inputs and outputs to confi-

dence intervals and other measures of the accuracy of the estimates of Rt . We need to

extend these possibilities to results on the quality of the estimates of At .
Much of this material can be extended immediately to vector processes. Examples of

vector processes have been explored; for instance, a Lorenz system [6, 17, 26] with a one-

dimensional noise input and a two-dimensional observation. The notion of convergence

introduced for scalar inputs and outputs extends to the vector case. However, until the

scalar case is settled, the condition which implies convergence for the vector case is

hard to visualize.

Again, the dimension of the state space for the underlying system does not enter.

The first example has an infinite-dimensional state space. So the method of lineariza-

tion under investigation, if we can carry out our program, will apply to some systems

governed by nonlinear partial differential equations as well.

6. Comments on the literature. Most work reported in the literature [4, 7, 8, 9, 10,

12, 13, 14, 15, 16, 22, 23, 27] assumes a model. As noted earlier [19] common practice

when confronted by a system known only from input/output data is to fit a linear model.

The statistical linearization as presented in [25] is based on an assumption of the

form of the underlying nonlinear system. Data enters the problem from simulations of
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a known nonlinear system. Applications are made to marine structures such as drilling

platforms.

Application of Hilbert space ideas to system problems requires an additional time

structure which can be used to guarantee the operators are realizable, that is, causal.

This requirement as discussed in [8] can be satisfied in several different settings [2, 10,

29]. The framework of Hellinger integrable functions, associated with the covariance

function of the Wiener process, has a built-in time structure. The elements of �∪� are

immediately causal.

The starting point for the work in this investigation differs from that of [8, 10, 27] in

that the covariance R, known only partially as Rt from data, is the matrix representa-

tion of several positive definite Hermitian operators depending on choices made for the

Hilbert space. Further, no assumption is made concerning the factorization of this op-

erator. We are searching for conditions on R which yield the existence of a factorization.
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