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1. Introduction. Let Q̄ be an algebraic closure of the fieldQ of rational numbers and

let (A,�)/Q̄ be a nonzero polarized abelian variety. The field of moduli of (A,�)/Q̄ is

the minimal number field kA,� ⊂Q such that (A,�) is isomorphic (over Q) to its Galois

conjugate (Aσ ,�σ ), for all σ ∈ Gal(Q/kA,�).
The field of moduli kA,� is an essential arithmetic invariant of the Q-isomorphism

class of (A,�). It is contained in all possible fields of definition of (A,�) and, unless

(A,�) admits a rational model over kA,� itself, there is not a unique minimal field of

definition for (A,�). In this regard, we have the following theorem of Shimura.

Theorem 1.1 (see [19]). A generic principally polarized abelian variety of odd dimen-

sion admits a model over its field of moduli. For a generic principally polarized abelian

variety of even dimension, the field of moduli is not a field of definition.

Let End(A) = EndQ(A) denote the ring of endomorphisms of A. It is well known

that End(A) = Z for a generic polarized abelian variety (A,�). However, from Albert’s

classification of involuting division algebras (see [13]) and the work of Shimura [18],

it is known that there are other rings that can occur as the endomorphism ring of an

abelian variety. Namely, if A/Q is simple, End(A)may be an order in either a totally real

number field F of degree [F :Q] | dim(A), a totally indefinite quaternion algebra B over

a totally real number field F of degree 2[F :Q] | dim(A), a totally definite quaternion

algebra B over a totally real number field F of degree 2[F : Q] | dim(A), or a division

algebra over a CM-field.

We recall that a quaternion algebra B over a totally real field F is called totally indef-

inite if B⊗QR �M2(R)×···×M2(R) and totally definite if B⊗QR �H×···×H, where

H= (−1,−1/R) denotes the skew-field of real Hamilton quaternions.

Definition 1.2. Let (A,�)/Q be a polarized abelian variety and let S ⊆ End(A) be a

subring of End(A). The field of moduli of S is the minimal number field kS ⊇ kA,� such

that, for any σ ∈ Gal(Q/kS), there is an isomorphism ϕσ/Q :A→Aσ , ϕ∗
σ (�σ )=�, of
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polarized abelian varieties that induces commutative diagrams

A

β

Aσ

βσ

A Aσ

(1.1)

for any β∈ S.

We remark that, as a consequence of the very basic definitions, when S = Z, we

have kS = kA,�. But in the case that End(A) � Z, little is known on the chain of Galois

extensions kEnd(A) ⊇ kS ⊇ kA,�.

The main aim of this paper is to study the field of moduli of totally indefinite quater-

nionic multiplication on an abelian variety. In relation to Shimura’s Theorem 1.1, we

remark that the dimension of an abelian variety whose endomorphism ring contains a

quaternion order is always even.

We state our main result in the next section. As we will show in Section 3, it is a

consequence of the results obtained in [16, 17] on certain modular forgetful morphisms

between certain Shimura varieties, Hilbert modular varieties, and the moduli spaces of

principally polarized abelian varieties.

In Section 4, we specialize our results to abelian surfaces. We use our results together

with those of Mestre [12] and Jordan [11] to compare the field of moduli and field of

definition of the quaternionic multiplication on an abelian surface.

In the appendix, we discuss a question on the arithmetic of quaternion algebras that

naturally arises from our considerations and which is also related to the recent work

by Chinburg and Friedman [3, 4].

A cryptographical application of the results in the appendix has been derived in [9]

by Galbraith and the author.

2. Main result. Let F be a totally real number field F of degree [F : Q] = n and let

RF denote its ring of integers. We will let F∗+ denote the subgroup of totally positive

elements of F∗. For any finite field extension L/F , let RL denote the ring of integers of L
and let Ωodd(L)= {ξ ∈ RL, ξf = 1, f odd} denote the set of roots of unity of odd order

in L. We let ωodd(L)= |Ωodd(L)|. Let B be a totally indefinite quaternion algebra over F
and let � be a maximal order in B.

Definition 2.1. An abelian variety A/k over an algebraically closed field k has

quaternionic multiplication by � if End(A)� � and dim(A)= 2n.

Proposition 2.2. [15] Let (A,�) be a principally polarized abelian variety with

quaternionic multiplication by � over Q. Then the discriminant ideal disc(B) of B is

principal and generated by a totally positive element D ∈ F∗+ .

As in [16, 17] we say that a quaternion algebra B over F of totally positive principal

discriminant disc(B) ∈ F∗+ is twisting if B � (−D,m/F) for some m ∈ F∗+ supported at

the prime ideals ℘ |D of F . The main result of this paper is the following.
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Theorem 2.3. Let (A,�) be a principally polarized abelian variety with quaternionic

multiplication by � overQ and let disc(B)=D for someD ∈ F∗+ . Letωodd=ωodd(F(
√−D)).

(i) If B is not twisting, then

(1) for any totally real quadratic order S ⊂ � over RF , k� = kS ,

(2) Gal(k�/kRF ) is an elementary abelian 2-group of rank at most ωodd.

(ii) If B is twisting, then

(1) for any totally real quadratic order S ⊂ �, Gal(k�/kS) is either trivial or of

order two,

(2) Gal(k�/kRF ) is an elementary abelian 2-group of rank at most 2ωodd.

As we state more precisely in Section 3, Theorem 2.3 admits several refinements.

3. Proof of Theorem 2.3: Shimura varieties and forgetful maps. Let B be a totally

indefinite quaternion division algebra over a totally real number field F and assume

that disc(B)= (D) for some D ∈ F∗+ . Let n : B→ F denote the reduced norm on B. Let �

be a maximal order in B and fix a quaternion µ ∈ � satisfying µ2+D = 0. Its existence

is guaranteed by Eichler’s theory on optimal embeddings (see [1, 22]) and it generates

a CM-field F(µ) � F(√−D) over F embedded in B. We will refer to the pair (�,µ) as a

principally polarized order.

Attached to (�,µ), a Shimura variety X�,µ/Q that is associated to the coarse moduli

problem of classifying triplets (A,ι,�) over Q can be considered, where

(i) (A,�) is a principally polarized abelian variety,

(ii) ι : � ↩ End(A) is a monomorphism of rings satisfying ι(β)∗ = ι(µ−1β̄µ) for all

β∈ �, where ∗ denotes the Rosati involution with respect to �.

Attached to the maximal order � there is also the Atkin-Lehner group

W = NB∗(�)
F∗�∗

. (3.1)

The group W is isomorphic to Z/2Z× 2r. . . ×Z/2Z, where 2r = �{℘ | disc(B)} is the

number of ramifying prime ideals of B (cf. [16, 22]).

Let B∗+ be the group of invertible quaternions of totally positive reduced norm. The

positive Atkin-Lehner group isW 1 =NB∗+ (�)/F
∗�1, where �1 = {γ ∈ �, n(γ)= 1} denotes

the group of units of � of reduced norm 1.

As it was shown in [16], the group W 1 is a subgroup of the automorphism group

AutQ(X�,µ) of the Shimura variety X�,µ .

The groupW 1 is an elementary abelian 2-group of rank s for some 2r ≤ s ≤n+2r−1.

The first inequality holds because there is a natural map W 1 � W which is an epi-

morphism of groups due to the indefiniteness of B and the norm theorem for maximal

orders (see [16]). The second inequality is a consequence of Dirichlet’s unit theorem

and it is actually an equality if the narrow class number of F is 1, as is the case of

F =Q.

We now introduce the notion of twists of a polarized order (�,µ).

Definition 3.1. Let (�,µ) be a principally polarized maximal order in a totally in-

definite quaternion algebra B of discriminant disc(B)= (D), D ∈ F∗+ .
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A twist of (�,µ) is an element χ ∈ �∩NB∗(�) such that χ2+n(χ)= 0, µχ =−χµ, and

therefore

B = F+Fµ+Fχ+Fµχ =
(−D,−n(χ)

F

)
. (3.2)

If χ is a twist of (�,µ) and S ⊂ � is a subring, χ is said to be a twist of (�,µ) in S if

χ ∈ S.

We say that (�,µ) is twisting if it admits some twist in � and that a quaternion algebra

B is twisting if it contains a twisting polarized maximal order. This agrees with our

terminology in the preceding section.

Definition 3.2. A twisting involution ω ∈ W 1 is an Atkin-Lehner involution such

that [ω] = [χ] ∈ W is represented by a twist χ of (�,µ). It is a twisting involution in

S ⊆ � if it can be represented by a twist χ ∈ S.

Let V0(S) denote the subgroup of W 1 generated by the twisting involutions of (�,µ)
in S and simply write V0 for V0(�).

We remark that, since B is totally indefinite, no χ ∈ B∗+ can be a twist of (�,µ) because

a necessary condition for B � (−D,−n(χ)/F) is that n(χ) be totally negative. In fact,

twisting involutionsω∈W 1 are always represented by twists χ ∈ B∗− of totally negative

reduced norm.

Note also that a necessary and sufficient condition for B to be twisting is that B �
(−D,m/F) for some elementm∈ F∗+ supported at the prime ideals ℘ |D (i.e., v℘(m) �=
0 only if ℘ |D).

For a polarized order (�,µ), let Rµ = F(µ)∩� be the order in the CM-field F(µ) �
F(
√−D) that optimally embeds in �. Note that, since µ ∈ �, Rµ ⊇ RF[

√−D]. We let

Ω = Ω(Rµ) = {ξ ∈ Rµ, ξf = 1, f ≥ 1} denote the finite group of roots of unity in Rµ
and Ωodd = {ξ ∈ Rµ, ξf = 1, f odd} the subgroup of roots of unity of odd order. Their

respective cardinalities will be denoted by ω=ω(Rµ) and ωodd =ωodd(Rµ).

Definition 3.3. The stable group W0 = U0 ·V0 associated to (�,µ) is the subgroup

of W 1 generated by U0 =NF(µ)∗(�)/F∗ ·Ω and the group of twisting involutions V0.

Note that U0 is indeed a subgroup of W 1 because Ω = F(µ)∩�1.

The motivation for introducing the Shimura variety X�,µ and the above Atkin-Lehner

groups in this paper is that this introduction gives a modular interpretation of the

field of moduli k� of the quaternionic multiplication on A such that k� = Q(P) is the

extension over Q generated by the coordinates of the point P = [A,ι,�] on Shimura’s

canonical model X�,µ/Q that represents the Q-isomorphism class of the triplet.

A similar construction holds for the totally real subalgebras of B. Indeed, let L ⊂
B be a totally real quadratic extension of F embedded in B. Then S = L∩ � is an

order of L over RF which is optimally embedded in �. Identifying S with a subring of

the ring of endomorphisms of A, we again have that the field of moduli kS is the ex-

tension Q(P|S) of Q generated by the coordinates of the point P|S = [A,ι|S ,�] on the

Hilbert-Blumenthal variety �S/Q that solves the coarse moduli problem of classifying

abelian varieties of dimension 2n with multiplication by S.



THE FIELD OF MODULI OF QUATERNIONIC MULTIPLICATION . . . 2799

Along the same lines, the field of moduli kRF of the central endomorphisms of A is

the extension Q(P|RF ) of Q generated by the coordinates of the point P|RF = [A,ι|RF ,�]
on the Hilbert-Blumenthal variety �F/Q which solves the coarse moduli problem of

classifying abelian varieties of dimension 2n with multiplication by RF .

The tool for studying the Galois extensions k�/kS/kRF is provided by the forgetful

modular maps

πF :X�,µ
πS�→�S �→�F ,

P � P|S � P|RF .
(3.3)

It was shown in [16] that the morphisms πF and πS have finite fibres. Furthermore,

it was proved in [16] that

(i) there are a birational equivalence bS :X�,µ/V0(S)
∼→πS(X�,µ) and a commutative

diagram

πS :X�,µ

pS

�S

X�,µ/V0(S)

bS
(3.4)

where pS :X�,µ →X�,µ/V0(S) is the natural projection,

(ii) there are a birational equivalence bF : X�,µ/W0
∼→ πF(X�,µ) and a commutative

diagram

πF :X�,µ

pF

�F

X�,µ/W0

bF
(3.5)

where pF :X�,µ →X�,µ/W0 is the natural projection.

We say that a closed point [A,ι,�] in X�,µ or in any quotient of it is a Heegner point

if End(A)� ι(�). It was also shown in [16] that the morphisms bF and bS are biregular

on X�,µ/W0 and X�,µ/V0(S), respectively, outside a finite set of Heegner points.

It follows from these facts that the Galois group G = Gal(k�/kRF ) of the extension of

fields of moduli k�/kRF is naturally embedded inW0 such that any σ ∈G acts on a prin-

cipally polarized abelian variety with quaternionic multiplication (A,ι : �
�→ EndQ(A),�)

by leaving the Q-isomorphism class of πF(A,ι,�) = (A,ι|RF : RF ↩ EndQ(A),�) invari-

ant.

Similarly, Gal(k�/kS) embeds in V0(S) for any totally real order S embedded in �. In

what follows, we will describe the structure of the groups W0 and V0(S) attached to a

polarized order (�,µ). This will automatically yield Theorem 2.3. In fact, in Propositions

3.4 and 3.8, we will be able to conclude a rather more precise statement than the one

given in Section 2.
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The next proposition shows that the situation is simplified considerably in the non-

twisting case.

Proposition 3.4. Let (A,�) be a principally polarized abelian variety over Q with

quaternionic multiplication by �. Let ι : � � End(A) be any fixed isomorphism and let

µ ∈ � be such that µ2+D = 0 for some D ∈ F∗+ , disc(B)= (D), and ι(β)∗ = ι(µ−1β̄µ) for

all β∈ �.

If (�,µ) is a nontwisting polarized order, then k� = kS for any totally real quadratic

order S ⊂ � over RF and Gal(k�/kRF ) is an elementary abelian 2-group of rank at most

ωodd.

Proof. It is clear from Definition 3.2 that the groups of twisting involutions V0(S)
are trivial for any subring S of �. Since Gal(k�/kS) ⊆ V0(S), this yields the first part

of the proposition. As for the second, since Gal(k�/kRF )⊆W0, we have that the Galois

group Gal(k�/kRF ) is contained in U0 ⊆ W 1, which is a 2-torsion abelian finite group.

Our claim now follows from the following lemma, which holds true for all pairs (�,µ).

Lemma 3.5. Let (�,µ) be a principally polarized maximal order. Then U0 is an ele-

mentary abelian 2-group of rank ωodd.

Proof. We identify F(µ) and F(
√−D) through any fixed isomorphism. As U0 natu-

rally embeds in F(
√−D)∗/F∗Ω, we first show that the maximal 2-torsion subgroup H

of F(
√−D)∗/F∗Ω is isomorphic to (Z/2Z)ωodd .

If ω ∈ F(√−D)∗ generates a subgroup of F(
√−D)∗/F∗Ω of order 2, then ω2 = λξ

for some root of unity ξ ∈Ω and λ∈ F∗. In particular, note that if ω∈ F(√−D)∗, then

ω2 ∈ F∗ if and only if ω∈ F∗∪F∗√−D. We write H̄ =H/〈√−D〉. We then have that, if

ξ ∈Ω, there exists at most one subgroup 〈ω〉 ⊆ H̄ such that ω∈ F(√−D)∗, ω2 ∈ F∗ξ.

Indeed, if ω1,ω2 ∈ F(
√−D), ω2

i = λiξ for some λi ∈ F∗, then (ω1/ω2)2 ∈ F∗, and

hence ω1/ω2 ∈ F∗∪F∗
√−D. This shows that [ω1]= [ω2]∈ H̄.

Observe further that, if ξf ∈ Ω is a root of unity of odd order f ≥ 3, then ω =
ξ(f+1)/2
f ∈F(√−D)∗ generates a 2-torsion subgroup of F(

√−D)∗/F∗Ω such thatω2=ξf .

It thus suffices to show that ¯̄H = H/〈√−D,{ξ(f+1)/2
f }f≥3 odd〉 is trivial. Let ω ∈

F(
√−D)∗, ω2 = λξ, and let ξ be a root of unity of order f ≥ 1. If f is 2 or odd, we

already know that the class [ω]∈ ¯̄H is trivial. Further, there can exist no ξ ∈ F(√−D)
of order f = 2N , N ≥ 2, since otherwise ξ2N−1

would be a square root of −1 and we

would have F(
√−D)= F(√−1). This is a contradiction since DRF = ℘1·····℘2r , r > 0.

Finally, it is also impossible that there exist ω∈ F(√−D), ω2 = λξ, ξf = 1, f = 2Nf0

with N ≥ 1 and f0 ≥ 3 odd. Indeed, in this case, ξf0 is a root of unity of order 2N , hence,

by the argument in the previous paragraph,N = 1. Let ξ′ = ξ2 andω′ = ξ(f0+1)/2 so that

ξ′ is a root of unity of order f0 andω′2 = ξ′. Then (ω′/ω)2 = ξ′/λξ = ξ/λ= (1/λ2)ω2.

Hence [ω′]= [ω2]= 1∈ H̄, which is a contradiction. This shows that ¯̄H is trivial, and

therefore H = 〈√−D,{ξ(f+1)/2
f }ξf∈Ωodd〉. In order to conclude the lemma, we only need

to observe that both µ and ξ(f+1)/2
f ∈ F(µ) normalize the maximal order � for any odd

f , because their respective reduced norms divide the discriminant D.
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Corollary 3.6. Let (�,µ) be a nontwisting polarized order and assume that

F(
√−D) is a CM-field with no purely imaginary roots of unity. Then, for any real qua-

dratic order S over RF , k�/kRF = kS/kRF is at most a quadratic extension.

If, in addition, kRF admits a real embedding, then k� is a totally imaginary quadratic

extension of kRF .

Proof. The first part follows directly from the above proposition. As for the second,

it follows from a result of Shimura (see [20, Theorem 0]) which asserts that the Shimura

varieties X�,µ fail to have real points, and hence the fields k� are purely imaginary.

However, if, on the other hand, (�,µ) is twisting, the situation is more subtle and less

homogenous as we now show.

Lemma 3.7. Let (�,µ) be a twisting order in a totally indefinite quaternion algebra

B over F of discriminant disc(B) = (D), D ∈ F∗+ . Then U0 ⊂ V0 is a subgroup of V0 and

V0/U0 �U0. In particular, W0 = V0 � (Z/2Z)2ωodd .

Proof. Let ω ∈ U0 be represented by an element ω ∈ NF(µ)∗(�)∩� and let ν ∈ V0

be a twisting involution. We know that the class of ν in NB∗(�)/F∗�∗ is represented by

a twist χ ∈ NB∗(�)∩� that satisfies χ2+n(χ) = 0 and µχ = −χµ. Then we claim that

ων ∈ V0 is again a twisting involution of (�,µ). Indeed, first ωχ ∈ NB∗(�)∩� because

both ω and χ do. Second, since ω ∈ F(µ), µ(ωχ) = µωχ =ωµχ = −ωχµ = −(ωχ)µ,

and finally, we have tr(µ(ωχ)) = µωχ+ωχµ̄ = µωχ−ωχµ = −trωχµ ∈ F , and thus

tr(ωχ)= 0.

This produces a natural action of U0 on the set of twisting involutions of (�,µ) which

is free simply because B is a division algebra. In order to show that it is transitive, let χ1,

χ2 be two twists. Thenω= χ1χ−1
2 ∈ F(µ) because µω= µχ1χ−1

2 =−χ1µχ−1
2 = χ1χ−1

2 µ =
ωµ and F(µ) is its own commutator subalgebra of B; further ω ∈ NB∗(�) because its

reduced norm is supported at the ramifying prime ideals ℘ | disc(B). We remark that,

in the same way, χ1χ2 ∈NF(µ)∗(�).
We are now in a position to prove the lemma. Let ν ∈ V0 be a fixed twisting involution.

Then U0 ⊂ V0 such that for any ω ∈ U0, we have already shown that ων is again a

twisting involution, and hence (ων)ν =ω∈ V0 because V0 is a 2-torsion abelian group.

In addition, the above discussion shows that any element of V0 either belongs to U0 or

is a twisting involution, and that there is a noncanonical isomorphism V0/U0 �U0.

Observe that in the twisting case, by the above lemma, U0 acts freely and transitively

on the set of twisting involutions of W 1 with respect to (�,µ).

Proposition 3.8. Let (A,�) be a principally polarized abelian variety over Q with

quaternionic multiplication by �. Let ι : � � End(A) be any fixed isomorphism and let

µ ∈ � be such that µ2+D = 0 for some D ∈ F∗+ , disc(B)= (D), and ι(β)∗ = ι(µ−1β̄µ) for

all β∈ �.

If (�,µ) is a twisting polarized order, let χ1, . . . , χs0 ∈ � be representatives of the twists

of (�,µ) up to multiplication by elements in F∗. Then,

(i) for any real quadratic order S, S �⊂ F(χi) for any i, 1≤ i≤ s0,

k� = kS, (3.6)
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(ii) for any real quadratic order S ⊂ F(χi)∩�, 1 ≤ i ≤ s0, k�/kSi is (at most) a qua-

dratic extension,

(iii) k� = kS1·····kSs0 and Gal(k�/kRF ) is an elementary abelian 2-group of rank at

most 2ωodd.

Proof. If S �⊂ F(χi) for any i = 1, . . . ,s0, then V0(S) is trivial, and hence, since

Gal(k�/kS)⊆ V0(S), Gal(k�/kS) is also trivial. If, on the other hand, S ⊆ F(χi)∩�, then

V0(S)� Z/2Z is generated by the twisting involution associated to χi. Again, we deduce

that in this case k�/kS is at most a quadratic extension.

With regard to the last statement, note that U0 ⊇ 〈[µ]〉 is at least of order 2. Thus,

if (�,µ) is a twisting polarized order, it follows from Lemma 3.7 that there exist two

noncommuting twists χ,χ′ ∈ �. Then RF[χ,χ′] is a suborder of � and, since they both

generate B over Q, the fields of moduli k� and kRF [χ,χ′] are the same. This shows that

k� ⊆ kS1·····kSs0 . The converse inclusion is obvious.

Finally, we deduce that k�/kRF is a (2, . . . ,2)-extension of degree at most 22ωodd from

Lemma 3.7.

Remark 3.9. In the twisting case, the field of moduli of quaternionic multiplication

is already generated by the field of moduli of any maximal real commutative multipli-

cation but for finitely many exceptional cases. This homogeneity does not occur in the

nontwisting case.

In view of Corollaries 3.4 and 3.8, the shape of the fields of moduli of the endo-

morphisms of the polarized abelian variety (A,�) differs considerably depending on

whether it gives rise to a twisting polarized order (�,µ) or not.

For a maximal order � in a totally indefinite quaternion algebra B of principal reduced

discriminant D ∈ F∗+ , it is then normal to ask the following questions:

(i) whether there exists µ ∈ �, µ2+D = 0, such that (�,µ) is twisting,

(ii) if (�,µ) is twisting, what is its twisting group V0?

Both questions are particular instances of the ones considered in the appendix.

4. Fields of moduli versus fields of definition. In dimension 2, the results of the

previous sections are particularly neat and can be made more complete. Let C/Q be a

smooth irreducible curve of genus 2 and let (J(C),ΘC) denote its principally polarized

Jacobian variety. Assume that EndQ(J(C)) = � is a maximal order in an (indefinite)

quaternion algebra B over Q of reduced discriminant D = p1·····p2r . Recall that �

is unique up to conjugation or, equivalently by the Skolem-Noether theorem, up to

isomorphism.

Attached to (J(C),ΘC) is the polarized order (�,µ), where µ = c1(ΘC) ∈ � is a pure

quaternion of reduced norm D. As we have seen, a necessary condition for (�,µ) to be

twisting is that B � (−D,m/Q) for some m | D. The isomorphism occurs if and only

if for any odd ramified prime p | D, m is not a square mod p if p �m (resp., D/m if

p |m).

In the rational case, the Atkin-Lehner and the positive Atkin-Lehner groups coincide

and W =W 1 = {ωd;d |D} � (Z/2Z)2r is generated by elements ωd ∈ �, n(ωd)= d |D.

Moreover, U0 = 〈ωD〉 � Z/2Z.
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If (�,µ) is a nontwisting polarized order, then the field of moduli of quaternionic

multiplication k� is at most a quadratic extension over the field of moduli kC of the

curve C by Theorem 2.3.

On the other hand, if (�,µ) is twisting and B = (−D,m/Q) for m | D, then V0 =
{1,ωm,ωD/m,ωD} � (Z/2Z)2, where we can choose representatives ωm, ωD/m in �

such that µωm = −ωmµ and µωD/m = −ωD/mµ. Note that, up to multiplication by

nonzero rational numbers, ωm and ωD/m are the only twists of (�,µ). When we spe-

cialize Theorem 2.3 to the case of Jacobian varieties of curves of genus 2, we obtain the

following.

Theorem 4.1. Let C/Q be a smooth irreducible curve of genus 2 such that

EndQ(J(C)) = � is a maximal order in a rational indefinite quaternion division algebra

B of reduced discriminant D.

(i) k�/kC is at most a quartic abelian extension.

(ii) k� = kS for any real quadratic order S �⊂ Q(ωm) � Q(
√
m) or Q(ωD/m) �

Q(
√
D/m).

(iii) kZ[ωm] and kZ[ωD/m] are at most quadratic extensions of kC and these are such

that k� = kZ[ωm] ·kZ[ωD/m].
In [12], Mestre studied the relation between the field of moduli kC = kJ(C),ΘC of a

curve of genus 2 and its possible fields of definition, under the sole hypothesis that the

hyperelliptic involution is the only automorphism on the curve. Mestre constructed an

obstruction HC in Br2(kC) for C to be defined over its field of moduli. If K is a number

field, he showed that C admits a model over K if and only if K contains kC and HC lies

in the kernel of the natural map Br(kC)→ Br(K).
If Aut(C)� Z/2Z, Cardona [2] has recently proved that C always admits a model over

its field of moduli kC .

Assume now, as in the above theorem, that EndQ(J(C)) � � is a maximal order in a

quaternion division algebra B overQ. Let K be a field of definition of C ; note that, since

EndQ(J(C))⊗Q = B is division, Aut(C) � Z/2Z, and therefore kC does not need to be

a possible field of definition of the curve. Having made the choice of a model C/K, we

obtain a minimal (Galois) field extension L/K of K such that EndL(J(C))� �. This gives

rise to a diagram of Galois extensions

L

k�

K

kC

(4.1)
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The nature of the Galois extensions L/K was studied in [5, 6], while the relation

between the field of moduli k� and the possible fields of definition L of the quaternionic

multiplication was investigated by Jordan in [11]. The combination of all these facts

yields the following statement and recovers, in a weakened form, a result proved in [6].

Proposition 4.2. Let C/K be a smooth curve of genus 2 over a number field K and

assume that EndQ(J(C)) is a maximal quaternionic order �. Let L/K be the minimal

extension of K over which all endomorphisms of J(C) are defined.

Then Gal(L/K)� Gal(k�/kC)� {1}, Z/2Z or D2 = Z/2Z×Z/2Z.

Proof. Assume first that kC = K is a field of definition of the curve. Then k� = L is

a field of definition of all endomorphisms of J(C) such that if it was not, there would

be infinitely many pairwise different extensions Lα/K such that EndLα(J(C))= �. This

would contradict Silverberg’s result that such an extension is uniquely determined (see

[21]).

If, on the contrary, Mestre’s obstruction HC is nontrivial in Br2(kC), then C admits a

model over any quadratic extension K/kC that splits HC but not over kC itself. We then

have that any field of definition L of all endomorphisms of J(C) must be a quadratic

extension of kC that strictly contains it. Indeed, by [11], we know that [L : kC] ≤ 2.

Suppose that L = kC . Then, L would contain all fields of definition H of C and this is

not possible.

In either case, the possibilities for Gal(L/K) are {1}, Z/2Z, and Z/2Z × Z/2Z by

Theorem 2.3.

Remark 4.3. The above argument actually yields more than this: it either holds that

kC � K � k� � L is a chain of quadratic extensions or L = k� ·K. Moreover, the first of

these possibilities only arises when [L :K]= 4 and for the finitely many subextensions

K/kC of k� such that HC⊗kC K is trivial.

Example 4.4. Let C be the smooth projective curve with hyperelliptic model

Y 2 = 1
48
X
(
9075X4+3025

(
3+2

√
−3
)
X3−6875X2+220

(−3+2
√
−3
)
X+48

)
. (4.2)

Let A= J(C)/K be the Jacobian variety of C over K =Q(√−3).
By [10], A is an abelian surface with quaternionic multiplication by a maximal order

in the quaternion algebra of discriminant 6. As it is shown explicitly in [10], there is

an isomorphism between C and the conjugated curve Cτ over Q. Hence, the field of

moduli kC =Q is the field of rational numbers.

In addition, it was shown in [6] that L=Q(√−3,
√−11) is the minimal field of defini-

tion of the quaternionic endomorphisms of A. By our last proposition and remark, we

must have that L=K ·k� with [k� : kC]= 2. In addition, by Shimura’s theorem asserting

that such Shimura curves fail to have rational points over real fields, k� must be an

imaginary quadratic extension of Q. This shows that k� =Q(
√−11) and the picture of

fields of moduli and definition is completed.
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Appendix.

Integral quaternion basis and distance ideals. A quaternion algebra over a field F
is a central simple algebra B over F of rankF (B)= 4. However, there are several classical

and more explicit ways to describe quaternion algebras, which we now review. Indeed,

if L is a quadratic separable algebra over the field F andm∈ F∗ is any nonzero element,

then the algebra B = L+Le with e2 =m and eβ = βσe for any β ∈ L, where σ denotes

the nontrivial involution on L, is a quaternion algebra over F . The classical notation for

it is B = (L,m). Conversely, any quaternion algebra over F is of this form (see [22]).

In addition, if char(F) �= 2, then

B =
(
a,b
F

)
= F+Fi+Fj+Fij, (A.1)

with ij = −ji and i2 = a ∈ F , j2 = b ∈ F for any two elements a,b ∈ F∗, is again a

quaternion algebra over F and again any quaternion algebra admits such a description.

Note that the constructions are related since B = (a,b/F)= (F(i),b).
On a quaternion algebra B there is a canonical anti-involution β� β̄ which is charac-

terized by the fact that, when restricted to any embedded quadratic subalgebra L ⊂ B
over F , it coincides with the nontrivial F -automorphism of L. Thus, if B = (L,m), then

β̄= β1+β2e= βσ1 −βσ2 e. The reduced trace and norm on B are defined by tr(β)= β+ β̄
and n(β)= ββ̄.

Assume that F is either a global or a local field of char(F) �= 2 and let it be the

field of fractions of a Dedekind domain RF . An order � in a quaternion algebra B is

an RF -finitely generated subring such that � ·F = B. Elements β ∈ � are roots of the

monic polynomial x2− tr(β)x+n(β), tr(β),n(β) ∈ RF . We are now able to formulate

the following question.

Question A.1. Let B be a quaternion algebra over a global or local field F , char(F) �=
2, and let � be an order in B.

(1) If B � (a,b/F) for some a,b ∈ RF , can one find integral elements ι,η ∈ � such

that ι2 = a, η2 = b, ιη=−ηι?
(2) If B � (L,m) for a quadratic separable algebra over F and m ∈ RF , can one find

χ ∈ � such that χ2 =m, χβ= β̄χ for any β∈ L?

We note that Question A.1(2) may be considered as a refinement of Question A.1(1).

Indeed, let � be an order in B = (a,b/F) and fix an element i ∈ � such that i2 = a.

Then, while Question A.1(1) wonders whether there exist elements ι,η ∈ � such that

ι2 = a,η2 = b, and ιη = −ηι, Question A.1(2) wonders whether such an integral basis

exists with ι= i.
If B = (a,b/F) = F + Fi+ Fj + Fij, let �0 = RF[i,j]. Obviously, Question A.1(1) is

answered positively whenever γ−1�γ ⊇ �0 for some γ ∈ B∗. The following proposition

asserts that this is actually a necessary condition. Although it is not stated in this form

in [4], it is due to Chinburg and Friedman and follows from the ideas therein. It is a

consequence of Hilbert’s Theorem 90. Let us agree to say that two orders �, �′ of B are

of the same type if �= γ−1�′γ for some γ ∈ B∗.
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Proposition A.2. Let B = F + Fi+ Fj + Fij = (a,b/F) with a,b ∈ RF . Let �0 =
RF[i,j].

An order � in B contains a basis ι,η∈ �, ι2 = a, η2 = b, ιη=−ηι of B if and only if the

type of �0 is contained in the type of �.

Proof. Assume that there exist ι,η∈ � satisfying the above relations. By the Skolem-

Noether theorem (see [22]), j and η are conjugated (by, say, α∈ B∗). Thus, by replacing

i by α−1iα and �0 by α−1�0α, we may assume that j = η ∈ �. We then need to show

the existence of an element γ ∈ F(j)= F(η) such that γ−1ιγ = i.
We have iη = −ηi, and thus η = −i−1ηi. In addition, since ιη = −ηι, ιi−1ηi = ηι.

Hence, (ιi−1)η = η(ιi−1) and we deduce that ιi−1 ∈ F(η) is an element of norm

NF(η)/F (ιi−1)= 1.

By Hilbert’s Theorem 90, there exists ω ∈ F(η) such that ιi−1 =ωω̄−1, that is, ι =
ωω̄−1i. We need to find an element γ ∈ F(η) stated in this form with γ−1ωω̄−1iγ = i.
Since γi= iγ̄, we can choose γ =ω.

An order � in B is maximal if it is not properly contained in any other order. It is an

Eichler order if it is the intersection of two maximal orders. The reduced discriminant

ideal of an Eichler order is disc(�)= disc(B)·� for some integral ideal � of F , the level

of �, coprime to disc(B) (see [1] and [22, page 39]). With this notation, maximal orders

are Eichler orders of level 1.

Corollary A.3. Assume that F is a local field and that � is an Eichler order of level

� in B = (a,b/F), a,b ∈ RF . Then there exist ι,η∈ �, ι2 = a, η2 = b, ιη=−ηι if and only

if � | 4ab.

Proof. By [22, Section 2], there is only one type of Eichler orders of fixed level � in B.

Remark that, if B is division, necessarily � = 1. Let �0 = RF[i,j]. Since disc(�0)= 4ab,

as one can check, a necessary and sufficient condition for � to contain a conjugate order

of �0 is that � | 4ab. The corollary follows from Proposition A.2.

In the global case, the approach to Question A.1(1) can be made more effective un-

der the assumption that B satisfies the Eichler condition. Namely, suppose that some

Archimedean place v of F does not ramify in B, that is, B⊗F Fv �M2(Fv). Here, we let

Fv �R or C denote the completion of F at v .

The following theorem of Eichler describes the set �(�) of types of Eichler orders of

given level � purely in terms of the arithmetic of F . Let Pic+(F) be the narrow class group

of F of fractional ideals up to principal fractional ideals (a) generated by elements

a ∈ F∗ such that a > 0 at any real Archimedean place v that ramifies in B, and let

h+(F)= |Pic+(F)|.

Definition A.4. The group Pic
�
+(F) is the quotient of Pic+(F) by the subgroup gen-

erated by the squares of fractional ideals of F , the prime ideals ℘ that ramify in B, and

the prime ideals q such that � has odd q-valuation.

The group Pic
�
+(F) is a 2-torsion finite abelian group. Therefore, if h+(F) is odd, then

Pic
�
+(F) is trivial.
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Proposition A.5 (see [7, 8] and [22, page 89]). The reduced norm n induces a bijec-

tion of sets

�(�) ∼
�→ Pic

�
+(F). (A.2)

The bijection is not canonical in the sense that it depends on the choice of an Eichler

order � in B. For � = 1, the bijection is described explicitly as follows. For any two

maximal orders �, �′ of B over RF , define the distance ideal ρ(�,�′) to be the order

ideal of the finite RF -module �/�∩�′ (see [14, page 49]). Alternatively, ρ(�,�′) can also

be defined locally in terms of the local distances between �⊗RF RF℘ and �′⊗RF RF℘ in the

Bruhat-Tits tree �℘ for any (non-Archimedean) prime ideal ℘ of F that does not ramify

in B (see [3]). Finally, ρ(�,�′) is also the level of the Eichler order �∩�′. This notion of

distance proves to be suitable to classify the set of types of maximal orders of B, as the

assignation �′� ρ(�,�′) induces the bijection claimed in Proposition A.5.

Corollary A.6. Let B = (a,b/F), a,b ∈ RF , be a quaternion algebra over a global

field F . If B satisfies Eichler’s condition and h+(F) is odd, then, for any Eichler order � in

B, there is an integral basis ι,η∈ �, ι2 = a, η2 = b, ιη=−ηι of B.

As for Question A.1(2), let B = F+Fi+Fj+Fij = (a,b/F)= (L,b) with a,b ∈ RF and

L= F(√a). Choose an order � of B. For a given η∈ �, η2 = a, we ask whether there exists

χ ∈ �, χ2 = b, such that ηχ = −ηχ. By Proposition A.2, a necessary condition is that

�0 = RF[i,j] ⊆ � up to conjugation by elements of B∗ and, without loss of generality,

we assume that this is the case. With these notations, we have the following.

Definition A.7. Let � ⊇ �′ be two orders in B. Define (� : �′) := {γ ∈ B∗, γ−1�0γ
⊂ �}.

Note that NB∗(�) is a subgroup of finite index of (� : �′).

Proposition A.8. Let �⊇ �0 be an order in B and let η∈ �, η2 = a. Then there exists

χ ∈ �, and χ2 = b, ηχ =−χη if and only if η= γ−1iγ for γ ∈ (� :B∗ �0).

Let f = |(� : �0) : NB∗(�)| be the index of the normalizer group NB∗(�) in (� : �0). Let

�(a) be the finite set of NB∗(�)-conjugation classes of elements η∈ � such that η2 = a.

Then it follows from the above proposition that Question A.1(2) for (�,η) is answered

in the affirmative for elements η lying on exactly f of the conjugation classes in �(a).
Again, the cardinality of �(a) can be computed explicitly in many cases in terms of

class numbers by means of the theory of Eichler optimal embeddings (cf. [22]).
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