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MIXED QUASI INVEX EQUILIBRIUM PROBLEMS
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We introduce a new class of equilibrium problems, known as mixed quasi invex equilibrium
(or equilibrium-like) problems. This class of invex equilibrium problems includes equilib-
rium problems, variational inequalities, and variational-like inequalities as special cases.
Several iterative schemes for solving invex equilibrium problems are suggested and ana-
lyzed using the auxiliary principle technique. It is shown that the convergence of these iter-
ative schemes requires either pseudomonotonicity or partially relaxed strong monotonicity,
which are weaker conditions than the previous ones. As special cases, we also obtained the
correct forms of the algorithms for solving variational-like inequalities, which have been
considered in the setting of convexity. In fact, our results represent significant and impor-
tant refinements of the previously known results.
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1. Introduction. It is well known that the equilibrium problems theory provides us

with a unified, natural, innovative, and general framework to study various unrelated

problems arising in finance, economics, network analysis, transportation, elasticity, and

nonlinear optimization; see [3, 10, 11, 12, 19, 21, 27, 29, 34, 22, 36] and the references

therein. It has been shown that equilibrium problems include variational inequalities

and optimization problems as special cases. It is worth mentioning that almost all the

results obtained so far are in the setting of convexity. It has been noted that these re-

sults may not hold in the invex setting. Inspired and motivated by the research going

on in this interesting and fascinating area, we introduce and investigate a new class of

equilibrium problems, which is called invex equilibrium (or equilibrium-like) problems

in the setting of invexity. It has been shown that invex equilibrium problems include

variational-like inequalities, equilibrium problems, and variational inequalities as spe-

cial cases. Hence, collectively, the invex equilibrium problems cover a vast range of

applications. A significant generalization of convex functions is that of invex functions

introduced by Hanson [14]. Hanson’s initial result inspired a great deal of subsequent

work which has greatly expanded the role and applications of invexity in nonlinear op-

timization and other branches of pure and applied sciences. Weir and Mond [38] and

Noor [23, 24, 25] have studied the basic properties of the preinvex functions and their

role in optimization and variational-like inequalities. It is well known that the prein-

vex functions and invex sets may not be convex functions and convex sets. Noor [23]

has proved that the minimum of the differentiable preinvex (invex) functions on the

invex sets in normed spaces can be characterized by a class of variational inequalities,

known as variational-like (prevariational) inequalities. Thus it is clear that the concept
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of invexity plays exactly the same role in variational-like inequalities that classical con-

vexity plays in variational inequalities. This shows that the variational-like inequalities

are well defined in the setting of invexity. Ironically, we note that all the results for

variational-like inequalities are being obtained in the setting of classical convexity; see

[1, 6, 7, 9, 15, 18, 37] and the references therein. No attempt has been made to utilize the

concept of invexity. Since the preinvex and invex functions are not convex functions,

all these results for variational-like inequalities are misleading, since these results have

been obtained using the KKM mappings and diagonal convexity. It is still an open prob-

lem to prove that the subdifferential of a differentiable preinvex function is a maximal

monotone operator. This implies that one cannot define the resolvent operator asso-

ciated with the proper, preinvex, and lower-semicontinuous functions as it has been

defined in [6, 18]. In brief, we would like to emphasize the fact that variational-like in-

equalities must be studied in the setting of invexity. There is very delicate and subtle dif-

ference between the concepts of invexity and convexity, which should be taken into ac-

count while considering variational-like inequalities and related optimization problems.

There are a substantial number of numerical methods including projection tech-

nique and its variant forms, Wiener-Hopf equations, and auxiliary principle and re-

solvent equations methods for solving variational inequalities. However, it is known

[22, 24, 25, 27, 28, 29, 34, 35] that projection technique, Wiener-Hopf equations, and

proximal and resolvent equations techniques cannot be extended and generalized to

suggest and analyze similar iterative methods for solving invex equilibrium problems

and variational-like inequalities due to the presence of the function η(·,·). This fact

motivated the use the auxiliary principle technique, which is mainly due to Glowinski

et al. [13], to suggest and analyze some iterative schemes for solving invex equilibrium

problems. The main and basic idea in this technique is to consider an auxiliary invex

equilibrium problem related to the original problem. This way one defines a mapping

connecting the solutions of both these problems. In this case, one has to show that the

mapping connecting the solution is a contraction mapping and consequently it has a

fixed point, which is the solution of the original problem. This technique has been used

to suggest and analyze a number of iterative methods for solving various classes of

equilibrium problems, variational-like inequalities, and variational inequalities. It has

been shown that a substantial number of numerical methods can be obtained as special

cases from this technique; see [22, 24, 25, 27, 28, 29, 34, 35]. We prove that the conver-

gence of these methods requires either pseudomonotonicity or partially relaxed strong

monotonicity. In this respect, our results represent an improvement of the previously

known results. Our results can be considered as a novel and important application of

the auxiliary principle technique. Since the invex equilibrium problems with bifunc-

tion include several classes of variational-like inequalities, variational inequalities, and

equilibrium and related optimization problems as special cases, results obtained in this

paper continue to hold for these problems.

2. Preliminaries. Let H be a real Hilbert space, whose inner product and norm are

denoted by 〈·,·〉 and ‖·‖, respectively. Let K be a nonempty closed set in H. Let f :K→
H and η(·,·) :K×K→H be continuous functions.
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First of all, we recall the following well-known results and concepts.

Definition 2.1 [38]. Let u∈K. Then the set K is said to be invex at u with respect

to η(·,·) if, for all u,v ∈K, t ∈ [0,1],

u+tη(v,u)∈K. (2.1)

K is said to be an invex set with respect to η if K is invex at each u ∈ K. The invex

set K is also called an η-connected set.

From now onward K is a nonempty closed invex set in H with respect to η(·,·), unless

otherwise specified.

Definition 2.2 [38]. The function f : K →H is said to be preinvex with respect to

η if, for all u,v ∈K, t ∈ [0,1],

f
(
u+tη(v,u))≤ (1−t)f (u)+tf (v). (2.2)

The function f :K→H is said to be preconcave if and only if −f is preinvex.

Definition 2.3. The differentiable function f :K→H is said to be an invex function

with respect to η(·,·) if, for all u,v ∈K,

f(v)−f(u)≥ 〈f ′(u),η(v,u)〉, (2.3)

where f ′(u) is the differential of f at u. Note that Hanson [14] defined the concept

of invex differentiable functions on the whole space. The concepts of the invex and

preinvex functions have played a very important role in the development of convex

programming. From Definitions 2.2 and 2.3, it is clear that the differentiable preinvex

functions are invex functions, but the converse is not true [38]. However, Mohan and

Neogy [20] have shown that a differentiable function which is invex on an invex set K
is also a preinvex function under some conditions.

Definition 2.4. A function f is said to be a strongly preinvex function on K with

respect to the function η(·,·) with modulus µ if, for all u,v ∈K, t ∈ [0,1],

f
(
u+tη(v,u))≤ (1−t)f (u)+tf (v)−t(1−t)µ∥∥η(v,u)∥∥2. (2.4)

Clearly, the differentiable strongly preinvex function F is a strongly invex function with

module constant µ, that is,

f(v)−f(u)≥ 〈f ′(u),η(v,u)〉+µ∥∥η(v,u)∥∥2, (2.5)

but the converse is not true in general.
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Definition 2.5. The bifunctionϕ(·,·) :H×H → R∪{+∞} is called skew-symmetric

if and only if

ϕ(u,u)−ϕ(u,v)−ϕ(v,u)−ϕ(v,v)≥ 0, ∀u,v ∈H. (2.6)

Clearly if the skew-symmetric bifunctionϕ(·,·) is bilinear, thenϕ(u,u)≥ 0,∀u∈H.

In fact,

ϕ(u,u)−ϕ(u,v)−ϕ(v,u)+ϕ(v,v)=ϕ(u−v,u−v)≥ 0, ∀u,v ∈H. (2.7)

For a given continuous function F(·,·) :K×K→ R and continuous bifunctionϕ(·,·) :

K×K→ R∪{∞}, consider the problem of finding u∈K such that

F(u,v)+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈K, (2.8)

which is called the mixed quasi invex equilibrium problem, where the set K is an invex

set in H.

If F(u,v)≡ 〈Tu,η(v,u)〉, where T :H →H, and η(·,·) : K×K → R∪{∞}, then prob-

lem (2.8) is equivalent to finding u∈K such that

〈
Tu,η(v,u)

〉+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈K, (2.9)

which is known as the mixed quasi-variational-like inequality problem. Problem (2.9)

and its variant forms have been studied extensively by many authors in the setting of

convexity using the KKM mappings and fixed-point theory; see [1, 6, 7, 9, 15, 18, 37].

It is worth mentioning that the concept of variational-like inequalities in the convex-

ity setting is not well defined and consequently all the results so far obtained in the

convexity (scalar and vector) are misleading.

If η(v,u) = v −u, then the invex set K becomes the convex set and problem (2.8)

is called the mixed quasi-equilibrium problem of finding u ∈ K such that (2.8) holds

which was introduced and studied by Noor [29].

Also the variational-like inequality (2.9) is equivalent to finding u∈K such that

〈Tu,v−u〉+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈K, (2.10)

which is known as the mixed quasivariational inequality.

In brief, for suitable and appropriate choice of the operators and spaces, one can

obtain a number of new and known classes of equilibrium, variational-like inequalities,

and variational inequalities as special cases of problem (2.8). This clearly shows that

problem (2.8) is a quite general and unifying one. For the recent applications, numerical

methods, and formulations of variational inequalities, variational-like inequalities, and

equilibrium problems; see [1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].
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Definition 2.6. The function F(·,·) :K×K→ R is said to be

(i) pseudomonotone with respect to the bifunction ϕ(·,·), if

F(u,v)+ϕ(v,u)−ϕ(u,u)≥ 0

�⇒−F(v,u)+ϕ(v,u)−ϕ(u,u)≥ 0, ∀u,v ∈K;
(2.11)

(ii) partially relaxed strong monotone, if there exists a constant α> 0 such that

F(u,v)+F(v,z)≤α∥∥η(z,u)∥∥2, ∀u,v,z ∈K; (2.12)

(iii) hemicontinuous, for all u,v ∈K and t ∈ [0,1], if the mapping F(u+tη(v,u),v)
is continuous.

Note that for z =u, partially relaxed strong monotonicity reduces to

F(u,v)+F(v,u)≤ 0, ∀u,v ∈K, (2.13)

which is known as the monotonicity of F(·,·,·).
For F(u,v) = 〈Tu,η(v,u)〉 and F(u,v) = 〈Tu,v−u〉, Definition 2.6 reduces to the

well-known concepts in variational inequalities theory, see [28].

Lemma 2.7. Let the function F(·,·) be pseudomonotone and hemicontinuous. If the

function F(·,·) is preinvex with respect to the second argument and the function ϕ(·,·)
is preinvex with respect to the first argument, then problem (2.8) is equivalent to finding

u∈K such that

F(v,u)+ϕ(u,u)−ϕ(v,u)≤ 0, ∀v ∈K. (2.14)

Proof. Let u∈K be a solution of invex equilibrium problem (2.8). Then

F(u,v)+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈K, (2.15)

implies

F(v,u)+ϕ(u,u)−ϕ(v,u)≤ 0, ∀v ∈K, (2.16)

since the function F(·,·) is pseudomonotone with respect to the function ϕ(·,·).
Since K is an invex set, for all u,v ∈K, t ∈ [0,1], there exists an operator η(·,·) such

that vt =u+tη(v,u)∈K. Taking v = vt in (2.16) we have

F
(
vt,u

)+ϕ(u,u)−ϕ(vt,u
)≤ 0, ∀vt ∈K, (2.17)

from which we have

F
(
vt,u

)≤ t{ϕ(v,u)−ϕ(u,u)}, (2.18)
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using the preinvexity of ϕ(·,·) in the first argument. Now

0≤ F(vt,vt
)≤ tF(vt,v

)+(1−t)F(vt,u
)

≤ tF(vt,v
)+t(1−t){ϕ(v,u)−ϕ(u,u)} (using (2.18)).

(2.19)

Dividing inequality (2.19) by t and taking the limit as t → 0, since F(·,·) is hemicon-

tinuous, we have (2.15) which shows thatu∈K is a solution of (2.8), the required result.

Remark 2.8. Problem (2.14) is called dual mixed quasi invex equilibrium problem.

One can easily show that the solution set of (2.14) is an invex and closed set in H.

Lemma 2.7 can be viewed as a natural extension and generalization of Minty’s lemma;

see [2, 28].

3. Main results. In this section, we use the auxiliary principle technique to suggest

and analyze some iterative algorithms for solving invex equilibrium problem (2.8). For

a given u∈K, consider the problem of finding a unique w ∈K such that

ρF(w,v)+〈E′(w)−E′(u),η(v,w)〉≥ ρ{ϕ(w,w)−ϕ(v,w)} ∀v ∈K, (3.1)

which is known as the auxiliary invex equilibrium problem. Here E′(u) is the differential

of a strong preinvex function E(u) at the point u ∈ K. Problem (3.1) has a unique

solution, since the function E is a strongly preinvex function. We remark that if w =u,

then w is a solution of (2.8). On the basis of this observation, we suggest and analyze

the following iterative algorithm for solving (2.8) as long as (3.1) is easier to solve than

(2.8).

Algorithm 3.1. For a given u0 ∈H, calculate the approximate solution un+1 by the

iterative scheme

ρF
(
un+1,v

)+〈E′(un+1
)−E′(un

)
,η
(
v,un+1

)〉

ρ
{
ϕ
(
v,un+1

)−ϕ(un+1,un+1
)}≥ 0, ∀v ∈K. (3.2)

Algorithm 3.1 is called the proximal point method for solving mixed quasi invex equi-

librium problem (2.8). Note that if η(v,u) = v−u, then Algorithm 3.1 reduces to the

following method for solving mixed quasi-equilibrium problem (2.8), which is due to

Noor [28].

Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the

iterative scheme

ρF
(
un+1,v

)+〈E′(un+1
)−E′(un

)
,v−un+1

〉

+ρ{ϕ(v,un+1
)−ϕ(un+1,un+1

)}≥ 0, ∀v ∈K, (3.3)

which is called the proximal method. Note that E′(u) is the differential of a strongly

convex function E(u) at u∈K, a convex set in H.

If F(u,v)= 〈Tu,η(v,u)〉, then Algorithm 3.1 collapses to the following method for

solving mixed quasi-variational-like inequalities (2.9).
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Algorithm 3.3. For a given u0 ∈H, calculate the approximate solution un+1 by the

iterative scheme

〈
ρTun+1+E′

(
un+1

)−E′(un
)
,η
(
v,un+1

)〉

×ρ{ϕ(v,un+1
)−ϕ(un+1,un+1

)}≥ 0 ∀v ∈K. (3.4)

Here E′(u) is the differential of a differentiable strongly preinvex function E(u) at a

point u ∈ K, an invex set in H. Algorithm 3.3 can be considered as a correct algo-

rithm for solving variational-like inequalities (2.9). Note that all the algorithms and

their analyses in [1, 4, 6, 5, 7, 9, 15, 18, 37] are proposed and investigated in the setting

of convexity. Consequently their algorithms and results are wrong. As we have pointed

out earlier, the variational-like inequalities are only well defined in the setting of invex-

ity. In view of these facts and comments, results obtained [1, 4, 6, 5, 7, 9, 15, 18, 37]

must be modified and studied in the setting of invexity. In a similar way, one can ob-

tain the proximal point method for solving classical equilibrium problems, variational

inequalities, and related optimization problems.

We now study the convergence criteria of Algorithm 3.1. The analysis is in the spirit

of [29, 31]. We need the following condition.

Assumption 3.4. For all u,v,z ∈H, the function η(·,·) satisfies the condition

η(u,v)= η(u,z)+η(z,v). (3.5)

Assumption 3.4 has been used to study the existence of a solution of variational-like

inequalities by many authors; see [6, 15, 18]. Note that η(u,v) = 0 if and only if = v ,

for all u,v ∈H.

Theorem 3.5. Let the function F(·,·) be pseudomonotone. If E is a differentiable

strongly preinvex function with modulus β > 0 and (3.5) holds, then the approximate

solution un+1 obtained from Algorithm 3.1 converges to a solution u ∈ K satisfying

(2.8).

Proof. Let u∈K be a solution of (2.8). Then

−F(v,u)+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈K, (3.6)

since the bifunction F(·,·) is pseudomonotone with respect to the bifunction ϕ(·,·).
Taking v =un+1 in (3.6), we have

−F(un+1,u
)+ϕ(un+1,u

)−ϕ(u,u)≥ 0. (3.7)

Consider the function

B(u,z)= E(u)−E(z)−〈E′(z),η(u,z)〉

≥ β∥∥η(u,z)∥∥2, using the strong invexity of E.
(3.8)
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Combining (3.5), (3.6), (3.7), and (3.8), we have

B
(
u,un

)−B(u,un+1
)= E(un+1

)−E(un
)−〈E′(un

)
,η
(
u,un

)〉

+〈E′(un+1
)
,η
(
u,un+1

)〉

= E(un+1
)−E(un

)−〈E′(un
)−E′(un+1

)
,η
(
u,un+1

)〉

−〈E′(un
)
,η
(
un+1,un

)〉

≥ β∥∥η(un+1,un
)∥∥2+〈E′(un+1

)−E′(un
)
,η
(
u,un+1

)〉

≥ β∥∥η(un+1,un
)∥∥2−F(un+,u

)

+ρ{ϕ(un+1,un+1
)−ϕ(u,un+1

)}
,

≥ β∥∥η(un+1,un
)∥∥2+ρ{ϕ(un+1,un+1

)−ρϕ(u,un+1
)

−ϕ(un+1,u
)+ϕ(u,u)}

≥ β∥∥η(un+1,un
)∥∥2,

(3.9)

since the bifunction ϕ(·,·) is skew-symmetric.

Ifun+1 =un, then clearlyun is a solution of (2.8). Otherwise, the sequence B(u,un)−
B(u,un+1) is nonnegative and we must have

lim
n→∞

(∥∥η
(
un+1,un

)∥∥)= 0. (3.10)

Now essentially using the technique of Zhu and Marcotte [40], it can be shown that the

entire sequence {un} converges to the cluster point u satisfying the invex equilibrium

problem (2.8).

It is well known that to implement the proximal methods, one has to calculate the

approximate solution implicitly, which is in itself a difficult problem. To overcome this

drawback, we suggest another iterative method by using the auxiliary principle tech-

nique for solving the invex equilibrium problem (2.8).

For a given u∈K, consider the problem of a unique w ∈K such that

ρF(u,v)+〈E′(w)−E′(u),η(v,w)〉≥ ρ{ϕ(w,w)−ϕ(v,w)}, ∀v ∈K, (3.11)

which is called the auxiliary invex equilibrium problem. From the strong preinvexity of

the differentiable function, it follows that problem (3.11) has a unique solution. Note

that problems (3.11) and (3.1) are quite different. It is clear that if w = u, then w is a

solution of invex equilibrium problem (2.8). This observation enables to suggest and

analyze the following iterative method for solving (2.8).

Algorithm 3.6. For a given u0 ∈H, calculate the approximate solution un+1 by the

iterative scheme

ρF
(
un,v

)+〈E′(un+1
)−E′(un

)
,η
(
v,un+1

)〉

+ρ{ϕ(v,un+1
)−ϕ(un+1,un+1

)}≥ 0, ∀v ∈K. (3.12)

Note that if F(u,Tu,v) = 〈Tu,η(v,u)〉, then Algorithm 3.6 reduces to the following

iterative method for solving variational-like inequalities (2.9).
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Algorithm 3.7. For a given u0 ∈ H, find the approximate solution un+1 by the

iterative scheme

〈
ρTun+E′

(
un+1

)−E′(un
)
,η
(
v,un+1

)〉

+ρ{ϕ(v,un+1
)−ϕ(un+1,un+1

)}≥ 0, ∀v ∈K. (3.13)

For η(v,u)= v−u, the invex set K becomes the convex set K, and consequently Algo-

rithms 3.6 and 3.7 are exactly the same iterative methods for solving convex equilibrium

problems and variational inequalities as that of [28, 29].

One can study the convergence analysis of Algorithm 3.6 using essentially the tech-

nique of Theorem 3.5. However, we give its proof for the sake of completeness and to

convey an idea.

Theorem 3.8. Let the function F(·,·,·) be partially relaxed strong monotone with

constant α> 0 and let E(u) be a differentiable strongly preinvex function with modulus

β > 0. Let the bifunction ϕ(·,·) be skew-symmetric and let (3.5) hold. If 0 < ρ < (β/α),
then the approximate solution un+1 obtained from Algorithm 3.6 converges to a solution

u∈K of the invex equilibrium problem (2.8).

Proof. Let u∈ K be a solution of (2.8). Then taking v =un+1 in (2.8) and v =u in

(3.12), we have

F
(
u,un+1

)+ϕ(un+1,u
)−ϕ(u,u)≥ 0, (3.14)

ρF
(
un,u

)+〈E′(un+1
)−E′(un

)
,η
(
u,un+1

)〉

+ρ{ϕ(v,un+1
)−ϕ(un+1,un+1

)}≥ 0.
(3.15)

From (3.5), (3.12), (3.14), and (3.15), we have

B
(
u,un

)−B(u,un+1
)≥ β∥∥η(un+1,un

)∥∥2+〈E′(un+1
)−E′(un

)
,η
(
u,un+1

)〉

≥ β∥∥η(un+1,un
)∥∥2−ρ{F(u,un

)+F(un+1,u
)}

+ρ{ϕ(un+1,un+1
)−ϕ(u,un+1

)

−ϕ(un+1,u
)+ϕ(u,u)}

≥ {β−αρ}∥∥η(un+1,un
)∥∥2,

(3.16)

where we have used the fact that the function F(·,·) is partially relaxed strong mono-

tone with constant α> 0 and the bifunction ϕ(·,·) is skew-symmetric.

If un+1 =un, then clearly un is a solution of (2.8). Otherwise, for 0< ρ < (β/α), the

sequence B(u,un)−B(u,un+1) is nonnegative and we must have

lim
n→∞

(∥∥η
(
un+1,un

)∥∥)= 0. (3.17)

Now by using the technique of Zhu and Marcotte [40], it can be shown that the en-

tire sequence {un} converges to the cluster point u satisfying the mixed quasi invex

equilibrium problem (2.8).
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