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Let X, X′ be two locally finite, preordered sets and let R be any indecomposable commu-
tative ring. The incidence algebra I(X,R), in a sense, represents X, because of the well-
known result that if the rings I(X,R) and I(X′,R) are isomorphic, then X and X′ are iso-
morphic. In this paper, we consider a preordered set X that need not be locally finite but
has the property that each of its equivalence classes of equivalent elements is finite. Define
I∗(X,R) to be the set of all those functions f : X ×X → R such that f(x,y) = 0, when-
ever x � y and the set Sf of ordered pairs (x,y) with x < y and f(x,y) ≠ 0 is finite. For
any f ,g ∈ I∗(X,R), r ∈ R, define f +g, fg, and rf in I∗(X,R) such that (f +g)(x,y) =
f(x,y)+g(x,y), fg(x,y) = ∑x�z�y f(x,z)g(z,y), rf(x,y) = r · f(x,y). This makes
I∗(X,R) an R-algebra, called the weak incidence algebra of X over R. In the first part of
the paper it is shown that indeed I∗(X,R) represents X. After this all the essential one-
sided ideals of I∗(X,R) are determined and the maximal right (left) ring of quotients of
I∗(X,R) is discussed. It is shown that the results proved can give a large class of rings
whose maximal right ring of quotients need not be isomorphic to its maximal left ring of
quotients.

2000 Mathematics Subject Classification: 16S60, 16S90, 16W20.

1. Introduction. Let X and X′ be two locally finite, preordered sets, and let R be

a commutative ring. Under what conditions are incidence rings I(X,R) and I(X′,R)
isomorphic? In particular, under what conditions on R can one conclude that X and

X′ are isomorphic, when the two incidence rings I(X,R) and I(X′,R) are isomorphic?

The latter question has been discussed by many authors. One of the earliest results in

this direction is by Stanley [9], who proved that if R is a field, then the two incidence

rings are isomorphic if and only if X and X′ are isomorphic. Froelich [4] extended this

result to the case of an indecomposable ring R. Similar questions have been examined

in [1, 3, 10] in case R need not be commutative.

Now consider any preordered set X that need not be locally finite. Two elements

x,y ∈ X are said to be equivalent, x � y , if x ≤ y ≤ x. In Section 3, the isomorphism

problem for weak incidence algebras is discussed. Let X and X′ be two preordered sets

in each of which every equivalence class is finite, and let R, R′ be two commutative rings

such that the weak incidence algebras I∗(X,R) and I∗(X′,R′) are isomorphic as rings.

In case R and R′ are indecomposable, Theorem 3.10 shows that X, X′ are isomorphic

and R, R′ are isomorphic. The main aim of Section 4 is to prove some results that

can help in studying the maximal ring of quotients of an I∗(X,R). Similar work has

been done in a recent paper [2] for certain classes of incidence algebras. In [7], Spiegel

determines some essential ideals of an incidence algebra of a locally finite, partially
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ordered set. Here we are in a position to determine all the essential one-sided ideals of

an S = I∗(X,R) whenever R is indecomposable. A particular essential right ideal T is

isolated and the ring Q = HomS(T ,T) is discussed in Theorems 4.8, 4.9, and 4.10. This

ring Q is used to give some results on maximal right (left) ring of quotients of S.

2. Preliminaries. All rings considered here are with identity 1 ≠ 0. As the various

concepts discussed here for weak incidence algebras are similar to those for incidence

algebras, for details on incidence algebras one may consult [8]. We now collect some

results on rings and modules.

Lemma 2.1. For any commutative ring R and any positive integer n, if MR = R(n) is

isomorphic to its summand N, then M =N.

Proof. NowM =N⊕K. For any maximal ideal P of R, the localizationMP =NP⊕KP .

As the ranks of the free RP -modules MP and NP are the same and finite, KP = 0. Hence

K = 0.

Lemma 2.2. Let R be a commutative ring and let K be any ring such that Mn(R) �
Mm(K). Then m divides n. If n=m, then R �K.

Proof. The first part follows from Wedderburn’s structure theorem for simple ar-

tinian algebras, and the second part is in [6].

Lemma 2.3. Let T be any ring and let e, e′, f , f ′ be any four idempotents in T such

that eT � e′T , fT � f ′T . Then eTf ≠ 0 if and only if e′Tf ′ ≠ 0.

Proof. The hypothesis gives that HomT (fT ,eT) � HomT (f ′T ,e′T), eTf � e′Tf ′,
as abelian groups. This proves the result.

3. Isomorphism. Let X be any preordered set (i.e., X is a set with a relation � that

is reflexive and transitive). For any x,y ∈ X, set x � y , if x � y � x. Then � is an

equivalence relation. A preordered set X is said to be a class finite, preordered set if,

for any x ∈X, the equivalence class [x]= {y ∈X : x ≤y ≤ x} is finite. Henceforth we

take X to be a class finite, preordered set and R a commutative ring. The set K∗(X,R)=
{f ∈ I∗(X,R) : f(x,y) = 0 whenever x � y} is a nil ideal. Indeed, given f ∈ K∗(X,R),
fm+1 = 0, for m = |Sf |. Indeed, one can see that each member of K∗(X,R) is strongly

nilpotent, as defined in [8, page 176], so K∗(X,R) is contained in the lower nil radical

of I∗(X,R). Let Y be a representative partially ordered subset of X. For any x ∈ X, let

|[x]| = nx . For each x ∈ X, the set Bx = {f ∈ I∗(X,R) : f(u,v) = 0 whenever u � x or

v � x}, is a ring with δx as identity, where δx(u,v) = 0, whenever u � x, v � x, or

u≠ v , and δx(u,u)= 1 whenever u�x. Let δ denote the identity element of I∗(X,R).
For any x,y ∈X, with x �y , let exy ∈ I∗(X,R) be such that exy(u,v)= 0, for (u,v)≠
(x,y), and exy(x,y)= 1. Each of exy is called a matrix unit of I∗(X,R). We write ex =
exx . Then Bx is the nx×nx full matrix ring over R with {euv : u � x, v � x} as its set

of matrix units. LetMn(R) denote the n×n full matrix ring over R. Further, D∗(X,R)=
{f ∈ I∗(X,R) : f(u,v) = 0 whenever u � v} is a subring of I∗(X,R), each Bx is an

ideal of D∗(X,R). Set S = I∗(X,R), K = K∗(X,R), D = D∗(X,R). For any subset Z of

X, let EZ ∈ S be such that EZ(u,u) = 1 for u ∈ Z , and EZ(x,y) = 0 otherwise. For any
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f ∈ S, support of f , denoted by suppt(f ), equals {(x,y) : f(x,y)≠ 0}, the cardinality

of suppt(f ) is called the weight of f and we denote it bywt(f). Let X′ be another class

finite, preordered set. Let R′ be another commutative ring. We use the same symbols for

the matrix units of I∗(X,R) or I∗(X′,R′) and so on, but S′ = I∗(X′,R′), K′ =K∗(X′,R′),
and D′ = D∗(X′,R′). Let Y and Y ′ be fixed representative partially ordered subsets of

X and X′, respectively. For any two distinct members y , z of Y , δy , δz are orthogonal

idempotents. Any f ∈ S will be sometimes denoted by the formal sum
∑
x,y f (x,y)exy

(or by the matrix [f (x,y)] indexed by X). The following is obvious.

Lemma 3.1. (i) I∗(X,R)=D∗(X,R)⊕K∗(X,R) as abelian groups.

(ii) D∗(X,R)=Πy∈YBy , where Y is any representative partially ordered subset of X.

(iii) I∗(X,R)/K∗(X,R)�Πy∈YMny (R)�D∗(X,R), where Y is any representative par-

tially ordered subset of X.

(iv) For any f ,exy ∈ I∗(X,R), wt(fexy) is finite, that is, fexy =
∑
u≤y auyeuy , with

finitely many aux ≠ 0.

It follows from (ii) that K∗(X,R) does not equal the Jacobson radical of S, unless the

Jacobson radical of R is zero. For any f ∈ S, we write f = fD +fK with fD ∈ D and

fK ∈K; fD is called the diagonal of f . The following is obvious.

Lemma 3.2. For any nonempty subset Z of X, EZSEZ � I∗(Z,R).
Lemma 3.3. For any two idempotents f ,g ∈ S, fSg ≠ 0 if and only if fDSgD ≠ 0.

Proof. In S = S/K, f+K = fD+K. AsK is nil, we get fS � fDS. After this, Lemma 2.3

completes the proof.

Lemma 3.4. Let 0≠ e= e2 ∈ S.

(i) eD is a nonzero idempotent and eDδy = δyeD for any y ∈ Y .

(ii) There exists y ∈ Y such that eDδy = δyeD ≠ 0.

(iii) For anyy ∈ Y , e′ = eeDδye is an idempotent such that e′(u,v)=∑e(u,w1)e(w1,
w2)e(w2,v), where the summation runs over w1,w2 in [y]∩ [u,v]. Further,

e−e′, e′ are orthogonal idempotents. If eDδy ≠ 0, then e′ ≠ 0.

Proof. (i) is obvious. Now S/K = D = Πy∈KBy � D, δ = Πδy , and e = eD . It fol-

lows that for some y ∈ Y , eδy = eDδy ≠ 0. This proves (ii). Consider any y ∈ Y and

e′ = eeDδye. The definition of the product of two members of S gives that e′(u,v) =∑
e(u,w1)e(w1,w2)e(w2,v), where the summation runs over allw1,w2 in [y]∩[u,v].

Then we have (e′)2(u,v)=∑u�w�v e′(u,w)e′(w,v)=
∑
e(u,w1)e(w1,w2)e(w2,w)e(w,

w3)e(w3,w4)e(w4,v), where summation runs over all wi,w in [y]∩ [u,v] such that

w2 �w �w3. Thus (e′)2(u,v)=∑e(u,w1)e(w1,w4)e(w4,v)= e′(u,v). Hence e′ is an

idempotent. As ee′ = e′ = e′e, it follows that e−e′ is an idempotent orthogonal to e′. If

eDδy ≠ 0, as obviously e′ = eDδy in S/K, we get e′ ≠ 0.

Lemma 3.5. (i) If e ∈ S is an indecomposable idempotent, then there exists a unique

y ∈ Y such that e= eeDδye.
(ii) Let e ∈ S be a nonzero idempotent such that eD ∈ By for some y ∈ Y . Then e =

eeDδye; this y is uniquely determined by e.
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Proof. (i) In S = S/K, e = eD is an indecomposable idempotent. So there exists a

unique y ∈ Y such that e= eDδy . By Lemma 3.4(iii), e′ = eeDδye is a nonzero idempo-

tent. As e−e′ is orthogonal to e′ and e is indecomposable, e= e′.
(ii) The hypothesis gives e= eeDδye. Then Lemma 3.4(iii) gives e= eeDδye.
Theorem 3.6. Let R be any indecomposable commutative ring and X any class finite,

preordered set. Then for any automorphism σ of S = I∗(X,R), σ(K)=K.

Proof. Consider any f ∈ S\K. For some x � y , f(x,y) ≠ 0. Then g = exfeyx
is such that g(x,x) ≠ 0 and g = exgex . So σ(g) = eσ(g)e, where e = σ(ex) is an

indecomposable idempotent. Let Y be a representative partially ordered subset of X.

By Lemma 3.5, there exists unique z ∈ Y such that e = eeDδze, eD ∈ Bz. Thus σ(g) =
eeDδzeσ(g)eeDδze ≠ 0, δzeσ(g)eeDδz ≠ 0, so for some u,v ∈ [z], σ(g)(u,v) ≠ 0.

Hence σ(g) ∉K. Consequently, σ(f) ∉K. This proves the result.

Lemma 3.7. For some y,y ′ ∈ Y , let there exist idempotents e∈ By , f ∈ By′ such that

eSf ≠ 0. Then eySey′ ≠ 0.

Proof. The hypothesis gives that δySδy′ ≠ 0, so there exist u∈ [y], v ∈ [y ′] such

that euSev ≠ 0. After this, Lemma 2.3 completes the proof.

Lemma 3.8. If for some idempotent f ∈ S, fS � δyS for some y ∈ Y , then fD = δy .

Proof. We have fDS � δyS. In S = S/K, fDS � δyS, so fD ∈ By and fDBy � By . By

Lemma 2.1, fD = δy .

Lemma 3.9. Let R, R′ be indecomposable and σ : S → S′ an isomorphism.

There exists a one-to-one mapping η of Y onto Y ′ such that σ(δy)= δη(y)+gη(y) for

some gy ∈K′, |[y]| = |[η(y)]|, and R � R′.
Proof. The hypothesis gives that for any x ∈ X, ex is an indecomposable idempo-

tent in S. Now σ(δy)S′ = ⊕
∑
u�y σ(eu)S′. As these σ(eu)S′ are indecomposable and

isomorphic right ideals, there exist unique η(y) ∈ Y ′ such that each σ(eu)D ∈ B′δη(y) .
Consequently, σ(δy)D ∈ B′η(y) and σ(δy)Dδη(y) = δη(y)σ(δy)D . By Lemma 3.5(ii),

σ(δy)= σ(δy)σ(δy)Dδη(y)σ(δy). Similarly,

σ−1(δη(y)
)= σ−1(δη(y)

)(
σ−1(δη(y)

))
Dδzσ

−1(δη(y)
)

(3.1)

for some z ∈ Y . So, δη(y) = δη(y)σ((σ−1(δη(y)))D)σ(δz)δη(y). Thus, in S′ = S′/K′,

σ
(
δy
)= σ(δy

)
σ
(
δy
)
Dδη(y)σ

((
σ−1

(
δη(y)

))
D
)
σ
(
δz
)
δη(y)σ

(
δy
)
. (3.2)

In S′, δη(y) is a central idempotent. Thus

σ
(
δy
)= σ(δy

)
σ
((
σ−1

(
δη(y)

))
D
)
σ
(
δzδy

)
δη(y), (3.3)
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which equals zero, if z ≠ y . Hence z = y and η is a bijection from Y onto Y ′. We

get σ(δy) = δη(y)σ((σ−1(δη(y)))Dδy) and δη(y) = δη(y)σ((σ−1(δη(y)))Dδy). Hence

σ(δy)= δη(y). This shows thatσ(δy)= δη(y)+gη(y) for some gη(y) ∈K′. Now δySδy =
By . Asσ(δy)S′ � δη(y)S′, it follows that By � B′η(y). By Lemma 2.2, |[y]| = |[η(y)]| and

R � R′.

Theorem 3.10. Let X and X′ be two class finite, preordered sets. Let R and R′ be any

two indecomposable commutative rings. If there exists an isomorphism of I∗(X,R) onto

I∗(X′,R′), then X, X′ are isomorphic and the rings R, R′ are isomorphic.

Proof. We use the terminology developed before Theorem 3.10. Consider any u,

v ∈ Y such that u � v . Then euSev ≠ 0, σ(eu)S′σ(ev)≠ 0. It follows from Lemma 3.9

that σ(eu)D ∈ B′η(u), σ(ev)D ∈ B′η(v). By Lemma 3.3, σ(eu)DS′σ(ev)D ≠ 0, eη(u)S′eη(v) ≠
0, hence η(u) � η(v). Thus η is an isomorphism of Y onto Y ′. Also by Lemma 3.9,

|[y]| = |[η(y)]|, hence it follows that X and X′ are isomorphic. By Lemma 3.9, R and

R′ are isomorphic.

Lemma 3.11. For any commutative ring T and any class finite, preordered set X, the

following hold.

(i) A central idempotent e ∈ I∗(X,T) is centrally indecomposable if and only if e =
gEZ for some indecomposable idempotent g ∈ T and a connected component Z of

X.

(ii) Let g and h be two indecomposable idempotents in T and let Z , Z′ be two connected

components of X; the rings gEZI∗(X,T), hEZI∗(X,T) are isomorphic if and only if the

rings gT , hT are isomorphic and Z , Z′ are isomorphic.

Proof. (i) Consider any central idempotent e ∈ I∗(X,T). On the same lines as for

incidence algebras, it can be easily seen that e(x,y)= 0, whenever x ≠y . For any con-

nected component Z of X, there exists an idempotent gZ ∈ T such that e(x,x)= gZ for

every x ∈X. Using this, (i) follows. (ii) As gEZI∗(X,T)� I∗(Z,gT) and hEZ′I∗(X,T)�
I∗(Z′ ·hT), the result follows from Theorem 3.10.

Let T be any ring. Let In(T) be the set of all centrally indecomposable central idem-

potents of T . Two central idempotents g, h of T are said to be equivalent if the rings

gT and hT are isomorphic. For any central idempotent g ∈ T , [g] denotes the set of

central idempotents in T equivalent to g.

Theorem 3.12. Let R and R′ be any two commutative rings and let X, X′ be two class

finite, preordered sets. Let σ : I∗(X,R)→ I∗(X′,R′) be a ring isomorphism. Let g ∈ In(R)
and let Z be a connected component of X.

(i) There exist unique g′ ∈ In(R′) and unique connected component Z′ of X′ such that

σ(gEZ)= g′EZ′ ; further, Z � Z′, |[g]||[Z]| = |[gEZ]| = |[g′EZ′]| = |[g′]||[Z′]|.
(ii) If the cardinalities of [g] and [g′] are finite and equal, then X and X′ are isomor-

phic.

Proof. (i) The first part follows from Lemma 3.11(i); the second part follows from

Lemma 3.11(ii). (ii) If |[g]| = |[g′]| and they are finite, if follows from (i) that, given any
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connected component Z of X, there exists a connected component Z′ of X′ isomorphic

to Z , and [Z], [Z′] have the same cardinalities. Consequently, X and X′ are isomorphic.

The following is immediate from Theorem 3.12.

Corollary 3.13. Let R be any commutative ring such that R admits an indecom-

posable idempotent g for which the equivalence class [g] is finite. Let X and X′ be any

two class finite, preordered sets. If the rings I∗(X,R) and I∗(Y ,R) are isomorphic, then

X and X′ are isomorphic.

4. Essential right ideals and maximal ring of quotients. Throughout S = I∗(X,R),
where X is a class finite, preordered set and R is a commutative ring in which 1 is

indecomposable. Any x ∈ X is said to be a maximal element if the equivalence class

[x] is maximal in the partially ordered set of the equivalence classes in X. For any

x,y ∈ X, we say x < y , if x ≤ y but [x] ≠ [y]. Set X0 = {x ∈ X : x is maximal},
Y0 = {(x,y) ∈ X ×X0 : x ≤ y}, Y1 = {(x,y) : x < y and there does not exist any z ∈
X0 such that y ≤ z}, Y2 = {(x,y) : x < y and there exists a z ∈ X0 such that y < z},
and Y3 = {(x,y)∈ X0×X0 : [x]= [y]}. Further, K = K∗(X,R). Now L=∑(x,y)∈Y3

exyR
is a right ideal of S. In [2], maximal rings of quotients of certain incidence algebras have

been discussed. Here we intend to prove some results that can help in studying the

maximal rings of quotients of S. Spiegel [7] has determined certain classes of essential

ideals of an incidence algebra of a locally finite, preordered set. Here we determine

all essential one-sided ideals of S. For the definitions of an essential submodule, dense

submodule, and singular submodule of a module, one may refer to [5]. Let M be any

module, then N ⊂e M (N ⊂d M) denotes that N is an essential (dense) submodule of M ,

and Z(M) denotes the singular submodule ofM . The concept of the maximal right ring

of quotients of a ring is discussed in [5, Section 13].

Lemma 4.1. Let K1 =K+L. Then K1 is an essential right ideal of S and l·ann(K1)= 0.

Indeed for any 0≠ f ∈ S, there exists exw ∈K1 such that 0≠ fexw ∈K1.

Proof. Let 0≠ f ∈ S. Then f(u,v)≠ 0 for some u≤ v . Suppose fK1 = 0. If v is not

maximal in X, there exists evz ∈ K, and fevz ≠ 0, which is a contradiction. Hence v is

maximal. Then ev ∈K1 with fev ≠ 0, which is again a contradiction. Hence l·ann(K1)=
0. In any case there exists exy ∈ K1 such that fexy ≠ 0. By applying induction on

wt(fexy), we prove that for someg ∈ S, 0≠ fexyg ∈K1, which will prove thatK1 ⊂e SS .

Supposewt(fexy)= 1. Then fexy = aeuy , for some 0≠ a∈ R. If y is not maximal, for

any z > y , fexyeyz = aeuz ∈K1. If y is maximal, then ey ∈K1, so fexyey = aeuy ∈K1.

To apply induction, suppose that wt(fexy) = n > 1, and for any h ∈ S, if for some

euv ∈ K1, wt(heuv) < n and heuv ≠ 0, then for some evz ∈ S, 0 ≠ heuvevz ∈ K1. We

can write fexy = aeuy +h, where wt(h) = n−1 and h(u,y) = 0. For some eys ∈ K1,

aeuyeys = aeus ∈K1. Then fexs = aeus+heys with wt(heys)=n−1. By the induction

hypothesis, there exists esw ∈ K1 such that 0 ≠ heysesw ∈ K1. Then 0 ≠ fexw ∈ K1.

Hence K1 ⊂e SS .
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We call a subset B of R an essential subset of R if, for each 0≠ r ∈ R, there exists an

s ∈ R such that 0≠ rs ∈ B. Clearly the ideal of R generated by an essential subset is an

essential ideal.

Lemma 4.2. Let E ⊂e SS . For any x ≤ y in X, let Axy = {r ∈ R : rexy ∈ E}, Bxy =
∪y≤zAxz.

(i) Axy ⊆Axw whenever x ≤y ≤w.

(ii) Bxy is an essential subset of R.

Proof. (i) is trivial. Let 0 ≠ r ∈ R. Then for some g ∈ S, 0 ≠ rexyg ∈ E. For some

y ≤ w, rg(y,w) ≠ 0. This gives rexygew = rg(y,w)exw ∈ E, rg(y,w) ∈ Bxy . This

proves that B is an essential subset of R.

Lemma 4.3. Let {Axy : either x < y, or x ≤ y and y is maximal in X} be a family

of ideals in R such that (i) Axy ⊆ Axz whenever y ≤ z, and (ii) for any x ≤ y in X,

Bxy = ∪y≤zAxz is an essential subset of R. Then E =∑x,y Axyexy is an essential right

ideal of S and E ⊆K1.

Proof. It is easy to verify that E is a right ideal of S contained in K1. Let 0≠ f ∈K1.

By induction on wt(f), we prove that 0 ≠ frexy ∈ E for some exy ∈ K1, r ∈ R, which

will prove that E ⊂e SS . Suppose f = aexy . As a≠ 0, there exists a z ≥ y and an r ∈ R
such that 0≠ ar ∈Axz. Then 0≠ freyz = arexz ∈ E. Here, if y is not maximal, choose

z > y ; if y is maximal, choose y = z; in any case exz ∈ K1. Thus the result holds for

wt(f)= 1. To apply induction, letwt(f)=n> 1, and let the result hold for any positive

integer less than n. We write f = aexy +h, with 0 ≠ a ∈ R, exy ∈ K1, wt(h) = n−1,

and h(x,y) = 0. There exists an reyz ∈ K1 such that 0≠ aexyreyz = arexz ∈ E. Then

0 ≠ frexz = arexz+hreyz. If hreyz = 0, frexz = arexz ∈ E and we finish. Suppose

hreyz ≠ 0. By the induction hypothesis, there exists bezw ∈ K1, with b ∈ R, such that

0≠ hreyzbezw ∈ E. Then 0≠ frbexw ∈ E.

Let Minness(S) be the set of all essential right ideals of the form given in Lemma 4.3.

Lemma 4.4. Z(S)= {f ∈ S : fE = 0 for some E ∈Minness(S)}.
Proof. Let f ∈ Z(S). For some E ⊂e SS , fE = 0. By Lemmas 4.2 and 4.3, there exists

an E′ ∈Minness(S) such that E′ ⊆ E. Then fE′ = 0. This proves the result.

Theorem 4.5. Z(SS)= 0 if and only if Z(R)= 0.

Proof. Let Z(R) ≠ 0. For some r ≠ 0 and an essential ideal A of R, rA = 0. In

Lemma 4.3, by taking everyAxy =A, we get an E ⊂e SS such that rIE = 0. ThusZ(S)≠ 0.

Conversely, let Z(S)≠ 0. Consider any 0≠ f ∈ Z(S). For some E ∈Minness(S), fE = 0.

Now f(u,v)≠ 0 for some u≤ v . Then 0≠ euf ∈ Z(S). Suppose there exists a maximal

z ≥ v . As z is maximal, it follows from Lemma 4.3(i) that Bvz =Avz, so evfevzAvz = 0,

f(u,v)Avz = 0, f(u,v)∈ Z(R). Hence Z(R)≠ 0.

Proposition 4.6. For any (x,y)∈ Y0, set Axy = R, for (x,y)∈ Y1, set Axy = R, and

for (x,y)∈ Y2, set Axy = 0. Let T =∑x,y exyAxy .

(i) Then T is an ideal of S, T ⊂e SS , and l·ann(T)= 0.

(ii) S embeds in the ring Q=Hom(TS,TS) such that SS is dense in QS .
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Proof. That T is an essential right ideal in S follows from Lemma 4.3. Suppose that

0 ≠ f ∈ l·ann(T). Then f(u,v) ≠ 0 for some u ≤ v . Suppose there exists no maximal

z ≥ v . Choose any w >v . Then evw ∈ T but fevw ≠ 0, which is a contradiction. Hence

there exists a maximal z ≥ v . Then evz ∈ T and fevz ≠ 0, which is also a contradiction.

Hence l·ann(T)= 0. Consider any exy ∈ T . By Lemma 3.1,wt(fexy) is finite, so fexy =∑
u≤y auyeuy , a finite sum. By definition, the following two cases arise.

Case 1. y is maximal. Then every euy ∈ T , so fexy ∈ T .

Case 2. There does not exist any maximal z ≥ y . Then u < y , Auy = R, euy ∈ T ,

hence fexy ∈ T .

This proves that T is an ideal in S. For each f ∈ S, let λ(f) be the left multiplication

on T by f . Then λ is an embedding of S in Q. Consider any σ,η∈Q, with σ ≠ 0. Then

for some f ∈ T , σ(f)≠ 0. We see that σ ·λ(f)= λ(σ(f))≠ 0 and η·λ(f)= λ(η(f))∈
λ(S). Hence SS is dense in QS .

For each x0 ∈ X0, set T[x0] =
∑{exyR : (x,y) ∈ Y3 and [x0] = [y]}, and set T ′ =∑{exyR : (x,y) ∈ Y1}. Observe that T[x0] = T[x1] if and only if [x0] = [x1]. Each of

T[x0], T ′ is a right ideal of S contained in T , and T is a direct sum of these right ideals.

Let Z0 be the set of equivalence classes in X given by the members of X0. For any ring

P , let P̂ be the maximal right ring of quotients of P [5, Section 13]. The following result

can be easily deduced from various results and exercises given in [5, Sections 8 and

13].

Theorem 4.7. (I) For any family of rings {Pα :α∈Λ}, P =∏α∈ΛPα, P̂ =∏α∈Λ P̂α.

(II) For any two subrings A, B of a ring P , if AA ⊂d BA, BB ⊂d PB , then Â= P̂ .

(III) For any positive integer n and any ring P , M̂n(P)=Mn(P̂).

Theorem 4.8. (i) Q = Hom(TS,TS)� (Π{HomS(T[x0],T[x0]) : [x0]∈ Z0})×Homs(T ′,
T ′).

(ii) Maximal right rings of quotients of S and Q are the same.

(iii) Let P[x0] = HomS(T[x0],T[x0]) and P ′ = Hom(T ′,T ′). Then Ŝ � (Π{P̂[x0] : [x0] ∈
Z0})× P̂ ′.

Proof. To prove (i) it is enough to prove that HomS(T[x0],T[x1])= 0 whenever [x0]≠
[x1], HomS(T[x0],T ′) = 0 = HomS(T ′,T[x0]). Consider σ ∈ HomS(T[x0],T[x1]). For any

exy ∈ T[x0], [x0] = [y], so euy 
∈ T[x1], but σ(exy) =
∑
u≤y auyeuy , auy ∈ R. Thus

σ(exy)= 0, σ = 0. Similarly, we can prove that the others are also zero. As SS is dense

in QS , Ŝ = Q̂. Because of (i) and Theorem 4.7, we get Ŝ � (Π{P̂[x0] : [x0]∈ Z0})× P̂ ′.
We now discuss matrix representations of HomS(T[x0],T[x0]) and Homs(T ′,T ′).

Theorem 4.9. Let x0 be a maximal member of X, Ux0 = {x ∈ X : x ≤ x0}. Then

HomS(T[x0],T[x0]) is isomorphic to the ring of column-finite matrices over R indexed by

Ux0 .

Proof. Letσ ∈HomS(T[x0],T[x0]). For exy ∈ T[x0],y�x0. Ifσ(exy)=
∑
u≤y auyeuy ,

then for any other exz ∈ T[x0], σ(exz)=
∑
u≤z auzeuz = σ(exy)eyz =

∑
u≤y auyeuz,

auy=auz. Conversely, any σ ∈HomR(T[x0],T[x0]), such that if σ(exy)=
∑
u≤y auyeuy ,
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then σ(exz) =
∑
u≤y auyeuz for y � z, is in HomS(T[x0],T[x0]). Now Vx0 = {exy : x ∈

Ux0 , y � x0} is an R-basis of T[x0]. We write σ(exy)=
∑
u,v auvxyeuv,euv ∈ Vx0 . Then

auvxy = 0, for v ≠ y , auyxy = auzxz, whenever y � z. We write bux = auyxy and

bux = 0 otherwise. We get matrix [bux] over R indexed by Ux0 . This matrix is column

finite; σ ↔ [bux] gives the desired isomorphism.

Theorem 4.10. Let X′ = {y ∈ X : there exist no maximal z ≥ y}. Let G be the set of

arrays [avxy] over R indexed by X′ ×X′ ×X′ such that it has following properties:

(i) avxy = 0, whenever x ≮y , v ≮y , or x < v <y ,

(ii) for any fixed pair (x,y) with x <y , the number of v for which avxy ≠ 0 is finite,

(iii) for y ≤ z, avxy = avxz if v <y , and avxz = 0 if v ≮y and v < z.

In G, define addition componentwise and the product by [avxy][bvxy]= [cvxy] such

that cvxy =
∑
w avwybwxy . Then HomS(T ′,T ′)�G.

In case X′ has the property that for every pair of elements u,v in X′ there exists a

w ∈X′ such that u≤w, v ≤w, then any array [avxy]∈G has the following additional

properties:

(iv) if u,v ∈X′ are not comparable, then auxv = 0,

(v) for x <y , x < z, avxy = avxz.
Put bvx = avxy . Then [bvx] is a column finite matrix indexed by X′ with the property

that bvx = 0 if v > x, or there exists y > x such that v ≮ y . Set bvx = 0 in all other

cases. Let B be the set of all such matrices. Then B is a ring isomorphic to HomS(T ′,T ′).

Proof. Let σ ∈ HomS(T ′,T ′). For any x < y ≤ z ∈ X′, we have σ(exy) =∑
cuvxyeuv , cuvxy ∈ R, (u,v) ∈ Y1, with cuvxy = 0, whenever v ≠ y . So we can write

σ(exy)=
∑
v<y evyavxy , a finite sum. Fory ≤ z,σ(exz)= σ(exy)eyz givesavxy = avxz

for v < y and avxz = 0 whenever v ≮ y , v < z. Suppose we have some x < v < y , by

considering σ(exy) = σ(exv)evy it follows that avxy = 0. For any other (v,x,y) ∈
X′ ×X′ ×X′, set avxy = 0. We get an array [avxy] with the desired properties. Con-

versely, any such array gives an S-endomorphism of T ′. This gives the desired isomor-

phism.

Suppose every pair of elements in X′ have a common upper bound. Consider any

v,w ∈ X′ that are not comparable. By (i), avxw = 0 for any x; this proves (iv). Sup-

pose x < y , x < z. There exists w ∈ X′ such that y < w, z < w. Then σ(exz)ezw =
σ(exy)eyw = σ(exw) gives (v). Set bvx = avxy . Because of (v), bvx is well defined. It

gives a matrix [bvx] indexed by X′, which is column finite and has the property that

bvx = 0 if either v > x, or there exists y > x such that v ≮ y . Let B be the set of all

column-finite matrices [bvx] over R indexed by X′ ×X′ with bvx = 0, whenever either

v > x or there exists a y >x such that v ≮y . Then HomS(T ′,T ′) is isomorphic to the

ring B.

Remark 4.11. Let X be any locally finite, preordered set and let R be any indecom-

posable commutative ring. Obviously, S = I∗(X,R) is a subring of S′ = I(X,R). But SS
need not be dense or essential in S′S . So the maximal right rings of quotients of S and

S′ need not be the same; in fact, they need not be isomorphic (see the example given

below). In case SS is dense in S′, the two rings will have the same maximal right ring of

quotients. In that case, S can help in studying S′.
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Theorem 4.12 [2]. Let X be any partially ordered set such that for any x ∈X, there

exists a maximal element z ≥ x and Lz = {y ∈X :y ≤ z} is finite. LetX0 be the set of max-

imal elements of X. For each z ∈X0, let nz be the number of elements y ≤ z. For the ring

S = I(X,R), Ŝ �Π{Mnz(R̂) : where z runs over representatives of equivalence classes in

X0}.
Proof. Let f ,g ∈ S′ = I(X,R) with g ≠ 0. For some u,v ∈ X, g(u,v) ≠ 0. Then

gev ≠ 0. At the same time the hypothesis on X gives that the support of fev is finite,

so fev ∈ S = I(X,R). Hence SS is dense in S′. After this, Theorems 4.7, 4.8, and 4.9

complete the proof.

Example 4.13. LetX =N be the set of natural numbers and letR be any indecompos-

able commutative ring. Consider S = I∗(N,R) and S′ = I(N,R). Let 0≠ f ∈ S′. For some

r ∈N, fer ≠ 0. Clearly, the support of fer is finite. Hence SS is dense in S′. So the maxi-

mal right quotient rings of S and S′ are the same. Consider g ∈ S′ for which g(1,n)= 1

for every n, and g(n,m) = 0 otherwise. Then for any h ∈ S, hg = 0 or hg = kg for

some 0≠ k∈N, so SS is not dense in S′. Thus maximal left rings of quotients of S and

S′ are not the same. We now show that they need not be isomorphic. Consider R = F
a countable field. As N has no maximal element, K = T = T ′, Q = HomS(T ′,T ′). By

Theorem 4.10, Q is isomorphic to S′. But S′, as a right S′-module, is dense in the ring

L of all column-finite matrices over F , indexed by N. It is well known that the ring of all

column-finite matrices over a field, indexed by any set, is right self-injective. Hence L
is the maximal right ring of quotients of S and S′. Let N′ be the set of natural numbers

with reverse ordering. As N′ has unique maximal element 0, N′ = T0, by Theorem 4.9,

the corresponding Q′ is isomorphic to the ring of all column-finite matrices over F ,

indexed by N. So Q′ is right self-injective. However S = I∗(N,F) is anti-isomorphic to

S1 = I∗(N′,F). So Q′′, the maximal left ring of quotients of S, is isomorphic to the ring

of all row-finite matrices over F , indexed by N. Now e00Q′′ is a countable set, and any

minimal left ideal ofQ′′ is generated by an element of e00Q′′, so the left socle of e00Q′′

is of countable rank. For S′, the left socle is e00S′, which is of uncountable rank. Also

S′ is left nonsingular. So L′, the maximal left ring of quotients of S′, is such that its left

socle is of uncountable rank. This proves that the maximal left rings of quotients of S
and S′ are not isomorphic.
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