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ANTIEIGENVALUE INEQUALITIES IN OPERATOR THEORY
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We will prove some inequalities among trigonometric quantities of two and three operators.
In particular, we will establish an inequality among joint trigonometric quantities of two
operators and trigonometric quantities of each operator. As a corollary, we will find an
upper bound and a lower bound for the total joint antieigenvalue of two positive operators
in terms of the smallest and largest eigenvalues of these operators.
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1. Introduction. Recall that an operator T is accretive if the numerical range of T is

a subset of the right half-plane. For an accretive operator on a Hilbert space H, the first

antieigenvalue of T , µ1(T), is defined by Gustafson to be

µ1(T)= inf
Tf≠0
‖f‖=1

Re(Tf ,f )
‖Tf‖ (1.1)

(see [1, 3, 4]). The quantity µ1(T) is also denoted by cosT or cosRT and is called the

cosine (or real cosine) of T . The first antieigenvalue, µ1(T), has important applications

in the study of the numerical range of operators. For instance, it is proved in [1] that for

two positive selfadjoint operators A and B, the product AB is accretive if sinA≤ cosB.

It is shown in [2] that if for a positive operator T we define

sinT = inf
∈>0

‖ ∈ T −I‖, (1.2)

then sinT = √1−cos2T . The quantity µ1(T) has numerous applications in numerical

analysis as well as statistics and econometrics (see [5, 6, 8]). A vector f for which the in-

fimum in (1.1) is attained is called an antieigenvector of T . The first total antieigenvalue

of an operator T is defined to be

∣∣µ1

∣∣(T)= inf
Tx≠0

∣∣(Tf ,f )∣∣
‖Tf‖‖f‖ = inf

Tx≠0
‖f‖=1

∣∣(Tf ,f )∣∣
‖Tf‖ . (1.3)

The quantity |µ1|(T) is also denoted by |cos|T . A vector f for which the infimum in

(1.3) is attained is called a total antieigenvector of T . For an operator T , we also define

the quantity cosI(T) by

cosI(T)= inf
Tf≠0
‖f‖=1

Im(Tf ,f )
‖Tf‖ (1.4)
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and call it the imaginary cosine of T . The angle between a pair of operators A and B
can be measured by looking at quantities

cos(T ,S)= µ1(T ,S)= inf
Ax≠0
Bx≠0

Re(Tf ,Sf)
‖Tf‖‖Sf‖ , (1.5)

|cos|(T ,S)= ∣∣µ1

∣∣(T ,S)= inf
Ax≠0
Bx≠0

∣∣(Tf ,Sf)∣∣
‖Tf‖‖Sf‖ . (1.6)

We call µ1(T ,S) the joint antieigenvalue for T and S, and |µ1|(T ,S) is called the

total joint antieigenvalue for T and S. The quantities µ1(T ,S) and |µ1|(T ,S) are also

denoted by cos(T ,S) and |cos|(T ,S), respectively. A vector f for which the infimum in

(1.5) is attained is called a joint antieigenvector for T and S. A vector f for which the

infimum in (1.6) is attained is called a joint total antieigenvector for T and S. Likewise,

the quantity cosI(T ,S) is defined by

cosI(T ,S)= inf
Ax≠0
Bx≠0

Im(Tf ,Sf)
‖Tf‖‖Sf‖ . (1.7)

The author and Gustafson have studied µ1(T) and |µ1|(T) for normal operators on

finite- and infinite-dimensional spaces (see [9, 10, 12, 13]). Also, in [11], the author has

studied µ1(T ,S), where S and T are two operators belonging to the same closed normal

subalgebra of B(H). Note that µ1(T) = µ1(T ,I) and |µ1|(T) = |µ1|(T ,I), where I is the

identity operator. Our objective in this paper is to establish some inequalities among

these trigonometric functions using the Gram determinant between three vectors.

2. Operator trigonometry. Recall that any invertible operator T on a Hilbert space

is a product of the form T = UP , where U is a unitary operator and P is a positive

operator (polar decomposition). On a finite, dimensional Hilbert space, every operator

is the product of a unitary operator U and a positive operator P . For a positive operator

P , we know that µ1(P)= 2
√
mM/(m+M), wherem andM are the smallest and largest

eigenvalues of P , respectively. This was first proved by Gustafson in [2] and later inde-

pendently by Krein. On the other hand, for a unitary operator U , it is easy to see that

µ1(U)= inf{cosθ : eiθ ∈ σ(T)} (see [13]). It is however impossible to express µ1(T) in

terms of µ1(P) and µ1(U). In the following, we will establish some inequalities among

trigonometric functions of composite operators and their components. One may use

Theorem 2.1 with A = U and B = P to establish an inequality between trigonometric

functions of T , U , and P if T has a polar decomposition T = UP . Our work here is

based on the fact that for any three vectors x1, x2, and x3 in a Hilbert space, the Gram

determinant

G
(
x1,x2,x3

)= det



(
x1,x1

) (
x2,x1

) (
x3,x1

)
(
x1,x2

) (
x2,x2

) (
x3,x2

)
(
x1,x3

) (
x2,x3

) (
x3,x3

)

 (2.1)

is nonnegative.
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Theorem 2.1. If the numerical ranges of operators A and B are subsets of the first

quadrant, then

1+2
(
cosB cosAB cos(AB,B)+cosB cosI AB cosI(AB,B)+cosI B cosI AB cos(AB,B)

)
≥ |cos|2B+|cos|2AB+|cos |2(AB,B)+2cosAB cosI B cosI(AB,B).

(2.2)

Proof. Let x be any unit vector and let G be the Gram determinant function de-

fined by (2.1). Let (Bx/‖Bx‖,Ax/‖Ax‖)= a+bi, (ABx/‖ABx‖,Ax/‖Ax‖)= c+di, and

(ABx/‖ABx‖,Bx/‖Bx‖)= e+fi. Then we have (Ax/‖Ax‖,Ax/‖Ax‖)= 1, (Bx/‖Bx‖,
Bx/‖Bx‖) = 1, (ABx/‖ABx‖,ABx/‖ABx‖) = 1, (Ax/‖Ax‖,Bx/‖Bx‖) = a − bi,
(Ax/‖Ax‖,ABx/‖ABx‖)= ac−di, and (Bx/‖Bx‖,ABx/‖ABx‖)= e−fi. Therefore

G
(
Ax
‖Ax‖ ,

Bx
‖Bx‖ ,

ABx
‖ABx‖

)
= det




1 a+bi c+di
a−bi 1 e+fi
c−di e−fi 1


 . (2.3)

Direct computations show that

det




1 a+bi c+di
a−bi 1 e+fi
c−di e−fi 1


= 1−e2−f 2−a2+2aec+2afd

−b2−2cfb+2bed−c2−d2.

(2.4)

Since the Gram determinant G(Ax/‖Ax‖,Bx/‖Bx‖,ABx/‖ABx‖) is nonnegative, we

have

1−e2−f 2−a2+2aec+2afd−b2−2cfb+2bed−c2−d2 ≥ 0 (2.5)

which implies

1+2(aec+afd+bde)≥ (a2+b2)+(c2+d2)+(e2+f 2)+2cfb. (2.6)

If we substitute the values of a, b, c, d, e, and f in (2.6), we have

1+2
(

Re(Bx,x)
‖Bx‖

Re(ABx,x)
‖ABx‖

Re(ABx,Bx)
‖ABx‖‖Bx‖

+ Re(Bx,x)
‖Bx‖

Im(ABx,x)
‖ABx‖

Im(ABx,Bx)
‖ABx‖‖Bx‖

+ Im(Bx,x)
‖Bx‖

Im(ABx,x)
‖ABx‖

Re(ABx,Bx)
‖ABx‖‖Bx‖

)

≥
(∣∣(Bx,x)∣∣

‖Bx‖

)2

+
(∣∣(ABx,x)∣∣

‖ABx‖

)2

+
(∣∣(ABx,Bx)∣∣
‖ABx‖‖Bx‖

)2

+2
Re(ABx,x)
‖ABx‖

Im(Bx,x)
‖Bx‖

Im(ABx,Bx)
‖ABx‖‖Bx‖ .

(2.7)

Now inequality (2.2) follows from inequality (2.7) and the properties of the infimum.
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Remark 2.2. In [7], Gustafson and Rao used the Gram determinant to find a superset

for the numerical range of the product of two bounded operators A and B.

Theorem 2.3. If the numerical ranges of operators A and B are subsets of the first

quadrant, then

1+2
(
cosAcosB cos(A,B)+cosAcosI B cosI(A,B)+cosI AcosI B cos(A,B)

)
≥ |cos|2A+|cos |2B+|cos |2(A,B)+2cosB cosI AcosI(A,B).

(2.8)

Proof. Let x be any unit vector. Using the nonnegativity of the Gram determinant

G
(
x,

Ax
‖Ax‖ ,

Bx
‖Bx‖

)
(2.9)

and computations similar to those carried out in Theorem 2.1, we have

1+2
(

Re(x,Ax)
‖Ax‖

Re(x,Bx)
‖Bx‖

Re(Ax,Bx)
‖Ax‖‖Bx‖

+ Re(x,Ax)
‖Ax‖

Im(x,Bx)
‖Bx‖

Im(Ax,Bx)
‖Ax‖‖Bx‖

+ Im(x,Ax)
‖Ax‖

Im(x,Bx)
‖Bx‖

Re(Ax,Bx)
‖Ax‖‖Bx‖

)

≥
(∣∣(x,Ax)∣∣

‖Ax‖

)2

+
(∣∣(x,Bx)∣∣

‖Bx‖

)2

+
(∣∣(Ax,Bx)∣∣
‖Ax‖‖Bx‖

)2

+2
Re(x,Bx)
‖Bx‖

Im(x,Ax)
‖Ax‖

Im(Ax,Bx)
‖Ax‖‖Bx‖ .

(2.10)

Now inequality (2.8) follows from inequality (2.10) and the properties of infimum.

Theorem 2.4. LetA, B, and C be three operators whose numerical ranges are subsets

of the first quadrant, then

1+2cos(A,B)cos(A,C)cos(B,C)+2cos(A,B)cosI(A,C)cosI(B,C)

+2cosI(A,B)cosI(A,C)cos(B,C)

≥ |cos|2(A,B)+|cos |2(A,C)+|cos |2(B,C)
+2cos(A,C)cosI(A,B)cosI(B,C).

(2.11)

Proof. Let x be any unit vector. Using the nonnegativity of the Gram determinant

G
(
Ax
‖Ax‖ ,

Bx
‖Bx‖ ,

Cx
‖Cx‖

)
(2.12)
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and computations similar to those carried out in Theorem 2.1, we have

1+2
Re(Ax,Bx)
‖Ax‖‖Bx‖

Re(Ax,Cx)
‖Ax‖‖Cx‖

Re(Bx,Cx)
‖Bx‖‖Cx‖ +2

Re(Ax,Bx)
‖Ax‖‖Bx‖

Im(Ax,Cx)
‖Ax‖‖Cx‖

Im(Bx,Cx)
‖Bx‖‖Cx‖

+2
Im(Ax,Bx)
‖Ax‖‖Bx‖

Im(Ax,Cx)
‖Ax‖‖Cx‖

Re(Bx,Cx)
‖Bx‖‖Cx‖

≥
(∣∣(Ax,Bx)∣∣
‖Ax‖‖Bx‖

)2

+
(∣∣(Ax,Cx)∣∣
‖Ax‖‖Cx‖

)2

+
(∣∣(Bx,Cx)∣∣
‖Bx‖‖Cx‖

)2

+2
Re(Ax,Cx)
‖Ax‖‖Cx‖

Im(Ax,Bx)
‖Ax‖‖Bx‖

Im(Bx,Cx)
‖Bx‖‖Cx‖ .

(2.13)

Now inequality (2.11) follows from inequality (2.13) and the properties of infimum.

For positive operators A and B, we have cosI A = cosI B = 0. We also have |cos|A =
cosA, |cos|B = cosB. Therefore, inequalities (2.2) and (2.8) have simpler forms for

positive operators.

Corollary 2.5. For positive operators A, B

1+2
[
cosB cosAB cos(AB,B)+cosB cosI AB cosI(AB,B)

]
≥ cos2B+|cos|2AB+|cos|2(AB,B), (2.14)

1+2cosAcosB cos(A,B)≥ cos2A+cos2B+|cos|2(A,B). (2.15)

Inequality (2.15) is particularly useful in generalizing the Kantorovich inequality. As

we mentioned before, for a positive operator T , we have cosT = 2
√
mM/(m+M), where

m and M are the smallest and the largest eigenvalues of A, respectively. This leads to

the inequality

(Tx,x)
‖Tx‖‖x‖ ≥

2
√
mM

m+M ∀x (2.16)

or

(Tx,x)2

‖Tx‖2‖x‖2
≥ 4mM
(m+M)2 ∀x. (2.17)

Inequality (2.16) (or its equivalent (2.17)) is known as the Kantorovich inequality.

Theorem 2.6. Let A be a positive operator with the smallest eigenvalue m1 and the

largest eigenvalue M1. Let B be another positive operator with the smallest eigenvalue

m2 and the largest eigenvalue M2. Then

4
√(
m1M1m2M2

)−(M1−m1
)(
M2−m2

)
(
m2+M2

)(
m1+M1

)

≤ |cos|(A,B)≤ 4
√(
m1M1m2M2

)+(M1−m1
)(
M2−m2

)
(
m2+M2

)(
m1+M1

) .

(2.18)
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Proof. Since |cos|(A,B)≥ cos(A,B) by (2.15) we have 1+2cosAcosB|cos|(A,B)≥
cos2A+cos2B+|cos|2(A,B), which implies

1−cos2A−cos2B+cos2Acos2B

≥ |cos|2(A,B)−2cosAcosB|cos|(A,B)+cos2Acos2B.
(2.19)

The last inequality is equivalent to

[|cos|(A,B)−cosAcosB
]2 ≤ 1−cos2A−cos2B+cos2Acos2B (2.20)

which implies

−
√(

1−cos2A−cos2B+cos2Acos2B
)

≤ |cos|(A,B)−cosAcosB ≤
√(

1−cos2A−cos2B+cos2Acos2B
)
.

(2.21)

Hence we have

cosAcosB−
√(

1−cos2A−cos2B+cos2Acos2B
)

≤ |cos|(A,B)≤ cosAcosB+
√(

1−cos2A−cos2B+cos2Acos2B
)
.

(2.22)

If we substitute cosA = 2
√
m1M1/(m1+M1) and cosB = 2

√
m2M2/(m2+M2) in√

(1−cos2A−cos2B+cos2Acos2B) and simplify, we obtain

√(
1−cos2A−cos2B+cos2Acos2B

)=
(
M1−m1

)(
M2−m2

)
(
m2+M2

)(
m1+M1

) . (2.23)

Also note that cosAcosB = 4
√
(m1M1m2M2)/(m2+M2)(m1+M1).

Example 2.7. Assume A is a positive operator with the smallest eigenvalue m1 = 1

and the largest eigenvalue M1 = 18. Assume also B is a positive operator with the

smallest eigenvalue m2 = 2 and the largest eigenvalue M2 = 3. Then

4
√(
m1M1m2M2

)−(M1−m1
)(
M2−m2

)
(
m2+M2

)(
m1+M1

) = 24
95

√
3− 17

95
= 0.25862,

4
√(
m1M1m2M2

)−(M1−m1
)(
M2−m2

)
(
m2+M2

)(
m1+M1

) = 24
95

√
3+ 17

95
= 0.6165,

(2.24)

and hence 0.25862≤ |cos|(A,B)≤ 0.6165.

Remark 2.8. Suppose A is an operator with the smallest eigenvalue m and the

largest eigenvalueM , and consider |cos|(A,I)where I is the identity operator. Note that

for the identity operator both the smallest and the largest eigenvalues are 1. The values
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of the expressions (4
√
(m1M1m2M2)−(M1−m1)(M2−m2))/(m2+M2)(m1+M1) and

(4
√
(m1M1m2M2)−(M1−m1)(M2−m2))/(m2+M2)(m1+M1) are both equal to 2

√
mM/

(m+M) for m1 =m, M1 = M , m2 = 1, and M2 = 1. Hence in this case |cos(A,I)| =
cos(A,I)= 2

√
mM/(m+M). This is consistent with cosA= 2

√
mM/(m+M).
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