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We define a space (X,T) to be I-Lindelof if every cover & of X by regular closed subsets
of the space (X,T) contains a countable subfamily s¢" such that X = J{int(A) : A € s{'}.
We provide several characterizations of I-Lindelof spaces and relate them to some other
previously known classes of spaces, for example, rc-Lindelof, nearly Lindelof, and so forth.
Our study here of I-Lindelof spaces also deals with operations on I-Lindelof spaces and,
in its last part, investigates images and inverse images of I-Lindelof spaces under some
considered types of functions.

2000 Mathematics Subject Classification: 54C08, 54C10, 54D20, 54GO05.

1. Definitions and characterizations. In [2], a topological space (X,T) is called I-
compactif every cover # of the space by regular closed subsets contains a finite subfam-
ily {A1,A>,...,Ay} such that X = ngl int(Ag). Recall that a subset A of (X, T) is regular
closed (regular open, resp.) if A=cl(int(A)) (int(cl(Ag)), resp.). Welet RC(X, T) (RO(X, T),

resp.) denote the family of all regular closed (all regular open, resp.) subsets of a space
(X,T). A study that contains some properties of I-compact spaces appeared in [10]. In
the present work, we study the class of I-Lindelof spaces.

DEFINITION 1.1. A space (X,T) is called I-Lindelof if every cover s of the space
(X, T) by regular closed subsets contains a countable subfamily {A, : n € N} such that
X = UneNlnt(An)

To obtain characterizations of I-Lindelof spaces, we need the definitions of some
classes of generalized open sets.

DEFINITION 1.2. A subset G of a space (X, T) is called semiopen (preopen, semi-
preopen, resp.) if G € cl(int(G))(G < int(cl(G)), G < cl(int(cl(G))), resp.). SO(X,
T)(SPO(X,T), resp.) is used to denote the family of all semiopen (all semi-preopen,
resp.) subsets of a space (X, T). The complement of a semiopen subset (semi-preopen
subset, resp.) is called semiclosed (semi-preclosed, resp.). It is clear that a subset G is
semiopen if and only if U = G < cl(U), for some open set U. A subset G is called regular
semiopen if there exists a regular open set W such that W < G < cl(W).

The following diagram relates some of these classes of sets:

regular closed = regular semiopen = semiopen = semi-preopen. (1.1)

It is well known that if G is a semi-preopen set, then cl(G) is regular closed (see [6]).
The next result gives several characterizations of I-Lindelof spaces and its proof is now
clear.
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THEOREM 1.3. The following statements are equivalent for a space (X, T).
(a) (X,T) isI-Lindelof.
(b) Every cover A of the space (X,T) by semi-preopen subsets contains a countable
subfamily A’ such that X = |J{int(cl(A)): A € «{'}.
(c) Every cover i of the space (X,T) by semiopen subsets contains a countable sub-
family o’ such that X = J{int(cl(A)) : A € «'}.
(d) Every cover s of the space (X, T) by regular semiopen subsets contains a countable
subfamily A’ such that X = J{int(cl(A)): A e A'}.

Next we give another characterization of I-Lindelof spaces using the fact that a subset
G is regular closed if and only if its complement is regular open.

THEOREM 1.4. A space (X, T) is I-Lindelof if and only if every family AU of regular
open subsets of (X, T) with N{U : U € U} = @ contains a countable subfamily AU’ such
that N{cl(U):U W'} =Q.

PROOF. To prove necessity, letU = {U, : x € A} be a family of regular open subsets
of (X,T) such that N{U, : x € A} = &. Then the family {X - U, : «x € A} forms a cover
of the I-Lindelof space (X,T) by regular closed subsets and therefore A contains a
countable subset A’ such that X = J{int(X-U,) : x € A’}. Then

@=X-Jlint(X-U,) :x €A’}

(1.2)
=({X-int(X-U,):x €A’} = {cl(U,) : x € A"}

To prove sufficiency, let ¢ = {G, : x € A} be a cover of the space (X,T) by regular
closed subsets. Then {X -G, : @ € A} is a family of regular open subsets of (X, T) with
({X -G, :xe A’} = J. By assumption, there exists a countable subset A’of A such
that {cl(X-G,):x€eA}=D.So X =X—-(Hcl(X-G,):xec A} =U{X-cd(X-G,):
xe A’} = U{int(G,) : @€ A'}. This proves that (X, T) is I-Lindelof. O

In [7], a space (X,T) is called rc-Lindelof if every cover « of the space (X,T) by
regular closed subsets contains a countable subcover for X. It is clear, by definitions,
that every I-Lindelof space is rc-Lindelof. However, the converse is not true as we show
in Example 1.7.

Recall that a space (X, T) is extremally disconnected (e.d.) if c1(U) is open for each
open U € T. It is easy to show that a space (X, T) is e.d. if and only if, given any two
regular open subsets U and V with UNV = @, cl(U) Ncl(V) = @.

PROPOSITION 1.5. Every I-Lindelof space (X,T) is e.d.

PROOF. Suppose that (X,T) is not e.d. Then we find U,V € RO(X,T) such that
UNV =@ but c(U)Ncl(V) = @, say t € cl(U)(cl(V). Now, the family {X-U,X -V}
forms a cover of the I-Lindelof space (X, T) by regular closed subsets. Thus X = int(X —
U)UJint(X—V).Assume t € int(X—U).Butt € cl(U) and therefore @ + int(X-U) (U <
(X-U)NU, a contradiction. The proof is now complete. |

THEOREM 1.6. A space (X, T) is I-Lindelof if and only if it is an e.d. rc-Lindelof space.
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PROOF. As necessity is clear, we prove only sufficiency. We let & be a cover of (X, T)
by regular closed subsets. If A € #, then A is regular closed and can be written as
A =cl(U) for some U € T. Since (X,T) is e.d., the set A = cl(U) is open. Now, since
(X, T) is rc-Lindelof, the cover ¢ contains a countable subfamily «{’ such that X = [J{A:
Aed'} =U{int(A) : A € o'} because A = int(A) for each A € s. This proves that (X, T)
is I-Lindelof as required. O

EXAMPLE 1.7. We construct an rc-Lindelof space which is not I-Lindelof. We let X
be a countable infinite set and we fix a point t € X. We provide X with the topology
T={UcX:t¢UYJ{UcX:teUandX—U is finite}. It is immediate that (X, T) is
rc-Lindelof. However, (X, T) is not e.d. and therefore, by Theorem 1.6, is not I-Lindelof.
To see that (X, T) is not e.d., we write X = A|JB, where A and B are disjoint infinite
subsets. Assume that t € A. Then B is an open subset of (X,T) and cl(B) = BUJ{t}. But
cl(B) is not open and hence (X, T) is not e.d.

DEFINITION 1.8. A space (X, T) is called:
(a) nearly Lindelof if every open cover U of (X,T) contains a countable subfamily
AU’ such that X = J{int(cl(U)): U € U’} (see [3]);
(b) countably nearly compact if every countable open cover U of (X,T) contains a
finite subfamily U’ such that X = J{int(cl(U)): U € W’}.

It is clear that a space (X, T) is I-compact if and only if it is I-Lindelof and countably
nearly compact.

THEOREM 1.9. A space (X, T) is I-Lindelof if and only if it is an e.d. nearly Lindelof
space.

PROOF. To prove necessity, we see that (X, T) is, by Proposition 1.5, e.d. Now, let AU
be an open cover of (X, T). Then {cl(U) : U € U} is a cover of the I-Lindelof space(X,T)
by regular closed subsets. So AU contains a countable subfamily U’ such that X =
U{int(cl(U)) : U € WU’'}. This proves that (X,T) is nearly Lindelof. Next, to prove suf-
ficiency, we let & be a cover of (X,T) by regular closed subsets. Since (X, T) is e.d.,
then each A € o is open. So # is an open cover of the nearly Lindelof space (X,T) and
therefore ¢ contains a countable subfamily </’ such that X = J{int(cl(A)):Ae d'} =
UJ{int(A) : A € &'} and we conclude that (X, T) is I-Lindelof. d

THEOREM 1.10. Let (X, T) be e.d. Then the following statements are equivalent:
(a) (X,T) isI-Lindelof;

(b) (X,T) is rc-Lindelof;

(c) (X,T) is nearly Lindelof.

Recall that the family of all regular open subsets of a space (X,T) is a base for a
topology T on X, weaker than T. The space (X, Ts) is called the semiregularization of
(X,T) (see [7]). A property P of topological spaces is called a semiregular property if a
space (X, T) has property P if and only if (X, Ts) has property P.

We will prove that I-Lindelofness is a semiregular property. First, we need the fol-
lowing result.
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PROPOSITION 1.11 [8, Proposition 2.2]. Given a space (X,T), let G € SO(X,T). Then
CIT(G) = ClTS(G).

THEOREM 1.12. The property of being an I-Lindelof space is a semiregular property.

PROOF. First, the property of being an e.d. space is a semiregular property (see [7,
page 99]). Now let (X,T) be an I-Lindelof space. Then (X,T) is, by Proposition 1.5,
e.d. and hence (X, T;) is also e.d. So RC(X,T) = RO(X,T) and RC(X,T;) = RO(X,T;). To
show that (X, T;) is rc-Lindelof, let 4 be a cover of (X, T) by regular closed subsets. Then
each A € o is Ts-open and o < Ty < T. Thus o contains a countable subfamily «{’ such
that X = U{clr(A) : A € 4’} = (Proposition 1.11)UJ{clp(A) :Aed'} =U{A: A e d'}
and therefore (X, T;) is rc-Lindelof and hence I-Lindelof. Conversely, let (X, Ts) be I-
Lindelof. Then both (X, T) and (X, T) are e.d. We show that (X, T) is rc-Lindelof. We let
A be a cover of (X, T) by regular closed subsets, thatis, § cRC(X,T) =RO(X,T) c Ts.
Since (X, Ts) is rc-Lindelof, there exists a countable subfamily #{" of « such that X =
U{clr (A) : A € '} = (Proposition 1.11)U{cly(A) : A € A’} = U{A: A € d’'}. This
shows that (X, T) is rc-Lindelof and the proof is complete. O

2. Operations on [-Lindelof spaces. We note that the property of being an I-
Lindelof space is not hereditary. Consider the discrete space N of all natural numbers
and let BN be its Stone-Cech compactification. Then BN is an rc-compact Hausdorff
space (see [7, page 102]) and therefore BN is e.d. (see [11]). So BN is an I-Lindelof
space. However, the subspace SN — N is not I-Lindelof as it is not e.d. (see [7, page
102]). Here, (X, T) is called rc-compact or S-closed if every cover of X by regular closed
subsets contains a finite subcover (see [7]).

Recall that a subset A of a space (X, T) is called preopen if A < int(cl(A)). We let
PO(X,T) denote the family of all preopen subsets of (X, T).

PROPOSITION 2.1 [4, Corollary 2.12]. Let (X,T) be rc-Lindelof and let U € RO(X,T).
Then the subspace (U, T|y) is rc-Lindelof.

PROPOSITION 2.2 [8, Proposition 4.2]. The property of being an e.d. space is heredi-
tary with respect to preopen subspaces.

REMARK 2.3. It is well known that a space (X,T) is e.d. if and only if RC(X,T) =
RO(X,T) if and only if SO(X,T) < PO(X,T). Thus if (X,T) is e.d., then

RO(X,T) =RC(X,T) =SO(X,T) = PO(X,T). (2.1)

In view of Propositions 2.1, 2.2, and Remark 2.3, the proof of the following result is
now clear.

THEOREM 2.4. Every regular open (and hence every regular closed) subspace of an
I-Lindelof space is I-Lindelof.

THEOREM 2.5. If a space (X, T) is a countable union of open I-Lindelof subspaces,
then it is I-Lindelof.
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PROOF. Assume that X = J{U, : n € N}, where (Uy, T|y, ) is an I-Lindelof subspace
for each n € N. Let o be a cover of the space (X, T) by regular closed subsets. For each
n € N, the family {ANU, : A € &} is a cover of U, by regular closed subsets of the
I-Lindelof subspace (Uyn,Tly,) (see [4, Lemma 2.5]). So we find a countable subfamily
Ay of A such that U, = Ulinty, (ANUy) : A € dy}. Put B = J{d, :n € N}. Then B is
a countable subfamily of ¢ such that X = J{U, :n € N} = Upeny U {inty, (ANU,) : A €
At = UneyUlintx (AN U,) 1 A € dyp} < U{intx(A) : A € B} < X, thatis, X = U{int(A) :
A € B}. Therefore (X, T) is I-Lindelof. O

If {(X,,T,):«e A} is a family of spaces, we let ®@yc4X, denote their topological
sum. Now we have, as a consequence of Theorem 2.5, the following result.

THEOREM 2.6. The topological sum ®caX, of a family {(X,,T,) : x € A} isI-Lindelof
if and only if (X, T,) is I-Lindelof for each x € A and that A is a countable set.

PROOF. Itis clear that sufficiency is a direct consequence of Theorem 2.5. To prove
necessity, we note that (X,,T,) is a clopen (and hence regular open) subspace of the
I-Lindelof space @yc4X, and therefore (X,,T,) is, by Theorem 2.5, I-Lindelof for each
« € A. Moreover, the family {X, : «x € A} forms a cover of the rc-Lindelof space ®xca X,
by mutually disjoint regular closed subsets and therefore must contain a countable
subfamily whose union is ®xc4X,,. Thus A must be a countable set. O

We now turn to products of I-Lindelof spaces. As noted earlier, the space BN is I-
Lindelof while BN x BN is not even e.d. However, we have the next special case.

THEOREM 2.7. Let (X,T) be a compact space and (Y,M) an I-Lindelof space. If the
product X XY is e.d., then it is I-Lindelof.

PROOF. By |1, Theorem 2.4], the space X xY is rc-Lindelof. Since it is, by assumption,
e.d., then it is, by Theorem 1.6, I-Lindelof. |

3. Images and inverse images of I-Lindelof spaces. Let f: (X,T) — (Y,M). Recall
that f is semicontinuous (see [9])if f~1(V) € SO(X,T) whenever V € M, and f is almost
open (see [8, page 86]) if f~1(cl(V)) c cl(f~1(V)) for each V € M. Finally, f is preopen
(see [8, page 86])if f(U) is a preopen subset of (Y, M) for each U € T.It is mentioned in
[8] that preopenness and almost openness coincide. Accordingly, we have the following
result.

THEOREM 3.1. Let f:(X,T) — (Y,M) be semicontinuous almost open and let (X, T)
be I-Lindelof. Then (Y,M) is I-Lindelof.

PROOF. First we have, by [8, Proposition 4.4], that (Y, M) is e.d. Next, by [1, Theorem
3.4], we have that (Y, M) is rc-Lindelof. Then, by Theorem 1.6, (Y,M) is I-Lindelof. 5

COROLLARY 3.2. Every open continuous image of an I-Lindelof space is I-Lindelof.

COROLLARY 3.3. If a product space lxe1X,, is I-Lindelof, then (X, T,) is I-Lindelof,
for each x € 1.
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We recall that a function f : (X,T) — (Y,M) is irresolute if f~1(S) € SO(X,T) for
each S € SO(Y,M). Each irresolute is semicontinuous (see [1, Lemma 3.8]).

COROLLARY 3.4. Every preopen irresolute image of an I-Lindelof space is I-Lindelof.

We turn now to the inverse image of I-Lindelof spaces under certain class of func-
tions. Recall that A is a semi-preclosed subset of a space (X, T) if its complement is
semi-preopen.

DEFINITION 3.5. A function f: (X,T) — (Y,M) is called (weakly) semi-preclosed if
f(A) is a semi-preclosed subset of (Y,M) for each (regular) closed subset A of (X, T).

The easy proof of the next result is omitted.

LEMMA 3.6. A function f : (X,T) — (Y,M) is (weakly) semi-preclosed if and only if,
for every y € Y and for each (U € RO(X,T)) U € T with f~1(y) c U, there exists
W € SPO(Y,M) such that y € W and f~*(W) c U.

COROLLARY 3.7. Let f : (X,T) — (Y,M) be weakly semi-preclosed. IfB =< Y and
f~Y(B) c U, with U € RO(X,T), then there exists W € SPO(Y,M) such that B< W and
fFlw)cu.

We recall that a space (X, T) is km-perfect (see [5]) if, for each U € RO(X,T) and
each point x € X — U, there exists a sequence {U, : n € N} of open subsets of (X, T)
such that J{U,:n € N} c U c U{cl(U,) :neN} and x ¢ U{cl(U,) :n € N}.

It is easy to see that every e.d. space is km-perfect.The converse, however, is not true
as the space constructed in Example 1.7 is easily seen to be km-perfect but not e.d.

LEMMA 3.8. If (X,T) is a km-perfect P-space (= the countable union of closed subsets
is closed), then (X, T) is e.d.

PROOF. We show that cl(U) is open for each U € T. Note that int(cl(U)) is regular
open and if x ¢ int(cl(U)), then, since (X, T) is km-perfect, there exists a sequence
{U, :m € N} of open subsets such that J{U, : n € N} cint(cl(U)) < J{cl(U,) :n € N}
and x ¢ U{cl(Uy) :n € N}. Since (X,T) is a P-space, then J{cl(Uy) : n € N} is closed
and contains int(cl(U)) and so it contains cl(int(cl(U))). Thus x ¢ cl(int(cl(U))) and
we obtain that cl(int(cl(U))) = int(cl(U)). But U < int(cl(U)) and therefore cl(U) <
int(cl(U)) = cl(int(cl(U))) < cl(U), that is, cl(U) = int(cl(U)), which shows that cl(U)
is open. O

DEFINITION 3.9. A subset A of a space (X, T) is called an rc-Lindelof set (see [4]) if
each cover of A by regular closed subsets of (X, T) contains a countable subcover of A.

We now state our final result which deals with an inverse image of an I-Lindelof
space.

THEOREM 3.10. Let (X, T) be a km-perfect P-space. Let f : (X, T) — (Y,M) be weakly
semi-preclosed almost open with f~1(7y) an rc-Lindelof set for each y € Y. If (Y,M) is
I-Lindelof, then so is (X,T).
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PROOF. Itis clear, by Lemma 3.8, that (X, T) is e.d. and therefore we only show that
(X, T) is rc-Lindelof (Theorem 1.6). We let & be a cover of X by regular closed subsets of
the space (X, T).For each y € Y, o forms a cover of the rc-Lindelof subset £~ (y) so we
find a countable subfamily #,, of & such that f~1(v) c U{A: A€ d,} = G,.ThenG, is
open, because (X, T) is e.d. and therefore RC(X,T) = RO(X,T). But f~1(y) Gy, then
we find, by Lemma 3.6, a subset V,, € SPO(X,T) such that y € V,, and f*l(Vy) c Gy.
Now, the family {V, : y € Y} forms a cover of Y by semi-preopen subsets of the rc-
Lindelof space (Y,M). By [1, Theorem 1.9], it contains a countable subfamily {V,,, :n €
N} such that Y = U {cl(V,,) :n e N}. We put 4’ = J {sd,, : n € N}. Then ' is count-
able and «’ is a cover of X. To see this, let x € X and let y = f(x). Choose k € N such
that € cl(V,, ). Then x € f~1(cl(V,,)) < (f is almost open) cl(f~1(V,,)) < cl(Gy,) =
Gy, (because (X,T) is a P-space and G, is a countable union of closed subsets). We
have x € G,, = U{A:Ae d,,} = U{A: A e d'}. The proof is now complete. |
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