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Bruce C. Berndt et al. and Soon-Yi Kang have proved many of Ramanujan’s formulas for
the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions
in terms of Weber-Ramanujan class invariants. In this note, we give alternative proofs of
some of these identities of theta-functions recorded by Ramanujan in his notebooks and
deduce some formulas for the explicit evaluation of his theta-functions in terms of Weber-
Ramanujan class invariants.
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1. Introduction. Ramanujan’s general theta-function f(a,b) is given by

f(a,b)=
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2, (1.1)

where |ab| < 1. If we set a = q2iz, b = q−2iz, and q = eπiτ , where z is complex and

Im(τ) > 0, then f(a,b) = ϑ3(z,τ), where ϑ3(z,τ) denotes one of the classical theta-

functions in its standard notation [9, page 464]. After Ramanujan, we define the fol-

lowing special types of his theta-function.

If |q|< 1, then

φ(q) := f(q,q)= 1+2
∞∑
k=1

qk
2
, (1.2)

ψ(q) := f (q,q3)= ∞∑
k=0

qk(k+1)/2, (1.3)

f(−q) := f (−q,−q2)= ∞∑
k=0

(−1)kqk(3k−1)/2+
∞∑
k=1

(−1)kqk(3k+1)/2, (1.4)

χ(q) := (−q;q2)
∞, (1.5)

where (a;q)∞ :=Π∞k=0(1−aqk). The function χ(q) is only for notational purposes. Also,

note that f(−q)= q−1/24η(z), where q = e2πiz andη denotes the Dedekind eta-function.

Much of Ramanujan’s discoveries about theta-functions can be found in Chapters 16–

21 of the organized pages of his second notebook [8]. Proofs and other references of all
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the identities can be found in [1]. However, in the unorganized pages of his notebooks

[8], Ramanujan recorded many other beautiful identities. Proofs of these identities can

be found in [2, 3]. In Section 2, we prove some of these identities by using some other

identities of theta-functions. Berndt [2, 3] proved these identities via parameterization.

At scattered places in his notebooks [8], Ramanujan recorded several values of his

theta-function φ(q). Proofs of all the values claimed by Ramanujan can be found in [3,

Chapter 35]. Berndt and Chan [4] also verified all of Ramanujan’s nonelementary values

of φ(e−nπ) and found three new values for n= 13, 27, and 63. Kang [6] also calculated

some quotients of theta-functions φ and ψ. In Section 3, we give some theorems for

the explicit evaluation of the quotients of theta-functions φ, ψ, and f , by combining

Weber-Ramanujan class invariants with the identities proved in Section 2 and some

other identities of theta-functions. Some of these evaluations can be used to find explicit

values of the famous Rogers-Ramanujan continued fraction R(q) defined by

R(q) := q
1/5

1 +
q
1+
q2

1 +
q3

1 +···
, (1.6)

where |q|< 1.

We end this introduction by defining Weber-Ramanujan class invariants Gn and gn.

For q = exp(−π√n), where n is a positive rational number, the Weber-Ramanujan class

invariants Gn and gn are defined by

Gn := 2−1/4q−1/24χ(q), (1.7)

gn := 2−1/4q−1/24χ(−q). (1.8)

2. Theta-function identities. The following identity was recorded by Ramanujan on

page 295 of his first notebook [8]. Berndt [3, page 366] proved this by using parame-

terization. Here we give an alternative proof.

Theorem 2.1. If φ(q), ψ(q), and χ(q) are defined by (1.2), (1.3), and (1.5), respec-

tively, then

ψ2(−q)+5qψ2(−q5)= φ2(q)
χ(q)χ

(
q5
) . (2.1)

Proof. From [1, Entry 9(vii), page 258, and Entry 10(v), page 262], we find that

ψ2(q)−qψ2(q5)= φ
(−q5

)
f
(−q5

)
χ(−q) . (2.2)

From [1, Entry 24(iii), page 39], we note that

f(q)= φ(q)
χ(q)

. (2.3)
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From (2.2) and (2.3), we deduce that

ψ2(q)−qψ2(q5)= φ2
(−q5

)
χ(−q)χ(−q5

) . (2.4)

Now, we recall from [1, Entry 9(iii), page 258] that

φ2(q)−φ2(q5)= 4qχ(q)f
(−q5)f (−q20). (2.5)

Replacing q by −q in (2.5), we deduce that

φ2(−q5)=φ2(−q)+4qχ(−q)f (q5)f (−q20). (2.6)

Employing (2.6) in (2.4), we find that

ψ2(q)−qψ2(q5)= φ2(−q)
χ(−q)χ(−q5

) +4q
f
(
q5
)
f
(−q20

)
χ
(−q5

) . (2.7)

Again, by [1, Entry 24(iii), page 39], we find that

f
(−q4)=ψ(q2)χ(−q2). (2.8)

Using (2.8) in (2.7), we obtain

ψ2(q)−qψ2(q5)= φ2(−q)
χ(−q)χ(−q5

) +4q
f
(
q5
)
ψ
(
q10

)
χ
(−q10

)
χ
(−q5

) . (2.9)

Now, by [1, Entry 24(iv), page 39], we note that

χ(q)χ(−q)= χ(−q2). (2.10)

Thus, from (2.9), we obtain

ψ2(q)−qψ2(q5)= φ2(−q)
χ(−q)χ(−q5

) +4qf
(
q5)ψ(q10)χ(q5). (2.11)

From [1, Entry 25(iv), page 40], we note that

φ(q)ψ
(
q2)=ψ2(q). (2.12)

Employing (2.3) and (2.12), with q replaced by q5, we conclude from (2.11) that

ψ2(q)−qψ2(q5)= φ2(−q)
χ(−q)χ(−q5

) +4qψ2(q5). (2.13)

Replacing q by −q in (2.13), we complete the theorem.

The next theorem was recorded by Ramanujan on page 4 of his second notebook [8].

Berndt [2, page 202] proved this theorem by parameterization. Here we give an alter-

native proof by using some identities of theta-functions.
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Theorem 2.2. With ψ(q) and χ(q) defined in (1.3) and (1.5), respectively,

χ3(q)
χ
(
q3
) = 1+3q

ψ
(−q9

)
ψ(−q) , (2.14)

χ5(q)
χ
(
q5
) = 1+5q

ψ2
(−q5

)
ψ2(−q) . (2.15)

Proof of (2.14). From [1, Chapter 16, Corollary (ii) of Entry 31, page 49], we find

that

ψ(q)−qψ(q9)= f (q3,q6). (2.16)

Using the Jacobi triple product identity, Berndt [1, page 350] proved that

f
(
q,q2)= φ

(−q3
)

χ(−q) . (2.17)

Replacing q by q3 in (2.17) and then using the resultant identity in (2.16), we find that

ψ(q)−qψ(q9)= φ
(−q9

)
χ
(−q3

) . (2.18)

Now, from [1, Corollary (i) of Entry 31, page 49 and Example (v), page 51], we find

that

φ
(−q9)=φ(−q)+2qψ

(
q9)χ(−q3). (2.19)

Invoking (2.19) in (2.18), we deduce that

ψ(q)−3qψ
(
q9)= φ(−q)

χ
(−q3

) . (2.20)

Thus,

1−3q
ψ
(
q9
)

ψ(q)
= φ(−q)
χ
(−q3

)
ψ(q)

. (2.21)

Now, from [1, Entry 24(iii), page 39], we note that

χ(q)= 3

√
φ(q)
ψ(−q) . (2.22)

Replacing q by −q in (2.21) and then using (2.22), we complete the proof of (2.14).

Proof of (2.15). From Theorem 2.1, we find that

1+5q
ψ2
(−q5

)
ψ2(−q) =

φ2(q)
χ(q)χ

(
q5
)
ψ2(−q) . (2.23)

Employing (2.22) in (2.23), we arrive at (2.15), which completes the proof.
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3. Explicit evaluations of theta-functions

Theorem 3.1. If ψ(q), Gn, and gn are defined by (1.3), (1.7), and (1.8), respectively,

then

e−π
√
nψ

(−e−9π
√
n)

ψ
(−e−π√n) =

1
3

(√
2
G3
n

G9n
−1

)
, (3.1)

e−π
√
nψ

(
e−9π

√
n)

ψ
(
e−π

√
n
) = 1

3

(
1−

√
2
g3
n
g9n

)
. (3.2)

Proof. From (2.14) and the definition of Gn from (1.7), we easily arrive at (3.1). To

prove (3.2), we replace q by −q in (2.14) and then use the definition of gn from (1.8).

Since G9n and g9n can be calculated from the respective values of Gn and gn [5],

from the theorem above, we see that the quotients of theta-functions on the left-hand

sides can be evaluated if the corresponding values of Gn and gn are known. We give a

few examples below.

Corollary 3.2.

e−π
ψ
(−e−9π)
ψ
(−e−π) =

3
√

2
(√

3−1
)−1

3
. (3.3)

Proof. Putting n= 1 in (3.1), we find that

e−π
ψ
(−e−9π)
ψ
(−e−π) =

1
3

(√
2
G3

1

G9
−1

)
. (3.4)

From [3, page 189],

G1 = 1, G9 =
(

1+√3√
2

)1/3

. (3.5)

Employing (3.5) in (3.4) and then simplifying, we complete the proof.

From [1, Entry 11(ii), page 123], we find that

ψ
(−e−π)=φ(e−π)2−3/4eπ/8. (3.6)

Since

φ
(
e−π

)= π1/4

Γ(3/4)
(3.7)

is classical [9], (3.3) and (3.6) provide an explicit evaluation for ψ(−e−9π).

Corollary 3.3.

e−π
√

5/3 ψ
(−e−3π

√
5
)

ψ
(−e−π√5/3

) =
(
3+√5

)(√
5−√3

)−2
6

. (3.8)
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Proof. Putting n= 5/9 in (3.1), we obtain

e−π
√

5/3 ψ
(−e−3π

√
5
)

ψ
(−e−π√5/3

) = 1
3

(√
2
G3

5/9

G5
−1

)
. (3.9)

Now, from [3, pages 189 and 345], we note that

G5 =
(

1+√5
2

)1/4

, G5/9 =
(√

5+2
)1/4

(√
5−√3√

2

)1/3

. (3.10)

Employing (3.10) in (3.9) and then simplifying, we arrive at (3.8).

Corollary 3.4.

e−π
√

2ψ
(
e−9π

√
2
)

ψ
(
e−π

√
2
) = 1−√2

3
√√

3−√2
3

. (3.11)

Proof. Putting n= 2 in (3.2), we find that

e−π
√

2ψ
(
e−9π

√
2
)

ψ
(
e−π

√
2
) = 1

3

(
1−

√
2
g3

2

g18

)
. (3.12)

From [3, page 200], we note that

g2 = 1, g18 =
(√

2+
√

2
)1/3. (3.13)

Using (3.13) in (3.12), we easily arrive at (3.11).

Theorem 3.5. With ψ(q), Gn, and gn defined in (1.3), (1.7), and (1.8), respectively,

e−π
√
nψ2

(−e−5π
√
n)

ψ2
(−e−π√n) =

1
5

(
2
G5
n

G25n
−1

)
, (3.14)

e−π
√
nψ2

(
e−5π

√
n)

ψ2
(
e−π

√
n
) = 1

5

(
1−2

g5
n

g25n

)
. (3.15)

Proof. From (2.15) and the definition of Gn from (1.7), we easily arrive at (3.14).

Replacing q by −q in (2.15) and then using the definition of gn from (1.8), we arrive at

(3.15).

If the class invariants are known, then we can explicitly find the values of the quo-

tients of the left-hand-side expressions of the theorem. Next we give some examples.

Corollary 3.6 [6].

e−π
ψ2
(−e−5π)

ψ2
(−e−π) =

1

5
√

5+10
. (3.16)

Proof. Putting n= 1 in (3.14), we find that

e−π
ψ2
(−e−5π)

ψ2
(−e−π) =

1
5

(
2
G5

1

G25
−1

)
. (3.17)
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From [3, page 189],

G1 = 1, G25 = 1+√5
2

. (3.18)

Employing (3.18) in (3.17) and then simplifying, we complete the proof.

Corollary 3.7.

e−π/
√

5 ψ2
(−e−√5π)

ψ2
(−e−π/√5

) = 1√
5
. (3.19)

Proof. We put n= 1/5 in (3.14) to obtain

e−π/
√

5 ψ2
(−e−√5π)

ψ2
(−e−π/√5

) = 1
5

(
2G4

5−1
)
. (3.20)

Since, from [3, page 189],

G5 =
(

1+√5
2

)1/4

, (3.21)

we can easily complete the proof by (3.20).

Corollary 3.8.

e−π
√

3/5 ψ2
(−e−π√15

)
ψ2
(−e−π√3/5) = 3−√5

5+√5
. (3.22)

Proof. Putting n= 3/5 in (3.14), we obtain

e−π
√

3/5 ψ2
(−e−π√15

)
ψ2
(−e−π√3/5) = 1

5

(
2
G5

3/5

G15
−1

)
. (3.23)

Now, from [3, page 341], we note that

G15 = 2−1/12(1+√5
)1/3, G3/5 = 2−1/12(√5−1

)1/3. (3.24)

Employing (3.24) in (3.23) and then simplifying, we arrive at (3.22).

Corollary 3.9.

e−π
√

2ψ2
(
e−5π

√
2
)

ψ2
(
e−π

√
2
) = 1

5

(
1− 2
a

)
, (3.25)

where

a= g50 = 1
3


1+

(
5+√5

4

)1/3(
3
√

1+7
√

5+6
√

6+ 3
√

1+7
√

5−6
√

6
). (3.26)
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Proof. We put n= 2 in (3.15) to obtain

e−π
√

2ψ2
(
e−5π

√
2
)

ψ2
(
e−π

√
2
) = 1

5

(
1−2

g5
2

g50

)
. (3.27)

From [3, page 201],

g50 = 1
3


1+

(
5+√5

4

)1/3(
3
√

1+7
√

5+6
√

6+ 3
√

1+7
√

5−6
√

6
). (3.28)

Employing (3.13) and (3.28) in (3.27), we complete the proof.

Since for q = e−π√n, n positive rational, the explicit formulas for φ2(q5)/φ2(q),
φ(q9)/φ(q), and φ4(q3)/φ4(q) are known [3, page 339, (8.11); page 334, (5.7); page

330, (4.5), respectively], namely,

φ2
(
e−5π

√
n)

φ2
(
e−π

√
n
) = 1

5

(
1+2

G25n

G5
n

)
, (3.29)

φ
(
e−9π

√
n)

φ
(
e−π

√
n
) = 1

3

(
1+

√
2
G9n

G3
n

)
, (3.30)

φ4
(
e−3π

√
n)

φ4
(
e−π

√
n
) = 1

9

(
1+2

√
2
G3

9n

G9
n

)
, (3.31)

we now derive some identities by which the corresponding values of the quotients

ψ2(−q5)/ψ2(−q), ψ(−q9)/ψ(−q), and ψ4(−q3)/ψ4(−q) can be found.

Theorem 3.10 [7]. Ifφ(q) andψ(q) are defined by (1.2) and (1.3), respectively, then

q
ψ2
(−q5

)
ψ2(−q) =

1−φ2
(
q5
)
/φ2(q)(

5φ2
(
q5
)
/φ2(q)

)−1
. (3.32)

Proof. We replace q by −q in (2.4) and then divide the resulting identity by (2.1) to

obtain

φ2
(
q5
)

φ2(q)
= ψ2(−q)+qψ2

(−q5
)

ψ2(−q)+5qψ2
(−q5

) . (3.33)

This is indeed equivalent to (3.32).

Theorem 3.11. With φ(q) and ψ(q) defined in (1.2) and (1.3), respectively,

q
ψ
(−q9

)
ψ(−q) =

1−φ(q9
)
/φ(q)(

3φ
(
q9
)
/φ(q)

)−1
. (3.34)

Proof. Replace q by −q in (2.18) and (2.20) and then, dividing the first resulting

identity by the second, we find that

φ(q)
φ
(
q9
) = ψ(−q)+qψ(−q9

)
ψ(−q)+3qψ

(−q9
) . (3.35)

It is now easy to see that (3.35) and (3.34) are equivalent.
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Theorem 3.12. With φ(q) and ψ(q) defined in (1.2) and (1.3), respectively,

1+9q
ψ4
(−q3

)
ψ4(−q) =

8(
9φ4

(
q3
)
/φ4(q)

)−1
. (3.36)

Proof. From Theorem 3.11, we note that

1+3q
ψ
(−q9

)
ψ(−q) =

2(
3φ

(
q9
)
/φ(q)

)−1
. (3.37)

From the third equality of [1, Entry 1(ii), page 345] and the second equality of [1, Entry

1(iii), page 345], we note that

1+3q
ψ
(−q9

)
ψ(−q) =

(
1+9q

ψ4
(−q3

)
ψ4(−q)

)1/3

,

3
φ
(
q9
)

φ(q)
−1=

(
9
φ4
(
q3
)

φ4(q)
−1

)1/3

,

(3.38)

respectively. Employing (3.38) in (3.37) and then cubing the resultant identity, we com-

plete the proof.

Corollary 3.13.

e−π
ψ4
(−e−3π)

ψ4
(−e−π) =

2−√3

3
√

3
. (3.39)

Proof. It is known from [3, page 327] (or can be found easily from (3.31)) that

φ4
(
e−3π)

φ4
(
e−π

) = 1

6
√

3−9
. (3.40)

The proof of the corollary now follows immediately by putting q = e−π in Theorem 3.12

and then using (3.40).

Now, from [1, Entries 24(ii) and 24(iv), page 39], we note that

f 3(q)=φ2(q)ψ(−q),
f 3(−q2)=φ(q)ψ2(−q).

(3.41)

From (3.41), we find the following quotients of f in terms of φ and ψ:

F1(q) := f 6(q)
qf 6

(
q5
) = ψ2(−q)

qψ2
(−q5

) × φ4(q)
φ4
(
q5
) ,

F2(q) := f 6
(−q2

)
q2f 6

(−q10
) = φ2(q)

φ2
(
q5
) × ψ4(−q)
q2ψ4

(−q5
) .

(3.42)
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The values of F1(q) and F2(q) can be determined explicitly for q = e−π√n by employ-

ing Theorem 3.5 and (3.29). We give a couple of examples below.

Corollary 3.14.

F1
(
e−π/

√
5)= 5

√
5,

F2
(
e−π/

√
5)= 5

√
5.

(3.43)

Proof. As in Corollary 3.7, by putting n= 1/5 in (3.29), it can be easily seen that

φ2
(
e−
√

5π)
φ2
(
e−π/

√
5
) = 1√

5
. (3.44)

Putting q = e−π/
√

5 in (3.42) and then employing (3.44) and Corollary 3.7, we complete

the proof.

Corollary 3.15.

F1
(
e−π

√
3/5)= 5(5+√5)

2
,

F2
(
e−π

√
3/5)= 5(25+11

√
5)

2
.

(3.45)

Proof. As in Corollary 3.8, by putting n= 3/5 in (3.29), it can be easily seen that

φ2
(
e−
√

15π)
φ2
(
e−π

√
3/5) = 2

5−√5
. (3.46)

Putting q = e−π
√

3/5 in (3.42) and then employing (3.46) and Corollary 3.8, we com-

plete the proof.

Now, for the explicit evaluation of R(q) defined in (1.6), we note from [6] that

1
R5
(
q2)

−11−R5(q2)= f 6
(−q2

)
q2f 6

(−q10
) ,

1
S5(q)

+11−S5(q)= f 6(q)
qf 6

(
q5
) ,

(3.47)

where S(q)=−R(−q).
From (3.47) and (3.42), we see that to find the explicit values of R(q2) and S(q), for

q = e−π√n, it is enough to find F1(q) and F2(q). See [6].
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