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This paper deals with an elliptic equation involving Paneitz type operators on compact
Riemannian manifolds with concave-convex nonlinearities and a real parameter. Nonlocal
and multiple existence results are established. Characteristic values of the real parameter
are introduced and their role in the change of the energy sign and the existence of positive
solutions are highlighted.
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1. Introduction. In this paper, we study a nonlinear elliptic equation involving

Paneitz type operators on compact Riemannian manifolds. The nonlinearity considered

here is concave-convex. The simultaneous effect of the concave and convex terms has

been initially investigated by Ambrosetti et al. [1] in the Euclidian case for the Laplace

operator. Since then, elliptic problems with this kind of nonlinearities were extensively

studied by several authors with different classes of domains and with more general dif-

ferential operators like the p-Laplacian. We can refer the reader to the valuable survey

article by Ambrosetti et al. [2] and the references therein.

The aim of this paper is to establish nonlocal and multiple existence results (with re-

spect to a real parameter) to an elliptic equation involving the Paneitz-Branson operator

with concave-convex nonlinear terms. Also, characteristic values of the real parameter

are introduced (under variational form) and some of their specific properties are carried

out.

Now, let (M,g) be a smooth 4-dimensional Riemannian manifold and let Sg , Rcg be

the scalar curvature and the Ricci curvature of g, respectively. The Paneitz operator,

introduced by Paneitz [23], defined on (M,g) is the fourth-order operator

P4
gu :=∆2

gu−divg

(
2
3
Sgg−2Rcg

)
du, (1.1)

where ∆gu=−divg∇u is the Laplacian of u and du is the differential of u, both with

respect to the metric g.

The Paneitz operator was generalized to higher dimensions by Branson [5]. Given

(M,g), an n-dimensional Riemannian manifold (n ≥ 5), the Paneitz-Branson operator

Png is defined as follows:

Png u :=∆2
gu−divg

(
(n−2)2+4

2(n−1)(n−2)
Sgg− 4

n−2
Rcg

)
du+ n−4

2
Qn
gu, (1.2)
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where the Q-curvature Qn
g is given by

Qn
g =

1
2(n−1)

∆gSg+ n
3−4n2+16n−16
8(n−1)2(n−2)2

S2
g−

2
(n−2)2

∣∣Rcg∣∣2. (1.3)

Geometrically, the Q-curvature can be seen, for the Paneitz-Branson operator, as the

analogue of the scalar curvature for the conformal Laplacian. Notice that when (M,g)
is Einstein, the Paneitz-Branson operator is reduced to

Png u=∆2
gu+αn∆gu+βnu, (1.4)

where

αn := n
2−2n−4

2n(n−1)
Sg, βn = (n−4)

(
n4−4

)
16n(n−1)2

S2
g. (1.5)

This is a special case of what one usually refers to as a Paneitz-Branson operator with

constant coefficients, namely, an operator which is expressed as

Pgu=∆2
gu+α∆gu+βu, (1.6)

where α and β are real numbers. In this direction, we can refer the reader to Djadli et

al. [11], Esposito and Robert [14], Felli et al. [15], Hebey [17, 18], Hebey and Robert [19],

and finally to Robert [25].

In this paper, we study the existence of multiple solutions to

Pgu= λa(x)|u|q−2u+b(x)|u|r−2u, (1.7)

with respect to the positive real parameter λ, where (M,g) is a smooth compact Rie-

mannian manifold of dimension n ≥ 5, a and b are positive continuous functions on

M . This problem is stated in the framework of the Sobolev space H2
2(M) consisting of

functions u in L2(M) which are such that |∇u| and |∇2u| are also in L2(M). We limit

ourselves to the case of subcritical concave-convex nonlinearity, that is,

1< q < 2< r < 2#, (1.8)

where 2# := 2n/(n−4) is the critical exponent for the embedding of the Sobolev space

H2
2 in Lp-spaces. Also, we will assume along this work that [19]

α2

4
≥ β > 0. (1.9)

In this situation, it is clear that the Paneitz-Branson operator Pg is coercive, that is,

there is C > 0 such that for any u∈H2
2(M),∫

M

(
Pgu

)
udvg ≥ C‖u‖2

H2
2 (M)

, (1.10)

where

‖u‖H2
2 (M)

=
{∫

M

((
∆gu

)2+|∇u|2+u2)dvg}1/2
(1.11)
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is the standard norm of H2
2(M). In the specific case where (M,g) is Einstein, condition

(1.9) is satisfied. Indeed,

α2
n

4
−βn =

S2
g

n2(n−1)2
. (1.12)

For further detailed discussions on this subject, we refer the reader to Beckner [3], Bran-

son et al. [6], Chang et al. [8], Chang and Yang [9, 10], and to Gursky [16] for the Paneitz

operator. For the Paneitz-Branson operator, we mention the references described above

[11, 14, 15, 17, 18, 19, 25].

Hereafter, the space H2
2(M) will be endowed with the norm ‖·‖,

‖u‖ =
(∫

M

(
Pgu

)
udvg

)1/2
, (1.13)

which is equivalent to norm ‖·‖H2
2 (M)

. Following standard notations, ‖·‖p will stand

for the Lp-norm (with respect to the Riemannian measure dvg).

Consider the following problem:

Pgu= λa(x)|u|q−2u+b(x)|u|r−2u in M,

1< q < 2< r ≤ 2#.
(1.14)

For solutions of (1.14), we understand critical points of the associated Euler-Lagrange

(energy) functional Eλ ∈ C1(H2
2(M)), given by

Eλ(u)= 1
2
P(u)− λ

q
Q(u)− 1

r
R(u), (1.15)

where

P(u)= ‖u‖2, Q(u)=
∫
M
a|u|qdvg, R(u)=

∫
M
b|u|rdvg. (1.16)

In [4], Bernis et al. studied the following equation:

∆2u= λ|u|q−2u+|u|2#−2u (1.17)

in a smooth bounded domain in Rn with Dirichlet or Navier boundary conditions. Ap-

plying the Lusternik-Schnirelman theory, the authors showed the existence of infin-

itely many solutions for λ small enough (a local result with respect to the parameter

λ). Using classical methods, the authors showed the existence of two positive solu-

tions for 0 < λ < Λ, even in the supercritical case. Notice that our result concern-

ing the existence of infinitely many solutions is not local. Indeed, we show the ex-

istence of two disjoint and infinite sets of solutions to (1.14) for 0 < λ < λ̂, where

λ̂ > C(‖a‖∞,‖b‖∞,q,r ,M) > 0. The first set consists of solutions with negative energy,

while the second set contains solutions with arbitrary energy. On the other hand, our
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proof concerning the existence of positive solutions gives a new argument for the con-

struction of Palais-Smale sequences. Similar equation was studied also by the author

[13] in the Euclidian case, with the p-Laplacian operator and nonlinear mixed boundary

conditions.

We introduce the modified Euler-Lagrange functional Ẽλ [12, 13, 28], defined on R×
H2

2(M) by

Ẽλ(t,u) := Eλ(tu). (1.18)

If u is an arbitrary element of H2
2(M), ∂tẼλ(·,u) stands for the first derivative of the

real-valued function: t� Ẽλ(t,u). Similarly, ∂ttẼλ(·,u) denotes the second derivative.

2. Existence of positive solutions. In this section, we show the existence of two

“branches” of positive solutions to (1.14). The idea of the approach is as follows: for

every u∈H2
2(M)\{0} and λ > 0, we determine the positive critical points (in terms of

u and λ) of the real-valued function t� Ẽλ(t,u). Then, the variable t is substituted by

these real critical points to obtain functionals, depending only on the variable u (and

the parameter λ), defined on the Nehari manifold [22]. One easily shows that these new

functionals are bounded below, which implies that we can minimize to obtain possible

critical points of the Euler-Lagrange Eλ itself. However, the positivity of these critical

points is not guaranteed. To show the existence of positive solutions, we carry out a

new approach of an idea introduced, to our knowledge, by Djadli et al. [11] and Van der

Vorst [27].

2.1. Technical lemmas

Lemma 2.1. Let u ∈ H2
2(M)\{0}. There exists a unique λ(u) > 0 such that the real-

valued function t� ∂tẼλ(t,u) has

(i) two positive zeros if 0< λ< λ(u),
(ii) one positive zero if λ= λ(u),

(iii) no zeros if λ > λ(u).

Proof. Let u∈H2
2(M)\{0} and we write

∂tẼλ(t,u)= tq−1F̃λ(t,u), (2.1)

where

F̃λ(t,u)= t2−qP(u)−λQ(u)−tr−qR(u). (2.2)

It follows that

∂ttẼλ(t,u)= (q−1)tq−2F̃λ(t,u)+tq−1∂tF̃λ(t,u), (2.3)

with

∂tF̃λ(t,u)= t2−q−1{(2−q)P(u)−(r −q)tr−2R(u)
}
. (2.4)
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The real-valued function t � F̃λ(t,u) is increasing for t ∈ ]0, t(u)[, decreasing for t ∈
]t(u),+∞[, and attains its unique maximum for t = t(u), where

t(u)=
(

2−q
r −q

P(u)
R(u)

)1/(r−2)
. (2.5)

Therefore, the function t� F̃λ(t,u) has

(i) two positive zeros if F̃λ
(
t(u),u

)
> 0,

(ii) one positive zero if F̃λ
(
t(u),u

)= 0,

(iii) no zero if F̃λ
(
t(u),u

)
< 0.

Moreover, a direct computation gives

F̃λ
(
t(u),u

)= r −2
2−q

(
2−q
r −q

P(u)
R(u)

)(r−q)/(r−2)
R(u)−λQ(u). (2.6)

It follows that

F̃λ
(
t(u),u

)
> 0 if λ < λ(u),

F̃λ
(
t(u),u

)= 0 if λ= λ(u),
F̃λ
(
t(u),u

)
< 0 if λ > λ(u),

(2.7)

where

λ(u)= Ĉ P(r−q)/(r−2)(u)
Q(u)R(2−q)/(r−2)(u)

, (2.8)

Ĉ = r −2
2−q

(
2−q
r −q

)(r−q)/(r−2)
. (2.9)

Hence, if λ ∈ ]0,λ(u)[, the real-valued function t � ∂tẼλ(t,u) has two positive zeros

which we will denote by t(u,λ) and t(u,λ). Notice that

0< t(u,λ) < t(u) < t(u,λ). (2.10)

Since, F̃λ(t(u,λ),u) = F̃λ(t(u,λ),u) = 0, ∂tF̃λ(t,u) > 0 for t < t(u), and ∂tF̃λ(t,u) < 0

for t > t(u), we get

∂ttẼλ
(
t(u,λ),u

)
> 0, ∂ttẼλ

(
t(u,λ),u

)
< 0. (2.11)

Consequently, the real-valued function t� Ẽλ(t,u), t > 0, attains its unique local min-

imum at t = t(u,λ) and its unique local maximum at t = t(u,λ).
We specify that for every u ∈ H2

2(M)\{0} and λ ∈ ]0,λ(u)[, t(u,λ)u and t(u,λ)u
belong to the Nehari manifold [22] defined by

� := {v ∈H2
2(M)\{0} : E′λ(v)v = 0

}
. (2.12)
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At this stage, we introduce the characteristic value

λ̂ := inf
u∈H2

2 (M)\{0}
λ(u) (2.13)

of the parameter λ. We will show below that problem (1.14) possesses two “branches”

of solutions for λ ∈ ]0, λ̂[. It is interesting to remark that this result is not local with

respect to the parameter λ. Indeed, let Sq(M) and Sr (M) be the best Sobolev constants

of the embeddings H2
2(M)⊂ Lq(M) and H2

2(M)⊂ Lr (M), respectively. Then,

λ̂= Ĉ inf
u∈H2

2 (M)\{0}

[P(u)]q/2
Q(u)

[P(u)]r/2
R(u)

(2−q)/(r−2)

≥ Ĉ
maxx∈M a(x)

[
maxx∈M b(x)

](2−q)/(r−2)

[
Sq(M)

]q/2[Sr (M)]r(2−q)/2(r−2)

> 0.

(2.14)

Finally, remark that the function λ(·) is homogeneous on H2
2(M)\{0}.

Now, we show an interesting lemma which will be very useful below to construct

positive solutions from solutions with arbitrary sign.

Lemma 2.2. Let λ∈ ]0, λ̂[, v and w ∈H2
2(M)\{0}. If

‖v‖ = ‖w‖,
|v| ≤ |w| in M,

(2.15)

then

Ẽλ
(
t(v,λ),v

)≥ Ẽλ(t(w,λ),w), Ẽλ
(
t(v,λ),v

)≥ Ẽλ(t(w,λ),w). (2.16)

Proof. Without loss of generality, we can assume ‖v‖ = ‖w‖ = 1. Consider the

application

Φλ : ]0,+∞[3 �→R,

(ξ,θ,σ) 
 �→ ξ2

2
− λθξ

q

q
− σξ

r

r
.

(2.17)

According to the study done in Lemma 2.1, for every θ > 0, σ > 0, and λ satisfying

0< λ<
Ĉ

θσ(2−q)/(r−2) , (2.18)

the real-valued function Φλ(·,θ,σ) starts from Φλ(0,θ,σ) = 0, decreases to reach its

unique local minimum for ξ = ξ(θ,σ), increases to reach its unique local maximum for

ξ = ξ(θ,σ), and finally decreases towards −∞ when ξ goes to +∞. Using the fact that

∂2Φλ
∂ξ2

(
ξ(θ,σ),θ,σ

)
> 0,

∂2Φλ
∂ξ2

(
ξ(θ,σ),θ,σ

)
< 0, (2.19)
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the implicit function theorem implies that ξ(·,·) and ξ(·,·) are smooth in θ and σ . On

the other hand, direct computations show that

∂
∂θ
[
Φλ
(
ξ(θ,σ),θ,σ

)]=−λ
q
(
ξ(θ,σ)

)q < 0,

∂
∂σ

[
Φλ
(
ξ(θ,σ),θ,σ

)]=−1
r
(
ξ(θ,σ)

)r < 0.
(2.20)

Similarly, we have

∂
∂θ
[
Φλ
(
ξ(θ,σ),θ,σ

)]=−λ
q
(
ξ(θ,σ)

)q < 0,

∂
∂σ

[
Φλ
(
ξ(θ,σ),θ,σ

)]=−1
r
(
ξ(θ,σ)

)r < 0.
(2.21)

This means that the critical valuesΦλ(ξ(θ,σ),θ,σ) andΦλ(ξ(θ,σ),θ,σ) decrease when

θ or σ increases.

Now, let 0< θ1 ≤ θ2, 0<σ1 ≤ σ2, and λ > 0 such that

0< λ<
Ĉ

θiσ
(2−q)/(r−2)
i

, i= 1,2. (2.22)

The relations (2.22) can be rewritten as (θi,σi) ∈ Ωλ, i = 1,2, where Ωλ denotes the

subset of R2 defined by

Ωλ =
{
(θ,σ)∈ ]0,+∞[2; θσ(2−q)/(r−2) <

Ĉ
λ

}
. (2.23)

Consider the curve (path) γ ⊂Ωλ defined by

γ := {(θ,σ1
)
; θ1 ≤ θ ≤ θ2

}∪{(θ2,σ
)
; σ1 ≤ σ ≤ σ2

}
(2.24)

connecting (θ1,σ1) to (θ2,σ2). It follows from above that the functions (θ,σ)� Φλ(ξ(θ,
σ),θ,σ) and (θ,σ)� Φλ(ξ(θ,σ),θ,σ) decrease when (θ,σ) describes the path γ from

(θ1,σ1) to (θ2,σ2). Therefore, we get

Φλ
(
ξ
(
θ1,σ1

)
,θ1,σ1

)≥ Φλ(ξ(θ2,σ2
)
,θ2,σ2

)
,

Φλ
(
ξ
(
θ1,σ1

)
,θ1,σ1

)≥ Φλ(ξ(θ2,σ2
)
,θ2,σ2

)
.

(2.25)

Here,Q(v), R(v),Q(w), and R(w) will play the role of θ1, σ1, θ2, and σ2, respectively.

Moreover, specify that for every u ∈ H2
2(M) such that ‖u‖ = 1, we have Ẽλ(t,u) =

Φλ(t,Q(u),R(u)). Hence, we conclude that

Ẽλ
(
t(v,λ),v

)≥ Ẽλ(t(w,λ),w), Ẽλ
(
t(v,λ),v

)≥ Ẽλ(t(w,λ),w). (2.26)

This achieves the proof.
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We now show that the infimum of Ẽλ(t(u,λ),u) and Ẽλ(t(u,λ),u), when u describes

H2
2(M)\{0}, exists in R. Indeed, since ∂tẼλ(t(u,λ),u)= 0, it follows that

P
(
t(u,λ)u

)= λQ(t(u,λ)u)+R(t(u,λ)u). (2.27)

Then

Eλ
(
t(u,λ)u

)= (1
2
− 1
r

)
R
(
t(u,λ)u

)−λ(1
q
− 1

2

)
Q
(
t(u,λ)u

)
. (2.28)

Using the fact that 1< q < 2< r , we get

lim
‖t(u,λ)u‖→∞

Eλ
(
t(u,λ)u

)=+∞, (2.29)

which implies that the function u� Eλ(t(u,λ)u), defined on H2
2(M)\{0}, is bounded

below. In the same way, we get that the function u� Eλ(t(u,λ)u), defined on H2
2(M)\

{0}, is bounded below. Therefore, if we define

α(λ)= inf
u∈H2

2 (M)\{0}
Ẽλ
(
t(u,λ),u

)
, (2.30)

α(λ)= inf
u∈H2

2 (M)\{0}
Ẽλ
(
t(u,λ),u

)
, (2.31)

we have the following lemma.

Lemma 2.3. Let (un) ⊂ H2
2(M) \ {0} be a minimizing sequence of (2.30) and vn :=

t(un,λ)un. Then

(a) limsupn→+∞‖vn‖<+∞,

(b) liminfn→+∞‖vn‖> 0.

Similarly, let (un) ⊂ H2
2(M) \ {0} be a minimizing sequence of (2.31) and vn :=

t(un,λ)un. Then

(c) limsupn→+∞‖vn‖<+∞,

(d) liminfn→+∞‖vn‖> 0.

Proof. (a) Let (un) ⊂ H2
2(M) \ {0} be a minimizing sequence of (2.30). Since

∂tẼλ(t(un,λ),un)= 0, it follows that

P
(
vn
)= λQ(vn)+R(vn). (2.32)

Similarly, since ∂ttẼλ(t(un,λ),un) > 0, it follows that

P
(
vn
)−λ(q−1)Q

(
vn
)−(r −1)R

(
vn
)
> 0. (2.33)

Combining (2.32) and (2.33), we obtain

Eλ
(
vn
)

:= 1
2
P
(
vn
)− λ

q
Q
(
vn
)− 1

r
R
(
vn
)
< 0, (2.34)



MULTIPLE SOLUTIONS TO A NONLINEAR ELLIPTIC EQUATION . . . 2461

for every n. Suppose that there is a subsequence of (vn), still denoted by (vn), such that

limn→+∞‖vn‖ = +∞. Since M is compact and a, b are positive and continuous on M ,

then there is C > 0 such thatQ(vn)≤ CR(vn) for every n. Therefore, limn→+∞R(vn)=
+∞. Using the fact that 0< q < r , we get Q(vn)= on(R(vn)), and consequently

P
(
vn
)= R(vn)(1+on(1)

)
. (2.35)

Thus,

Eλ
(
vn
)= R(vn)(1

2
− 1
r
+on(1)

)
, (2.36)

which implies that Eλ(vn) tends to +∞ as n goes to +∞, and this is impossible. We

conclude that limsupn→+∞‖vn‖<+∞.

(c) The same arguments with a minimizing sequence (un) of (2.31) show that

limsupn→+∞‖vn‖<+∞.

(b) Let (un)⊂H2
2(M)\{0} be a minimizing sequence of (2.30) and suppose that there

is a subsequence of (vn), still denoted by (vn), such that limn→+∞‖vn‖ = 0. It follows

that limn→+∞Eλ(vn)= 0, that is, α(λ)= 0, which is impossible since Ẽλ(t(un,λ),un) <
0, for every n.

(d) Let (un) ⊂H2
2(M)\{0} be a mini mizing sequence of (2.31). Since ∂tẼλ(t(un,λ),

un)= 0 and ∂ttẼλ(t(un,λ),un) < 0, it follows that

P
(
vn
)−λQ(vn)−R(vn)= 0,

P
(
vn
)−λ(q−1)Q

(
vn
)−(r −1)R

(
vn
)
< 0.

(2.37)

Combining the last two inequalities, we obtain, for every n,

(2−q)P(vn)< (r −q)R(vn)≤ C′P(vn) (2.38)

via the continuous embedding H2
2(M) ⊂ Lr (M). Then (2−q) ≤ C′‖vn‖r−2. Now, sup-

pose that there is a subsequence of (vn), still denoted by (vn), such that limn→+∞‖vn‖ =
0. This implies that 2−q ≤ 0, which is impossible.

At this stage, we give an invariance result satisfied by t(u,λ) and t(u,λ) with respect

to u. Indeed, for every real number γ > 0, we have

Ẽλ
(
γt,

u
γ

)
= Ẽλ(t,u),

∂tẼλ
(
γt,

u
γ

)
= 1
γ
∂tẼλ(t,u),

∂ttẼλ
(
γt,

u
γ

)
= 1
γ2
∂ttẼλ(t,u).

(2.39)
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The uniqueness of the local minimum and the local maximum of the real-valued func-

tion t� Ẽλ(t,u), t > 0, u∈H2
2(M)\{0}, implies that

t(u,λ)= 1
γ
t
(
u
γ
,λ
)
,

t(u,λ)= 1
γ
t
(
u
γ
,λ
)
.

(2.40)

Hence, we get

α(λ)= inf
u∈S

Ẽλ
(
t(u,λ),u

)
, (2.41)

α(λ)= inf
u∈S

Ẽλ
(
t(u,λ),u

)
, (2.42)

where S is the unit sphere of H2
2(M).

2.2. Palais-Smale sequences and positive solutions

Theorem 2.4. Let (un) ⊂ S be a minimizing sequence of (2.41) (resp., of (2.42)).

Then, (vn) := (t(un,λ)un) (resp., (vn) := (t(un,λ)un)) is a Palais-Smale sequence for

the functional Eλ.

Proof. Let (un)⊂ S be a minimizing sequence of (2.41). According to the previous

lemma, (vn) is bounded in H2
2(M). Moreover, for every u∈H2

2(M)\{0} and λ∈ ]0, λ̂[,
we know that ∂tẼλ(t(u,λ),u)= 0 and ∂ttẼλ(t(u,λ),u) �= 0. The implicit function theo-

rem implies that t(u,λ) isC1 with respect tou since Ẽ is. We introduce theC1 functional

�λ defined on S by

�λ(u)= Ẽλ
(
t(u,λ),u

)= Eλ(t(u,λ)u). (2.43)

Then

α(λ)= inf
u∈S

�λ(u), lim
n→+∞�λ

(
un
)=α(λ). (2.44)

Using the Ekeland variational principle on the complete manifold (S,‖·‖) to the func-

tional �λ, we conclude that

∣∣�′λ
(
un
)(
ϕn

)∣∣≤ 1
n
∥∥ϕn

∥∥, for every ϕn ∈ TunS, (2.45)

where TunS is the tangent space to S at the point un. Moreover, for every ϕn ∈ TunS,

one has

�′λ
(
un
)(
ϕn

)= ∂tẼλ(t(un,λ),un)t′(un,λ)(ϕn
)+∂uẼλ(t(un,λ),un)(ϕn

)
= ∂uẼλ

(
t
(
un,λ

)
,un

)(
ϕn

)
,

(2.46)
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since ∂tẼλ(t(un,λ),un) = 0, where t′(un,λ) denotes the derivative of t(·,λ) with re-

spect to its first variable at the point (un,λ).
On the other hand, let

π :H2
2(M)\{0} �→R×S,

u 
 �→
(
‖u‖, u‖u‖

)
:= (π1(u),π2(u)

)
.

(2.47)

Applying Hölder’s inequality, we get for every (u,ϕ)∈ (H2
2(M)\{0})×H2

2(M),∣∣π ′1(u)(ϕ)∣∣≤ ‖ϕ‖,∥∥π ′2(u)(ϕ)∥∥≤ 2
‖ϕ‖
‖u‖ .

(2.48)

From Lemma 2.3, there is a positive constant C such that

t
(
un,λ

)≥ C, ∀n∈N. (2.49)

Then, for every ϕ ∈ H2
2(M), there are ϕ1

n = π ′1(un)(ϕ) ∈ R and ϕ2
n = π ′2(un)(ϕ) ∈

TunS such that |ϕ1
n| ≤ ‖ϕ‖, ‖ϕ2

n‖ ≤ (2/C)‖ϕ‖. This allows to obtain

E′λ
(
t
(
un,λ

)
un
)
(ϕ)= ∂tẼλ

(
t
(
un,λ

)
,un

)(
ϕ1
n
)+∂uẼλ(t(un,λ),un)(ϕ2

n
)

= ∂uẼλ
(
t
(
un,λ

)
,un

)(
ϕ2
n
)

= �′λ
(
un
)(
ϕ2
n
)
.

(2.50)

More precisely, we get

E′λ
(
t
(
un,λ

)
un
)
(ϕ)≤ 1

n
∥∥ϕ2

n
∥∥≤ 2

nC
‖ϕ‖. (2.51)

In other words,

lim
n→∞

∥∥E′λ(vn)∥∥∗ = 0, (2.52)

which achieves the first claim. The same arguments can be used to show that (vn) is a

Palais-Smale sequence for the functional Eλ. This ends the proof.

Theorem 2.5. Let 1< q < 2< r < 2# and λ∈ ]0, λ̂[. Then problem (1.14) has at least

two positive solutions.

Proof. We will adopt the notations used in the previous lemmas. As mentioned in

Theorem 2.4, Eλ(vn) converges to α(λ), ‖E′λ(vn)‖∗ converges to 0 as n tends to +∞,

and (vn) is bounded in H2
2(M). Passing, if necessary, to a subsequence, we have

vn ⇀ v in H2
2(M),

vn �→ v in Lr (M)
(
also in Lq(M)

)
,

vn �→ v a.e. in M.

(2.53)
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Let wn = vn−v ; then, using a lemma due to Brézis and Lieb [7], we get

P
(
wn

)= P(vn)−P(v)+on(1),

Q
(
wn

)=Q(vn)−Q(v)+on(1),

R
(
wn

)= R(vn)−R(v)+on(1).

(2.54)

It follows that

Eλ
(
wn

)= Eλ(vn)−Eλ(v)+on(1),

E′λ
(
wn

)= E′λ(vn)−E′λ(v)+on(1),
(2.55)

and consequently E′λ(wn)wn→ 0 as n→+∞, which implies that

∥∥wn
∥∥2 = λQ(wn

)+R(wn
)+on(1). (2.56)

Therefore, ‖wn‖ → 0 as n→+∞. Hence, vn converges strongly to some v in H2
2(M)\

{0}. In other words, there is v ∈H2
2(M)\{0} such that

t
(
un,λ

)
un �→ v in H2

2(M). (2.57)

Since (un) belongs to the unit sphere S, then

t
(
un,λ

)
�→ t := ‖v‖> 0,

un �→u := v/‖v‖ in H2
2(M).

(2.58)

Notice that

∂tẼλ(t,u)= lim
n→∞∂tẼλ

(
t
(
un,λ

)
,un

)= 0,

∂ttẼλ(t,u)= lim
n→∞∂ttẼλ

(
t
(
un,λ

)
,un

)≥ 0.
(2.59)

But ∂ttẼλ(t,u)= 0 cannot occur since 0< λ< λ̂ and because of Lemma 2.1. Hence,

∂tẼλ(t,u)= lim
n→∞∂tẼλ

(
t
(
un,λ

)
,un

)= 0,

∂ttẼλ(t,u)= lim
n→∞∂ttẼλ

(
t
(
un,λ

)
,un

)
> 0,

(2.60)

which implies that

t = t(u,λ). (2.61)

Notice that u is not necessarily positive. At this stage, letw ∈H2
2(M) be the solution of

(
∆g+ α

2

)
w =

∣∣∣∣(∆g+ α2
)
u
∣∣∣∣ in M. (2.62)
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It is clear that (∆g +α/2)(w−u) ≥ 0 and (∆g +α/2)(w+u) ≥ 0. Since the manifold

M is compact, the maximum principle for the operator ∆g+α/2 implies that w ≥ |u|.
Using the fact that

‖u‖2 :=
∫
M

{(
∆gu+ α

2
u
)2

+
(
β− α

2

4

)
u2

}
dvg, ∀u∈H2

2(M), (2.63)

and that β−α2/4≤ 0, we get

‖w‖ ≤ ‖u‖. (2.64)

Using Lemma 2.2, we conclude that

Eλ
(
t(w,λ)w

)≤ Eλ(t(u,λ)u). (2.65)

We obtain that t(w,λ)w is a nontrivial nonnegative solution to (1.14). Finally, since

w ≥ 0, w �= 0, then, applying again the maximum principle for the operator ∆g+α/2,

we deduce thatw is positive. The same arguments can be used for vn to obtain a second

positive solution t(w,λ)w, which achieves the proof.

2.3. Behavior of the energy. In this subsection, we give results concerning the sign

of the energy for the positive solutions to (1.14). To be more precise in the sequel,

t(wµ,µ)wµ and t(wµ,µ)wµ will stand for the positive solutions found above, when

the value of the parameter λ is equal to µ.

Theorem 2.6. Let 1< q < 2< r < 2# . Then

(a) Eλ(t(wλ,λ)wλ) < 0 for λ∈ ]0, λ̂[,
(b) Eλ(t(wλ,λ)wλ) > 0 for λ∈ ]0,λ0[, Eλ(t(wλ,λ)wλ) < 0 for λ∈ ]λ0, λ̂[,

where

λ0 := q
r

(
r
2

)(r−q)/(r−2)
λ̂. (2.66)

Proof. (a) We recall that ∂tẼλ(t(wλ,λ),wλ)= 0 and ∂ttẼλ(t(wλ,λ),wλ) > 0. Then

P
(
t
(
wλ,λ

)
wλ

)−λQ(t(wλ,λ
)
wλ

)−R(t(wλ,λ
)
wλ

)= 0,

P
(
t
(
wλ,λ

)
wλ

)−λ(q−1)Q
(
t
(
wλ,λ

)
wλ

)−(r −1)R
(
t
(
wλ,λ

)
wλ

)
> 0.

(2.67)

Using the fact that 1< q < 2< r , we get

1
2
P
(
t
(
wλ,λ

)
wλ

)− λ
q
Q
(
t
(
wλ,λ

)
wλ

)− 1
r
R
(
t
(
wλ,λ

)
wλ

)
< 0, (2.68)

and consequently, Eλ(t(wλ,λ)wλ) < 0.

(b) Let u be an arbitrary element of H2
2(M)\{0} and we write

Ẽλ(t,u)= tqG̃λ(t,u), where G̃λ(t,u)= t2−q P(u)
2

−λQ(u)
q

−tr−q R(u)
r

. (2.69)
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It follows that

∂tẼλ(t,u)= qtq−1G̃λ(t,u)+tq∂tG̃λ(t,u), (2.70)

with

∂tG̃λ(t,u)= t2−q−1
{

2−q
2
P(u)− r −q

r
tr−2R(u)

}
. (2.71)

The real-valued function t� G̃λ(t,u) is increasing on ]0, t0(u)[, decreasing on ]t0(u),
+∞[, and reaches its unique maximum for t = t0(u), where

t0(u)=
(
r
2

)1/(r−2)
t(u) (2.72)

and t(u) is defined in (2.5). On the other hand, a direct computation gives

G̃λ
(
t0(u),u

)= (2−q
r −q

P(u)
R(u)

)(r−q)/(r−2)
R(u)−λQ(u). (2.73)

Similarly, G̃λ(t0(u),u) > 0 (resp., G̃λ(t0(u),u) < 0) if λ < λ0(u) (resp., λ > λ0(u)) and

G̃λ0(u)(t0(u),u)= 0, where

λ0(u)= qr
(
r
2

)(r−q)/(r−2)
λ(u), (2.74)

and λ(u) is given by (2.8). Thus, we get

Ẽλ
(
t0(u),u

)
> 0 if λ < λ0(u),

Ẽλ
(
t0(u),u

)= 0 if λ= λ0(u),

Ẽλ
(
t0(u),u

)
< 0 if λ > λ0(u).

(2.75)

We consider the increasing real-valued function

]0,1[ �→R, t 
 �→ ln(t)
1−t . (2.76)

Then, for every two real numbers x, y such that 0<x <y < 1, one has

ln
(

1
x

)
>

1−x
1−y ln

(
1
y

)
= ln

((
1
y

)(1−x)/(1−y))
. (2.77)

Therefore,

0<x
(

1
y

)(1−x)/(1−y)
< 1. (2.78)



MULTIPLE SOLUTIONS TO A NONLINEAR ELLIPTIC EQUATION . . . 2467

In the specific case, x = q/r and y = 2/r , we get

0<
q
r

(
r
2

)(r−q)/(r−2)
< 1, (2.79)

which gives 0< λ0(u) < λ(u).
Moreover, for every u∈H2

2(M)\{0}, one has G̃λ0(u)(t,u) < 0 for t ∈ ]0,+∞[\{t0(u)}
and G̃λ0(u)(t0(u),u)= 0. Hence, the real-valued function t� Ẽλ0(u)(t,u), t > 0, reaches

its unique maximum at t = t0(u) and we obtain the following relation:

t
(
u,λ0(u)

)= t0(u). (2.80)

Classical arguments of variational calculus show that λ0(u) is weakly lower semicon-

tinuous on H2
2(M)\{0}. Then, the value

λ0 := inf
u∈H2

2 (M)\{0}
λ0(u) (2.81)

is achieved onH2
2(M)\{0}. Since λ0(u) is homogeneous in u, we can assume that there

is some u∗ ∈ S such that λ0 = λ0(u∗).
Now, let λ ∈ ]0,λ0[. Then, for every u ∈ H2

2(M) \ {0}, one has λ < λ0(u), and con-

sequently Ẽλ(t0(u),u) > 0 holds true from (2.75). But, t � Ẽλ(t,u), t > 0, reaches its

unique maximum for t = t(u,λ), hence Ẽλ(t(u,λ),u) > 0, for every u ∈ H2
2(M)\{0}.

In particular, we have Ẽλ(t(wλ,λ),wλ) > 0, that is, Eλ(t(wλ,λ)wλ) > 0. In the specific

case λ= λ0, one has

Eλ0

(
t
(
wλ0 ,λ0

)
wλ0

)= Ẽλ0

(
t
(
wλ0 ,λ0

)
,wλ0

)
= inf
u∈S

Ẽλ0

(
t
(
u,λ0

)
,u
)

≤ Ẽλ0

(
t
(
u∗,λ0

(
u∗
))
,u∗

)
= Ẽλ0(u∗)

(
t0
(
u∗
)
,u∗

)
= 0.

(2.82)

This implies that Eλ0(t(wλ0 ,λ0)wλ0) ≤ 0. Thanks to (2.75), we have, in addition,

Ẽλ0(t0(u),u) ≥ 0 and Ẽλ0(t(u,λ0),u) < 0, for every u ∈ H2
2(M) \ {0}. Then, it comes

that

t0(u) > t
(
u,λ0

)
, ∀u∈H2

2(M)\{0},
Ẽλ0

(
t
(
wλ0 ,λ0

)
,wλ0

)≥ Ẽλ0

(
t0
(
wλ0

)
,wλ0

)≥ 0.
(2.83)

Finally, one gets

Eλ0

(
t
(
wλ0 ,λ0

)
wλ0

)= 0. (2.84)

Now, assume that λ0 < λ < λ̂. Since for every (t,u)∈ ]0,+∞[×(H2
2(M)\{0}), the real-

valued function λ� Ẽλ(t,u) is decreasing, it follows that

Ẽλ(t,u) < Ẽλ0(t,u), for every t > 0, u∈H2
2(M)\{0}. (2.85)
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In addition, we have

Ẽλ
(
t
(
wλ,λ

)
,wλ

)= inf
u∈S

Ẽλ
(
t(u,λ),u

)
≤ Ẽλ

(
t
(
u∗,λ

)
,u∗

)
< Ẽλ0

(
t
(
u∗,λ

)
,u∗

)
,

(2.86)

where the last inequality follows from (2.85). Moreover, the real-valued function t �
Ẽλ0(t,u∗), t > 0, achieves its global maximum at t = t0(u∗). Thus, Ẽλ0(t(u∗,λ),u∗) ≤
Ẽλ0(t0(u∗),u∗) = Ẽλ0(u∗)(t0(u∗),u∗) = 0. Hence, Eλ(t(wλ,λ)wλ) < 0, which ends the

proof.

The following result shows that the variational character of (2.13) has a genuine link

with the main problem (1.14).

Theorem 2.7. If u is a solution of (2.81), then t0(u)u is a solution of (1.14) for λ= λ0.

Proof. Ifu is a solution of (2.81), then λ0 = λ0(u) and for everyϕ ∈H2
2(M), we have

E′λ0

(
t0(u)u

)
(ϕ)= 1

2
P ′
(
t0(u)u

)
(ϕ)− λ0

q
Q′(t0(u)u)(ϕ)− 1

r
R′
(
t0(u)u

)
(ϕ)

= P(u)
[
t0(u)

]
2

(
P ′(u)(ϕ)
P(u)

− r −2
r −q

Q′(u)(ϕ)
Q(u)

− 2−q
r −q

R′(u)(ϕ)
R(u)

)

=K
(
r −q
r −2

P ′(u)(ϕ)
P(u)

−Q
′(u)(ϕ)
Q(u)

− 2−q
r −2

R′(u)(ϕ)
R(u)

)
,

(2.87)

where

K := r −2
r −q

P(u)
2

[
t0(u)

]
. (2.88)

By hypothesis, one gets λ′0(u)(ϕ)= 0 for every ϕ ∈H2
2(M), and

λ′0(u)(ϕ)= λ0

(
r −q
r −2

P ′(u)(ϕ)
P(u)

−Q
′(u)(ϕ)
Q(u)

− 2−q
r −2

R′(u)(ϕ)
R(u)

)
. (2.89)

We conclude that

E′λ0

(
t0(u)u

)
(ϕ)= K

λ0
λ′0(u)(ϕ)= 0 (2.90)

for every ϕ ∈H2
2(M), which implies that t0(u)u is a solution to (1.14) for λ= λ0.

3. Infinitely many solutions. In this section, we show the existence of infinitely

many solutions to (1.14). More precisely, we carry out two disjoint and infinite sets of

solutions to (1.14). One set consists of solutions with negative energy, while the other

set contains solutions with arbitrary energy. We briefly recall here some background

facts that we will use in the sequel [20, 21, 24, 26]. Let

�= {A⊂ S :A closed, A=−A} (3.1)
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be the class of closed and symmetric subsets of the complete smooth submanifold

(S,‖·‖). For every A∈�, A �= ∅, let

γ(A)= inf
{
k∈N; ∃ϕ ∈ C0(A,Rk \{0}), ∀u∈A, ϕ(−u)=−ϕ(u)} (3.2)

be the Krasnoselskii genus [20]. When there does not exist a finite such integer, set

γ(A)=+∞. Finally, set γ(∅)= 0. For each positive integer k, we define

Γk = {A∈�; A compact, γ(A)≥ k},
ck = inf

A∈Γk
max
u∈A

�λ(u), ck = inf
A∈Γk

max
u∈A

�λ(u),
(3.3)

where

�λ(u)= Eλ
(
t(u,λ)u

)
,

�λ(u)= Eλ
(
t(u,λ)u

)
.

(3.4)

It is well known that (ck) (resp., (ck)) is a nondecreasing sequence of critical values of

�λ (resp., �λ) [26]. Recall that if the sequence (ck) (resp., (ck)) is increasing, then �λ
(resp., �λ) has infinitely many critical points (uλ,k) (resp., (uλ,k)) corresponding to the

sequence of distinct levels (ck) (resp., (ck)). On the other hand, if there are two positive

integers j and p such that cj = cj+1 = ··· = cj+p (resp., cj = cj+1 = ··· = cj+p), then

the set of critical points for �λ (resp., �λ) corresponding to the level cj (resp., cj ) is

infinite. Hereafter, we set

vλ,k = t
(
uλ,k,λ

)
uλ,k,

vλ,k = t
(
uλ,k,λ

)
uλ,k.

(3.5)

We recall that vλ,k and vλ,k are solutions to (1.14) for every k∈N∗.

Theorem 3.1. Let 1< q < 2< r < 2# and 0< λ< λ̂. Then there are two disjoint and

infinite sets of solutions to (1.14): {vλ,k; k∈N∗} and {vλ,k; k∈N∗}. In addition,

(a) limk→+∞Eλ(vλ,k)=+∞,

(b) Eλ(vλ,k) < 0, limk→+∞Eλ(vλ,k)= 0.

Proof. We recall that ∂ttẼλ(t(uλ,k,λ),uλ,k) > 0 and ∂ttẼλ(t(uλ,k,λ),uλ,k) < 0. Then

the two sets {vλ,k; k∈N∗} and {vλ,k; k∈N∗} are disjoint.

(a) As mentioned above, the sequence (ck) := (�λ(uλ,k)) := (Eλ(vλ,k)) is nondecreas-

ing. Suppose, by contradiction, that

lim
k→∞

ck = c <+∞, (3.6)

and consider the symmetric set

Kc =
{
u∈ S; �λ(u)= c, �

′
λ(u)= 0

}
. (3.7)



2470 ABDALLAH EL HAMIDI

It is easy to see that

lim
k→∞

Eλ
(
t
(
uλ,k,λ

)
uλ,k

)= c,
E′λ
(
t
(
uλ,k,λ

)
uλ,k

)= 0.
(3.8)

Since Eλ satisfies the Palais-Smale condition, we conclude that Kc is not empty and

compact. Then γ(Kc) < +∞ [24]. Let N be a closed neighborhood of Kc in S such that

γ(N)= γ(Kc). The deformation lemma [21, 24, 26, 28] ensures the existence of an odd

homeomorphism Φ from S to S and ε > 0 such that

Φ
(
Ac+ε \

◦
N
)
⊂Ac−ε. (3.9)

Using classical properties of the Krasnoselskii genus, one gets

γ
(
Ac+ε

)≤ γ(Ac+ε \ ◦N)+γ(N)
≤ γ

(
Φ
(
Ac+ε \

◦
N
))
+γ(N)

≤ γ(Ac−ε)+γ(N).
(3.10)

On the other hand, by the definition of c, there is a positive integer j such that c−ε <
cj ≤ c. As a consequence, one gets γ(Ac−ε) < j and

γ
(
Ac+ε

)
< j+γ(Kc)<+∞. (3.11)

But this is in contradiction with γ(Ac+ε)=+∞. We finally obtain that

lim
k→∞

ck =+∞. (3.12)

(b) It is known from the above that Eλ(vλ,k) < 0 for every k. We show that (ck)
converges to zero as k goes to infinity. Suppose that

lim
k→+∞

ck = c < 0. (3.13)

As before, consider the symmetric set

Kc =
{
u∈ S; �λ(u)= c, �′λ(u)= 0

}
. (3.14)

Since � satisfies that Palais-Smale condition on S and c < 0, then Kc is not empty and

compact, which implies that γ(Kc) < +∞. Let N be a closed neighborhood of Kc in

S such that γ(N) = γ(Kc). Applying again the deformation lemma, there are an odd

homeomorphism Ψ from S to S and ε > 0 such that

Ψ
(
Ac+ε \

◦
N
)
⊂Ac−ε. (3.15)
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As mentioned above, we get

γ
(
Ac+ε

)≤ γ(Ac+ε \ ◦N)+γ(N)
≤ γ

(
Ψ
(
Ac+ε \

◦
N
))
+γ(N)

≤ γ(Ac−ε)+γ(N).
(3.16)

Furthermore, there is a positive integer j such that c−ε < cj ≤ c; then γ(Ac−ε) < j, and

consequently

γ
(
Ac+ε

)
< j+γ(Kc)<+∞. (3.17)

This contradicts γ(Ac+ε)=+∞, which ends the proof.

Comment. Consider the specific case where the functions a and b are positive con-

stants. Then problem (1.14) possesses two constant and positive solutions c(λ) and

c(λ). The solutions c(λ) and c(λ) realize, respectively, the (unique) local minimum and

the (unique) local maximum of the real-valued function

β
2
t2−λa

q
tq− b

r
tr , t > 0, (3.18)

where

0< λ< λ∗ := Ĉ β(r−q)/(r−2)

ab(2−q)/(r−2) . (3.19)

Notice that λ̂ ≤ λ∗. An interesting question is to compare α(λ) (resp., α(λ)) with

Eλ(c(λ)) (resp., with Eλ(c(λ))). If, for example, α(λ) < Eλ(c(λ)) and α(λ) < Eλ(c(λ)),
then (1.14) possesses four positive solutions.
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