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We consider the permanence of a periodic predator-prey system, where the prey disperse
in a two-patch environment. We assume the Volterra within-patch dynamics and provide
a sufficient and necessary condition to guarantee the predator and prey species to be per-
manent by using the techniques of inequality analysis. Our work improves previous relevant
results.

2000 Mathematics Subject Classification: 92D25, 34C60.

1. Introduction. Dispersal predator-prey systems described by autonomous ordi-

nary differential equations have long played an important role in population biology

(see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24] and the ref-

erences cited therein). Recently, Lou and Ma [15] studied the following predator-prey

system in two-patch environment:

ẋ1 = x1
(
b1−a1x1−c1y

)+D(x2−x1
)
,

ẋ2 = x2
(
b2−a2x2

)+D(x1−x2
)
,

ẏ =y(−d+c2x1−ly
)
,

(1.1)

where xi(t) represents the prey population in the ith patch, i = 1,2, at time t ≥ 0,

y(t) stands for the predator population in patch 1 at time t ≥ 0; coefficients ai, bi, ci
(i= 1,2), d, l, and D are all positive constants. They proved that

−d+c2x∗1 (D) > 0 (1.2)

is a necessary and sufficient condition of the strong persistence of system (1.1), where

(x∗1 (D),x
∗
2 (D)) is the globally asymptotically stable equilibrium of the following sys-

tem:

ẋ1 = x1
(
b1−a1x1

)+D(x2−x1
)
,

ẋ2 = x2
(
b2−a2x2

)+D(x1−x2
)
.

(1.3)
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Considering realistic models often requires the effects of the changing environment;

we naturally expect that a similar condition should be selected for the permanence of

the corresponding periodic predator-prey system,

ẋ1 = x1
[
b1(t)−a1(t)x1−c1(t)y

]+D(t)(x2−x1
)
,

ẋ2 = x2
[
b2(t)−a2(t)x2

]+D(t)(x1−x2
)
,

ẏ =y[−d(t)+c2(t)x1−l(t)y
]
,

(1.4)

under the assumptions that the functions ai(t), bi(t), ci(t) (i = 1,2), D(t), d(t), and

l(t) are all positive, ω-periodic, and continuous for t ≥ 0.

Existing results on the permanence of system (1.4) have largely been restricted to

some roughly sufficient conditions due to the increased complexity of global analysis

for the nonautonomous systems (cf. Song and Chen [18]). The present paper provides

a necessary and sufficient condition of the permanence of system (1.4) and removes

some unnecessary conditions in [18].

The organization of this paper is as follows. In Section 2, we agree on some notations,

give some definitions, and state three lemmas which will be essential to our proofs. In

Section 3, by introducing the techniques found in [21], we obtain the necessary and

sufficient condition which guarantees that system (1.4) is permanent.

2. Notations, definitions, and preliminaries. In this section, we introduce some def-

initions and notations and state some results which will be useful in subsequent sec-

tions. Let C denote the space of all bounded continuous functions f :R→R, C0+ the set

of nonnegative f ∈ C , and C+ the set of all f ∈ C such that f is bounded below by a

positive constant. Given f ∈ C , we denote

fM = sup
t≥0
f(t), f L = inf

t≥0
f(t), (2.1)

and define the lower average AL(f) and upper average AM(f) of f by

AL(f)= lim
r→∞

inf
t−s≥r

(t−s)−1
∫ t
s
f (τ)dτ,

AM(f)= lim
r→∞

sup
t−s≥r

(t−s)−1
∫ t
s
f (τ)dτ,

(2.2)

respectively. If f ∈ C is ω-periodic, we define the average Aω(f) of f on the time

interval [0,ω] by

Aω(f)=ω−1
∫ω

0
f(t)dt. (2.3)

Definition 2.1. The system of differential equations

ẋ = F(t,x), x ∈Rn, (2.4)

is said to be permanent if there exists a compact setK in the interior ofRn+ = {(x1,x2, . . . ,
xn) ∈ Rn : xi ≥ 0, i = 1,2, . . . ,n} such that all solutions starting in the interior of Rn+
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ultimately enter and remain in K. The system is said to be strongly persistent if

lim
t→∞

infxi(t) > 0, i= 1,2, . . . ,n, (2.5)

hold for all solutions x(t)= (x1(t),x2(t), . . . ,xn(t)) starting in the interior of Rn+.

Definition 2.2. The system of differential equations

ẋ = F(t,x), (t,x)∈R×Rn, (2.6)

is said to be cooperative if the off-diagonal elements of DxF(t,x) are nonnegative and

competitive if the off-diagonal elements are nonpositive, where DxF(t,x) is the n×n
matrix derivative of F with respect to x.

Lemma 2.3 [17]. Let x(t) and y(t) be solution of

ẋ = F(t,x), ẏ =G(t,y), (2.7)

respectively, where both systems are assumed to have the uniqueness property for initial

value problems. Assume both x(t) and y(t) belong to a domain D ⊂ Rn for [t0, t1], in

which one of the two systems is cooperative and

F(t,z)≤G(t,z), (t,z)∈ [t0, t1]×D. (2.8)

If x(t0)≤y(t0), then x(t1)≤y(t1). If F =G and x(t0) < y(t0), then x(t1) < y(t1).

To prove the permanence of the species in (1.4), we need the information on the

periodic logistic models with and without dispersal.

Lemma 2.4 [25]. The problem

ẋ = x[b(t)−a(t)x], x ∈ C+ (2.9)

has exactly one canonical solution U if a ∈ C+, b ∈ C , and AL(b) > 0. Moreover, the

following properties hold:

(a) U is ω-periodic (almost periodic) if a, b are ω-periodic (almost periodic);

(b) U is constant if b/a is constant. In this case, U = b/a;

(c) u(t)−U(t)→ 0 as t→∞, for any positive solution u(t) of (2.9);

(d) (b/a)L ≤U ≤ (b/a)M .

For the dispersal logistic equations

ẋ1 = x1
[
b1(t)−a1(t)x1

]+D(t)(x2−x1
)
,

ẋ2 = x2
[
b2(t)−a2(t)x2

]+D(t)(x1−x2
)
,

(2.10)

we have the following result.

Lemma 2.5 [16]. Suppose that bi(t), ai(t) (i = 1,2), and D(t) are all positive and

ω-periodic functions; then (2.10) has a positive and ω-periodic solution (x∗1 (t),x
∗
2 (t))

which is globally asymptotically stable.
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3. Necessary and sufficient condition of permanence in (1.4)

Theorem 3.1. System (1.4) is permanent if and only if

Aω
[−d(t)+c2(t)x∗1 (t)

]
> 0, (3.1)

where (x∗1 (t),x
∗
2 (t)) is the globally asymptotically stable periodic solution of (2.10).

To prove this theorem, we need several propositions. In the rest of this paper, we

denote by (x1(t),x2(t),y(t)) any solution of (1.4) with positive initial condition.

Proposition 3.2. There exist positive constants Mx and My such that

lim
t→∞

supxi(t)≤Mx, lim
t→∞

supy(t)≤My, i= 1,2. (3.2)

Proof. Obviously,R3+ is a positively invariant set of (1.4). Given any positive solution

(x1(t),x2(t),y(t)) of (1.4), we have

ẋi ≤ xi
[
bi(t)−ai(t)xi

]+D(t)(xj−xi), i= 1,2, j �= i; (3.3)

on the other hand, the auxiliary equations

u̇i =ui
[
bi(t)−ai(t)ui

]+D(t)(uj−ui), i= 1,2, j �= i, (3.4)

have a unique globally asymptotically stable positive ω-periodic solution (x∗1 (t),
x∗2 (t)). Let (u1(t),u2(t)) be the solution of (3.4) with ui(0) = xi(0). By Lemma 2.3,

we have

xi(t)≤ui(t), i= 1,2, for t ≥ 0. (3.5)

Moreover, from the global stability of (x∗1 (t),x
∗
2 (t)), for every given ε > 0, there exists

T0 > 0 such that

ui(t) < x∗i (t)+ε for t > T0; (3.6)

hence

xi(t) < x∗i (t)+ε, i= 1,2, for t > T0. (3.7)

In addition, for t ≥ T0, we have

ẏ ≤y[−d(t)+c2(t)
(
x∗1 (t)+ε

)−l(t)y]. (3.8)

By (3.1), and Lemmas 2.3 and 2.4, there exists T1 > T0 such that

y(t) < y∗(t)+ε for t > T1, (3.9)

where y∗(t) is the positive and globally asymptotically stable ω-periodic solution of

the auxiliary logistic equation

v̇ = v[−d(t)+c2(t)
(
x∗1 (t)+ε

)−l(t)v]. (3.10)
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Denote Mx =max0≤t≤ω{x∗i (t)+ε : i = 1,2} and My =max0≤t≤ω{y∗(t)+ε}; then (3.2)

holds for system (1.4).

Proposition 3.3. There exists a positive constant ηx such that

lim
t→∞

supx1(t)≥ ηx. (3.11)

Proof. Suppose that (3.11) is not true; then there is a sequence {zm} ⊂ R3+ such

that

lim
t→∞

supx1
(
t,zm

)
<

1
m
, m= 1,2, . . . , (3.12)

where (x1(t,zm),x2(t,zm),y(t,zm)) is the solution of (1.4) with initial values

(x1(0,zm),x2(0,zm),y(0,zm))= zm. Choosing sufficiently small positive constants εx
and εy such that εx < 1, εy < 1, and

Aω
(−d(t)+c2(t)εx

)
< 0, (3.13)

Aω
(
φε(t)

)
> 0, (3.14)

where φε(t) = min{b1(t) − c1(t)εy exp(αω) − a1(t)εx,b2(t) − a2(t)εx}, α =
max0≤t≤ω{|d(t)|+c2(t)+ l(t)}. By (3.12), for the given εx > 0, there exists a positive

integer N0 such that

lim
t→∞

supx1
(
t,zm

)
<

1
m
< εx (3.15)

for m > N0. In the rest of this proof, we always assume that m > N0. The above in-

equality implies that there exists τ(m)1 > 0 such that

x1
(
t,zm

)
< εx (3.16)

for t ≥ τ(m)1 , and further

ẏ
(
t,zm

)≤y(t,zm)[−d(t)+c2(t)εx−l(t)y
(
t,zm

)]
(3.17)

for t ≥ τ(m)1 . By (3.13), any solution v(t) of the equation

v̇ = v[−d(t)+c2(t)εx−l(t)v
]

(3.18)

with positive initial condition satisfies

lim
t→∞

v(t)= 0. (3.19)

By Lemma 2.3, we have

lim
t→∞

y
(
t,zm

)= 0. (3.20)
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Therefore, there is a τ(m)2 > τ(m)1 such that

y
(
t,zm

)
< εy for t ≥ τ(m)2 . (3.21)

This leads to

ẋ1
(
t,zm

)≥ x1
(
t,zm

)[
b1(t)−c1(t)εy−a1(t)x1

(
t,zm

)]
+D(t)(x2

(
t,zm

)−x1
(
t,zm

))
,

ẋ2
(
t,zm

)= x2
(
t,zm

)[
b2(t)−a2(t)x2

(
t,zm

)]+D(t)(x1
(
t,zm

)−x2
(
t,zm

)) (3.22)

for t ≥ τ(m)2 . Let (u1(t),u2(t)) be any positive solution of the following auxiliary equa-

tions:

u̇1 =u1
[
b1(t)−a1(t)u1−c1(t)εy

]+D(t)(u2−u1
)
,

u̇2 =u2
[
b2(t)−a2(t)u2

]+D(t)(u1−u2
)
.

(3.23)

By (3.14) and Lemma 2.5, (3.23) has a unique positive and ω-periodic solution

(u∗1 (t),u
∗
2 (t)), which is globally asymptotically stable. So we have

xi
(
t,zm

)
>
u∗i (t)

2
, i= 1,2, (3.24)

for sufficiently large t > 0 and m>N0, which is a contradiction with (3.12). This com-

pletes the proof.

Proposition 3.4. There exists positive constants γx such that

lim
t→∞

infρx(t)≥ γx, (3.25)

where ρx(t)= x1(t)+x2(t).

Proof. Suppose that (3.25) is not true; then there exists a sequence {zm} ⊂R3+ such

that

lim
t→∞

infρx
(
t,zm

)
<
ηx

2m2
, m= 1,2, . . . . (3.26)

On the other hand, by Proposition 3.3, we have

lim
t→∞

supρx
(
t,zm

)≥ lim
t→∞

supx1
(
t,zm

)≥ ηx, m= 1,2, . . . . (3.27)

Hence there are two time sequences {s(m)q } and {t(m)q } satisfying the following condi-

tions:

0< s(m)1 < t(m)1 < s(m)2 < t(m)2 < ···< s(m)q < t(m)q < ··· , s(m)q �→∞, t(m)q �→∞ (q �→∞),
(3.28)

ρx
(
s(m)q ,zm

)= ηx
m
, ρx

(
t(m)q ,zm

)= ηx
m2
,

ηx
m2

< ρx
(
t,zm

)
<
ηx
m
, t ∈ (s(m)q ,t(m)q

)
.

(3.29)
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By Proposition 3.2, for a given integer m> 0, there is a T(m)1 > 0 such that

xi
(
t,zm

)≤Mx, y
(
t,zm

)≤My, for t ≥ T(m)1 , i= 1,2. (3.30)

Because of s(m)q →∞ as q→∞, there is a positive integer K(m) such that s(m)q > T(m)1 as

q ≥K(m); hence

ẋ1
(
t,zm

)≥ x1
(
t,zm

)[
b1(t)−a1(t)Mx−c1(t)My

]+D(t)(x2
(
t,zm

)−x1
(
t,zm

))
,

ẋ2
(
t,zm

)≥ x2
(
t,zm

)[
b2(t)−a2(t)Mx

]+D(t)(x1
(
t,zm

)−x2
(
t,zm

))
(3.31)

for q ≥K(m); so

ρ̇x
(
t,zm

)≥ ζ(t)ρx(t,zm) (3.32)

for q ≥ K(m), t ∈ [s(m)q ,t(m)q ], where ζ(t) = min{b1(t)− a1(t)Mx − c1(t)My,b2(t)−
a2(t)Mx}. Integrating (3.32) from s(m)q to t(m)q yields

ρx
(
t(m)q ,zm

)≥ ρx(s(m)q ,zm
)
exp

∫ t(m)q

s(m)q
ζ(t)dt (3.33)

or

−
∫ t(m)q

s(m)q
ζ(t)dt ≥ lnm for q ≥K(m). (3.34)

If Aω(ζ(t))≥ 0, this leads to a contradiction; otherwise, if Aω(ζ(t)) < 0, we have

t(m)q −s(m)q �→∞ (
m �→∞, q ≥K(m)) (3.35)

according to the boundedness of ζ(t). By (3.13) and (3.14), there are constants P > 0

and N0 > 0 such that

ηx
m
< εx, t(m)q −s(m)q > 2P, (3.36)

My exp
∫ P

0

[−d(t)+c2(t)εx−l(t)εy
]
dt < εy,

∫ a
0
φε(t)dt > 0 (3.37)

for m≥N0, q ≥K(m), and a≥ P . Inequality (3.36) implies

xi
(
t,zm

)
< εx, i= 1,2, t ∈ [s(m)q ,t(m)q

]
(3.38)

for m ≥ N0, q ≥ K(m). For the positive εy satisfying (3.14) and (3.37), we have the

following two circumstances:

(i) y(t,zm)≥ εy for all t ∈ [s(m)q ,s(m)q +P];
(ii) there exists τ(m)q1 ∈ [s(m)q ,s(m)q +P] such that y(τ(m)q1 ,zm) < εy .
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If (i) holds, by (3.38) we have

εy ≤y
(
s(m)q +P,zm

)

≤y(s(m)q ,zm
)
exp

∫ s(m)q +P

s(m)q

[−d(t)+c2(t)εx−l(t)εy
]
dt

≤My exp
∫ P

0

[−d(t)+c2(t)εx−l(t)εy
]
dt

< εy,

(3.39)

which is a contradiction.

If (ii) holds, we now claim that

y
(
t,zm

)≤ εy exp(αω), t ∈ (τ(m)q1 , t
(m)
q
]
. (3.40)

Otherwise, there exists τ(m)q2 ∈ (τ(m)q1 , t
(m)
q ] such that

y
(
τ(m)q2 ,zm

)
> εy exp(αω). (3.41)

By the continuity of y(t,zm), there must exist τ(m)q3 ∈ (τ(m)q1 ,τ
(m)
q2 ) such that

y
(
τ(m)q3 ,zm

)= εy,
y
(
t,zm

)
> εy for t ∈ (τ(m)q3 ,τ

(m)
q2

)
.

(3.42)

Denote by P(m) the nonnegative integer such that τ(m)q2 ∈ (τ(m)q3 +P(m)ω,τ(m)q3 +(P(m)+
1)ω]. By (3.13), we obtain

εy exp(αω) < y
(
τ(m)q2 ,zm

)

<y
(
τ(m)q3 ,zm

)
exp

∫ τ(m)q2

τ(m)q3

[−d(t)+c2(t)εx−l(t)εy
]
dt

= εy exp

{∫ τ(m)q3 +P(m)ω

τ(m)q3

+
∫ τ(m)q2

τ(m)q3 +P(m)ω

}[−d(t)+c2(t)εx−l(t)εy
]
dt

< εy exp(αω).

(3.43)

This contradiction establishes that (3.40) is true; particularly, (3.40) holds for t ∈
[s(m)q +P,t(m)q ]. By (3.29) and (3.14), we have

ηx
m2

= ρx
(
t(m)q ,zm

)

≥ ρx
(
s(m)q +P,zm

)
exp

∫ t(m)q

s(m)q +P
φε(t)dt

>
ηx
m2
,

(3.44)

which is also a contradiction. This completes the proof.
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Proposition 3.5. There exist positive constants γxi (i= 1,2) such that

lim
t→∞

infxi(t)≥ γxi (i= 1,2). (3.45)

Proof. Inequality (3.25) implies that there exists T2 ≥ T1 such that

ρx(t)= x1(t)+x2(t)≥ γx for t ≥ T2. (3.46)

Hence,

ẋ1 = x1
[
b1(t)−2D(t)−a1(t)x1−c1(t)y

]+D(t)ρx(t)
≥−aM1 x2

1+
(
bL1−2DM−cM1 My

)
x1+DLγx := F1

(
x1
)
,

ẋ2 ≥−aM2 x2
2+
(
bL2−2DM

)
x2+DLγx := F2

(
x2
) (3.47)

for t ≥ T2. The algebraic equation F1(x1)= 0 gives us one positive root

x̃1 =
bL1−2DM−cM1 My+

√(
bL1−2DM−cM1 My

)2+4DLaM1 γx
2aM1

. (3.48)

Clearly, F1(x1) > 0 for every positive number x1 (0 < x1 < x̃1). Choose γx1 (0 < γx1 <
x̃1), ẋ1|x1=γx1 ≥ F1(γx1) > 0. If x1(T2) ≥ γx1, then it also holds for t ≥ T2; if x1(T2) <
γx1, then

ẋ1
(
T2
)≥ inf

{
F1
(
x1
) | 0≤ x1 < γx1

}
> 0; (3.49)

there exists T3(≥ T2) such that x1(t) > γx1 for t ≥ T3.

Similarly, there exists γx2 > 0 and T4(≥ T3) such that x2(t) > γx2 for t ≥ T4. This

completes the proof.

Proposition 3.6. Suppose that (3.1) holds. Then there exists a positive constant ηy
such that

lim
t→∞

supy(t) > ηy. (3.50)

Proof. By (3.1), we can choose constant ε0 > 0 such that

Aω
(
ψε0(t)

)
> 0, (3.51)

where

ψε0(t)=−d(t)+c2(t)x∗1 (t)−c2(t)ε0−l(t)ε0. (3.52)

Consider the following equations with parameter α(0<α< bL1/2c
M
1 ):

ẋ1 = x1
[
b1(t)−2αc1(t)−a1(t)x1

]+D(t)(x2−x1
)
,

ẋ2 = x2
[
b2(t)−a2(t)x2

]+D(t)(x1−x2
)
.

(3.53)
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By Lemma 2.5, (3.53) has a unique positiveω-periodic solution (x1α(t),x2α(t))which is

globally asymptotically stable. Let (x̄1α(t), x̄2α(t)) be the solution of (3.53) with initial

condition x̄iα(0) = x∗i (0), i = 1,2, where (x∗1 (t),x
∗
2 (t)) is the positive and ω-periodic

solution of (2.10); then for the given ε0, there exists T5 ≥ T4 such that

∣∣x̄1α(t)−x1α(t)
∣∣< ε0

4
for t ≥ T5. (3.54)

By the continuity of solution to parameter α, we have (x̄1α(t), x̄2α(t))→ (x∗1 (t),x∗2 (t))
uniformly in [T5,T5+ω] as α→ 0. Hence for ε0 > 0, there exists positive α0 =α0(ε0) <
bL1/2c

M
1 such that

∣∣x̄1α(t)−x∗1 (t)
∣∣< ε0

4
for t ∈ [T5,T5+ω

]
, 0<α<α0. (3.55)

So we have

∣∣x1α(t)−x∗1 (t)
∣∣≤ ∣∣x̄1α(t)−x1α(t)

∣∣+∣∣x̄1α(t)−x∗1 (t)
∣∣< ε0

2
(3.56)

for t ∈ [T5,T5+ω]. Since x1α(t) and x∗1 (t) are all ω-periodic, we have

∣∣x1α(t)−x∗1 (t)
∣∣< ε0

2
for t ≥ 0, 0<α<α0. (3.57)

Choosing constant α1 (0<α1 <α0, 2α1 < ε0), then

x1α1(t)≥ x∗1 (t)−
ε0

2
, t ≥ 0. (3.58)

Suppose that the conclusion (3.50) is not true. Then there existsZ ∈R3+ such that for the

positive solution (x1(t),x2(t),y(t)) of (1.4) with initial condition (x1(0),x2(0),y(0))=
Z , we have

lim
t→∞

supy(t) < α1. (3.59)

So there exists T6 ≥ T5 such that

y(t) < 2α1 for t ≥ T6 (3.60)

and hence,

ẋ1 ≥ x1
[
b1(t)−2α1c1(t)−a1(t)x1

]+D(t)(x2−x1
)
,

ẋ2 = x2
[
b2(t)−a2(t)x2

]+D(t)(x1−x2
)
.

(3.61)

Let (u1(t),u2(t)) be the solution of (3.53) with α=α1 and ui(T6)= xi(T6), i= 1,2. By

Lemma 2.3, we know that

xi(t)≥ui(t), t ≥ T6, i= 1,2. (3.62)

By the globally asymptotically stability of (x1α1(t),x2α1(t)), for given ε = ε0/2, there

exists T7 ≥ T6 such that

∣∣u1(t)−x1α1(t)
∣∣< ε0

2
for t ≥ T7. (3.63)
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So we have

x1(t)≥u1(t) > x1α1(t)−
ε0

2
, t ≥ T7, (3.64)

and hence

x1(t) > x∗1 (t)−ε0, t ≥ T7. (3.65)

This implies

ẏ(t)≥ψε0(t)y(t), t ≥ T7. (3.66)

Integrating the above inequality from T7 to t yields

y(t)≥y(T7
)
exp

∫ t
T7

ψε0(t)dt. (3.67)

By (3.51), we know that y(t) → ∞ as t → ∞, which is a contradiction. This completes

the proof.

Proposition 3.7. Under the assumption (3.1), there exists a positive constant γy such

that

lim
t→∞

infy(t)≥ γy. (3.68)

Proof. Otherwise, there must exist a sequence {zm} ⊂R3+ such that

lim
t→∞

infy
(
t,zm

)
<

ηy
(m+1)2

, m= 1,2, . . . . (3.69)

But

lim
t→∞

supy
(
t,zm

)
> ηy, m= 1,2, . . . , (3.70)

according to Proposition 3.6. Hence there are two time sequences {s(m)q } and {t(m)q }
satisfying the following conditions:

0< s(m)1 < t(m)1 < s(m)2 < t(m)2 < ···< s(m)q < t(m)q < ··· ,
s(m)q �→∞, t(m)q �→∞ as q �→∞,

y
(
s(m)q ,zm

)= ηy
m+1

, y
(
t(m)q ,zm

)= ηy
(m+1)2

,

ηy
(m+1)2

<y
(
t,zm

)
<

ηy
m+1

, t ∈ (s(m)q ,t(m)q
)
.

(3.71)

By Proposition 3.2, for a given integer m> 0, there is a T(m)1 > 0 such that

y
(
t,zm

)≤My for t ≥ T(m)1 . (3.72)
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Because s(m)q → ∞ as q → ∞, there is a positive integer K(m) such that s(m)q > T(m)1 as

q ≥K(m); hence

ẏ
(
t,zm

)≥y(t,zm)[−d(t)−l(t)My] (3.73)

for q ≥K(m), t ∈ [s(m)q ,t(m)q ]. Integrating the above inequality from s(m)q to t(m)q , we get

y
(
t(m)q ,zm

)≥y(s(m)q ,zm
)
exp

∫ t(m)q

s(m)q

[−d(t)−l(t)My]dt. (3.74)

So we have

∫ t(m)q

s(m)q

[
d(t)+l(t)My

]
dt ≥ ln(m+1) for q ≥K(m). (3.75)

According to the boundedness of the function d(t)+l(t)My , we know that

t(m)q −s(m)q �→∞ as m �→∞, q ≥K(m). (3.76)

By (3.51), there are constants P > 0 and an integer N0 > 0 such that

ηy
m+1

<α1 < ε0, t(m)q −s(m)q > 2P,∫ a
0
ψε0(t)dt > 0

(3.77)

for m≥N0, q ≥K(m), and a≥ P . Further, we have

y
(
t,zm

)
<α1, t ∈ [s(m)q ,t(m)q

]
(3.78)

for m≥N0, q ≥K(m). In addition, for t ∈ [s(m)q ,t(m)q ], we have

ẋ1
(
t,zm

)≥ x1
(
t,zm

)[
b1(t)−2α1c1(t)−a1(t)x1

(
t,zm

)]
+D(t)(x2

(
t,zm

)−x1
(
t,zm

))
,

ẋ2
(
t,zm

)= x2
(
t,zm

)[
b2(t)−a2(t)x2

(
t,zm

)]+D(t)(x1
(
t,zm

)−x2
(
t,zm

))
.

(3.79)

Let (u1(t),u2(t)) be the solution of (3.53) with α=α1 and ui(s
(m)
q )= xi(s(m)q ,zm). By

Lemma 2.3, we have

xi
(
t,zm

)≥ui(t), t ∈ [s(m)q ,t(m)q
]
. (3.80)

Further, by Propositions 3.2, 3.5, and s(m)q →∞ as q →∞, we can choose K(m)1 > K(m)

such that

γxi ≤ xi
(
s(m)q ,zm

)≤Mx, i= 1,2, (3.81)

for q ≥ K(m)1 . For α = α1, (3.53) has a unique positive ω-periodic solution (x1α1(t),
x2α1(t))which is globally asymptotically stable. In addition, by the periodicity of (3.53),
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the periodic solution (x1α1(t),x2α1(t)) is uniformly asymptotically stable with respect

to the compact set Ω = {(x1,x2) : γxi ≤ xi ≤ Mx,i = 1,2}. Hence, for the given ε0 in

Proposition 3.6, there exists T0(> P), which is independent of m and q, such that

u1(t)≥ x1α1(t)−
ε0

2
, t ≥ T0+s(m)q . (3.82)

Combining (3.58), we have

u1(t)≥ x∗1 (t)−ε0 for t ≥ T0+s(m)q . (3.83)

From (3.76), there exists a positive integer N1 ≥N0 such that t(m)q > s(m)q +2T0 > s
(m)
q +

2P for m≥N1 and q ≥K(m)1 . So we have

x1
(
t,zm

)≥ x∗1 (t)−ε0, t ∈ [s(m)q +T0, t(m)q
]

(3.84)

as m≥N1 and q ≥K(m)1 . Hence,

ẏ
(
t,zm

)≥ψε0(t)y(t,zm) (3.85)

for t ∈ [s(m)q +T0, t
(m)
q ]. Integrating the above inequality from s(m)q +T0 to t(m)q yields

y
(
t(m)q ,zm

)≥y(s(m)q +T0,zm
)
exp

∫ t(m)q

s(m)q +T0

ψε0(t)dt, (3.86)

that is to say,

ηy
(m+1)2

≥ ηy
(m+1)2

exp
∫ t(m)q

s(m)q +T0

ψε0(t)dt >
ηy

(m+1)2
, (3.87)

which is a contradiction. This completes the proof.

Combining Propositions 3.2 to 3.6, we complete the proof of the sufficiency of

Theorem 3.1.

To prove the necessity of Theorem 3.1, we will show that

lim
t→∞

y(t)= 0 (3.88)

under the following condition:

Aω
[−d(t)+c2(t)x∗1 (t)

]≤ 0. (3.89)

In fact, by (3.89), we know that for every given ε (0 < ε < 1), there exists ε1 > 0 and

ε0 > 0 such that

Aω
[−d(t)+c2(t)

(
x∗1 (t)+ε1

)−l(t)ε]≤ ε1Aω
(
c2(t)

)−εAω(l(t))≤−ε0. (3.90)

Since

ẋ1 ≤ x1
[
b1(t)−a1(t)x1

]+D(t)(x2−x1
)
,

ẋ2 = x2
[
b2(t)−a2(t)x2

]+D(t)(x1−x1
)
,

(3.91)
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we know that for the given ε1, there exists T(1) > 0 such that

x1(t)≤ x∗1 (t)+ε1 for t ≥ T(1). (3.92)

By (3.90), we have

Aω
[−d(t)+c2(t)x1(t)−l(t)ε

]≤−ε0 (3.93)

for t ≥ T(1). Firstly, there must exist T(2) such that y(T(2)) < ε. Otherwise, we have

ε ≤y(t)≤y(T(1))exp
∫ t
T (1)

[−d(s)+c2(s)x1(s)−q(s)ε
]
ds �→ 0 as t �→∞. (3.94)

This implies ε ≤ 0, which is a contradiction. Let M(ε) =max0≤t≤ω{d(t)+c2(t)x1(t)+
l(t)ε}. By Proposition 3.2, we know that x1(t) is bounded. SoM(ε) is also bounded for

ε ∈ [0,1].
Secondly, we have

y(t)≤ εexp
(
M(ε)ω

)
for t ≥ T(2). (3.95)

Otherwise, there exists T(3) > T (2) such that

y
(
T(3)

)
> εexp

(
M(ε)ω

)
. (3.96)

By the continuity of y(t), there must exist T(4) ∈ (T (2),T (3)) such that y(T(4)) = ε
and y(t) > ε for t ∈ (T (4),T (3)]. Let P1 be the nonnegative integer such that T(3) ∈
(T (4)+P1ω,T(4)+(P1+1)ω]. By (3.93), we have

εexp
(
M(ε)ω

)
<y

(
T(3)

)

<y
(
T(4)

)
exp

∫ T(3)
T (4)

[−d(t)+c2(t)x1(t)−l(t)ε
]
dt

= εexp

{∫ T(4)+P1ω

T(4)
+
∫ T(3)
T (4)+P1ω

}[−d(t)+c2(t)x1(t)−l(t)ε
]
dt

< εexp
(
M(ε)ω

)
,

(3.97)

which is a contradiction. This implies that (3.95) holds. Further by the arbitrariness of ε,
we know that y(t)→ 0 as t→∞. This completes the proof.

Applying Theorem 3.1 to autonomous system (1.1) directly, we have the following

corollary.

Corollary 3.8. System (1.1) is permanent if and only if (1.2) holds.

This corollary implies that the strong persistence is equivalent to the permanence

for system (1.1), and hence improves the main result (cf. [15, Theorem 2]).
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Remark 3.9. In [18], Song and Chen obtained that if the following conditions

N∗2 := c
M
2

lL
max

{
bM1
aL1
,
bM2
aL2

}
<
bL1
cM1
, (3.98)

m∗ :=min

{
bL1−cM1 N∗2

aM1
,
bL2
aM2

}
>
dM

cL2
, (3.99)

or

−dM+cL2m∗ > 0 (3.100)

holds, then system (1.4) is permanent. According to [18, Theorem 1], we have m∗ ≤
x∗(t), and Aω(−d(t)+c2(t)x∗1 (t))≥−dM+cL2m∗. Hence (3.100) implies (3.1). Further,

we give an example where condition (3.1) holds, but conditions (3.98) and (3.100) do

not hold.

Example 3.10. We consider the model

ẋ1 = x1

[
1+ 1

2
sint−x1−y

]
+ 1

2

(
x2−x1

)
,

ẋ2 = x2

[
1− 1

2
sint−x2

]
+ 1

2

(
x1−x2

)
,

ẏ =y
[
−d0+ 1

2
x1−y

]
,

(3.101)

where d0 is a positive number. By simple calculation, we have

N∗2 =
3
4
, m∗ = −1

4
< 0. (3.102)

Hence (3.100) does not hold. We cannot get the permanence of (3.101) from the results

of Song and Chen [18]. However, we can obtain its permanence according to our result.

In fact, from Lemma 2.5, we know that the following system, without a predator,

ẋ1 = x1

[
1+ 1

2
sint−x1

]
+ 1

2

(
x2−x1

)
,

ẋ2 = x2

[
1− 1

2
sint−x2

]
+ 1

2

(
x1−x2

) (3.103)

has a positive periodic solution (x∗1 (t),x
∗
2 (t)) which is globally asymptotically stable.

Denote (2π)−1
∫ 2π
0 x∗1 (t)dt = l0. Then l0 is positive and condition (3.1) holds for d0 <

(1/2)l0. The permanence of (3.12) follows from Theorem 3.1, provided d0 < (1/2)l0.

Remark 3.11. Xu, Chaplain, and Davidson studied a more general model than (1.4)

(see [22]) and provided the existence, uniqueness, and global stability of periodic solu-

tions of the more general periodic predator-prey system. Conditions for uniform persis-

tence are also stated. We note that their condition (H5) in [22] does not hold for a weak
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patchy environment (see [6]) in the sense that the intrinsic growth rate bi(t) may be-

come negative on some time intervals. However, the discussion in this paper can be

used to study the more reasonable weak patchy environment which is important for

conservation of some endangered and rare species.
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