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1. Introduction. In this paper, we discuss some geometric properties of Riemannian

submersions whose total space is an almost Hermitian almost contact metric manifold.

If the base space is an almost quaternionic metric manifold, Watson has defined in

[12, 13] a type of such submersions which we will call almost Hermitian almost contact

metric submersion of type I. When the base space is an almost contact metric manifold

with 3-structure, another type of these submersions called almost Hermitian almost

contact metric submersions of type II has been introduced by the present author in [9].

Replacing the base space by an almost Hermitian almost contact metric manifold, we

get a new type of such submersions, a third one, which we will call almost Hermitian al-

most contact metric submersions of type III. Note that this last type lies between almost

Hermitian submersions studied by Watson [11] and almost contact metric submersions

of type I [6, 8, 15]. Analogously, almost Hermitian almost contact metric submersions

of type I lie between almost Hermitian submersions and almost contact metric submer-

sions of type II [6, 8, 15].

This text is organized in the following way.

Section 2 is devoted to the background of the manifolds which will be used in the

sequel.

Section 3 is concerned with the properties of the three types of submersions under

consideration. For each type, we have here examined:

(1) the structure of the base space and the fibres according to that of the total space;

(2) the classes of submersions with totally geodesic fibres;

(3) the classes of submersions preserving the holomorphic sectional curvature ten-

sor of the vertical or of the horizontal vector fields.

In Section 4, we give some examples of these types of submersions.

Throughout this paper, arbitrary vector fields of the tangent space of a differentiable

manifold M will be denoted by D, E, and G.

2. Preliminaries on manifolds. Recall that an almost Hermitian manifold is a Rie-

mannian manifold (M,g) equipped with a tensor field J of type (1,1) such that the
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following two conditions are satisfied:

(1o) (J ◦J)E =−E,

(2o) g(JD,JE)= g(D,E).
In the last case (2o), g is called a compatible metric and (g,J) is an almost Hermitian

structure onM . Any almost Hermitian manifold (M,g,J) possesses a differential 2-form

Ω, called the fundamental 2-form or the Kähler 2-form, defined by Ω(D,E)= g(D,JE).
Denoting by ∇ the Levi-Civita connection of g, and by dΩ the differential of Ω, the

following identities are well known:

(∇DJ
)
E =∇D(JE)−J∇DE, (2.1)

(∇DΩ
)
(E,G)= g(E,(∇DJ

)
G
)=−g((∇DJ

)
E,G

)
, (2.2)

3dΩ(D,E,G)= S
{(∇DΩ

)
(E,G)

}
, (2.3)

where S denotes the cyclic sum on D, E, and G.

In [2], Gray and Hervella have obtained a classification of almost Hermitian structures.

We recall the defining relations of those that will be needed later.

An almost Hermitian manifold (M,g,J) is said to be

(a) Kählerian if ∇J = 0;

(b) nearly Kählerian if (∇DJ)D = 0;

(c) G1-manifold if (∇DΩ)(D,E)−(∇JDΩ)(JD,E)= 0;

(d) G2-manifold if S{(∇DΩ)(E,G)−(∇JDΩ)(JE,G)} = 0.

The Nijenhuis tensor of J will be denoted by N. An almost quaternionic metric man-

ifold is a quintuple (M,g,J1,J2,J3), where

(a) (M,g) is a Riemannian manifold;

(b) (g,Ji) is an almost Hermitian structure on M for i= 1,2,3;

(c) Ji ◦Jj =−Jj ◦Ji = Jk, for i < j, i≠ k and j ≠ k.

For i = 1,2,3, the analogues of identities (2.1), (2.2), and (2.3) are obtained as in

the case of almost Hermitian manifolds. Almost quaternionic metric manifolds are of

dimension 4m and their nomenclature is related to that of almost Hermitian structures.

By an almost contact metric manifold, one understands a quintuple (M,g,ϕ,ξ,η),
where

(1o) ξ is a characteristic vector field;

(2o) η is a differential 1-form such that η(ξ)= 1;

(3o) ϕ is a tensor field of type (1,1) satisfying ϕ2D =−D+η(D)ξ;

(4o) g(ϕD,ϕE)= g(D,E)−η(D)η(E).
In the last case, g is called a compatible metric and (g,ϕ,ξ,η) is an almost contact

metric structure. Replacing J by ϕ, the fundamental 2-form φ is defined by φ(D,E)=
g(D,ϕE) and the analogues of identities (2.1), (2.2), and (2.3) hold. The covariant de-

rivative of η and the exterior differential of η are defined, respectively, by

(∇Dη
)
E = g(E,∇Dξ

)
, (2.4)

2dη(D,E)= (∇Dη
)
E−(∇Eη

)
D. (2.5)
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In [5], Sasaki and Hatakeyama have defined a tensor field N(1) of type (1,2) by setting

N(1)(D,E)= [ϕ,ϕ](D,E)+2dη(D,E)ξ, (2.6)

where [ϕ,ϕ] is the Nijenhuis tensor of ϕ.

Almost contact metric manifolds are of dimension 2m+ 1. We recall the defining

relations of those which will be used in this study. An almost contact metric manifold

(M,g,ϕ,ξ,η) is called

(a) Sasakian if φ= dη and N(1) = 0;

(b) G1-Sasakian if (∇Dϕ)D−(∇ϕDϕ)ϕD+η(D)(∇ϕDξ)= 0;

(c) G2-Sasakian if S{(∇Dφ)(E,G)−(∇ϕDφ)(ϕE,G)−η(E)(∇ϕDη)G} = 0;

(d) quasi-Sasakian if dφ= 0=N(1);
(e) cosymplectic if ∇ϕ = 0;

(f) closely cosymplectic if (∇Dϕ)D = 0= dη;

(g) nearly cosymplectic if (∇Dϕ)D = 0;

(h) nearly-K-cosymplectic if (∇Dϕ)E+(∇Eϕ)D = 0=∇Dξ.

Let (ϕi,ξi,ηi)3i=1 be three almost contact structures such that each of them is com-

patible with the Riemannian structure g. We say that (M,g,(ϕi,ξi,ηi)3i=1) is an almost

contact metric manifold with 3-structure [3] if for any cyclic permutation (i,j,k) of

{1,2,3} the following conditions are satisfied:

(1o) ηi(ξj)= ηj(ξi)= 0;

(2o) ϕiξj =−ϕjξi = ξk;
(3o) ϕi◦ϕj−ηj⊗ξi =−ϕj ◦ϕi+ηi⊗ξj =ϕk;

(4o) ηi◦ϕj =−ηj ◦ϕi = ηk.
As in the case of almost quaternionic metric manifolds, the fundamental local 2-form

φi is defined by φi(D,E) = g(D,ϕiE). Almost contact manifolds with 3-structure are

of dimension 4m+3.

Let (M,g,J) be an almost Hermitian manifold furnished with two almost contact

structures (ϕi,ξi,ηi)2i=1. We say that (M,g,J,(ϕi,ξi,ηi)2i=1) is an almost Hermitian al-

most contact metric manifold if

(a) each (ϕi,ξi,ηi)-structure is compatible with the metric g;

(b) Jξ1 =−ξ2, Jξ2 = ξ1;

(c) ϕ2
i D =−D+η1(D)ξ1+η2(D)ξ2;

(d) ϕ1(JD)=−J(ϕ1D)=ϕ2(D);
(e) ϕ1(ϕ2D)=−ϕ2(ϕ1D)= JD+η1(D)ξ2+η2(D)ξ1;

(f) ϕ2(JD)=−J(ϕ2D)=−ϕ1D.

Concerning the fundamental local 2-form, we have

(1o) φi(D,E)= g(D,ϕiE) for i= 1,2;

(2o) Ω(D,E)= g(D,JE).
The dimension of this type of manifold is 4m+2. For the nomenclature, we will in-

dicate the name of the almost contact metric structure followed by the name of the

almost Hermitian one. For instance, a Sasakian-Kählerian manifold is a Kählerian man-

ifold equipped with two Sasakian structures.
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3. The three types of almost Hermitian almost contact metric submersions. By

a Riemannian submersion, one understands a submersion f : M → M′ between Rie-

mannian manifolds such that f∗|(Kerf∗)⊥ is a linear isometry [4]. The tangent bundle

T(M) of the total space M admits an orthogonal decomposition T(M)= V(M)⊕H(M),
where V(M) and H(M) denote, respectively, the vertical and the horizontal distribu-

tions. We denote by � and � the vertical and the horizontal projections of T(M) onto

V(M) and H(M), respectively. For all points x′εM′, the closed, embedded submanifold

Fx′ = f−1(x′) is called the fibre of f over x′. It is known that dimFx′ = dimM−dimM′.
A vector field X of the horizontal distribution is called a basic vector field if it is

f -related to a vector field X∗ of the base space M′, that is, X∗ = f∗X.

We will denote the horizontal vector fields by X, Y , and Z , while those of the vertical

distribution will be denoted by U , V , and W . On the base space, tensors and other

operators will be specified by a prime (′), while those of the fibres will be denoted by

a caret (̂ ). For instance ∇, ∇′, and ∇̂ will designate the Levi-Civita connection of the

total space, the base, and the fibres, respectively.

3.1. Submersions of type I. Almost Hermitian almost contact metric submersions

of type I were originally defined by Watson [12, 13].

Definition 3.1. Let (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) be an almost Hermitian almost con-

tact metric manifold and (M′4m′ ,g′,(J′i)
3
i=1) an almost quaternionic metric manifold.

A Riemannian submersion f : M4m+2 → M′4m′
is called an almost Hermitian almost

contact metric submersion of type I if

(a) f∗JD = J′1f∗D;

(b) f∗ϕ1D = J′2f∗D;

(c) f∗ϕ2D = J′3f∗D.

Proposition 3.2. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. Then

(a) the vertical and horizontal distributions induced by f are invariant by J and by

ϕi for i= 1,2;

(b) the vector fields ξ1 and ξ2 are vertical;

(c) ηi(X)= 0 for i= 1,2;

(d) f∗Ω′1 =Ω, f∗Ω′2 =φ1, and f∗Ω′3 =φ2;

(e) f∗N =N′1, f∗N
(1)
1 =N′2, and f∗N

(1)
2 =N′3;

(f) N̂(U,V)=N(U,V), N̂(1)1 (U,V)=N(1)1 (U,V), and N̂(1)2 (U,V)=N(1)2 (U,V).

Proof. Assertions (a), (b), and (c) are established as in [14]. We consider the case of

f∗Ω′1 =Ω. Let X and Y be two basic vector fields. We have

f∗Ω′1(X,Y)= f∗g′
(
X∗,J′1Y∗

)

= g′(f∗X,J′1f∗Y
)

= g′(f∗X,f∗JY
)

= f∗g′(X,JY)= g(X,JY)=Ω(X,Y)

(3.1)

which gives the proof of assertion (d).
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Consider (e). Clearly we have

f∗N(X,Y)= f∗[J,J](X,Y)=
[
J′1,J

′
1

](
f∗X,f∗Y

)=N′(X∗,Y∗
)
. (3.2)

Other cases of this assertion can be established in an analogous manner.

Consider the last case, (f), and suppose that U and V are vector fields tangent to the

fibres. By (2.6) we have N̂(1)2 (U,V) = [ϕ̂2,ϕ̂2](U,V)+2dη̂2(U,V)ξ̂2. Since ξ̂2 = ξ2 and

dη̂2(U,V)= dη2(U,V), the proof follows.

Proposition 3.3. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. Then the fibres are almost

Hermitian almost contact metric manifolds.

Proof. It is clear that the dimension of the fibres is 4(m−m′)+2. By the preceding

Proposition 3.2, we have shown that the vertical distribution is invariant by J, ϕ1, and

ϕ2. Moreover, ξ1 and ξ2 are vertical vector fields; so η1 and η2 do not vanish on the ver-

tical distribution. Therefore, (ϕ̂1, ξ̂1, η̂1) and (ϕ̂2, ξ̂2, η̂2) are almost contact structures

compatible with the metric tensor ĝ on the fibres. It is not hard to show that (ĝ, Ĵ)
is an almost Hermitian structure so that (F4(m−m′)+2, ĝ, Ĵ,(ϕ̂i, ξ̂i, η̂i)2i=1) is an almost

Hermitian almost contact metric manifold.

Proposition 3.4. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. If the total space is Sasakian-

Kählerian, then

(a) the base space is quaternionic Kählerian;

(b) the fibres are Sasakian-Kählerian.

Proof. (a) By virtue of the defining relations of a Sasakian-Kählerian structure,φ1 =
dη1, φ2 = dη2, and N = N(1)1 = N(1)2 = 0 = dΩ so that dφ1 = dφ2 = 0 from which we

deduce dΩ′2 = dΩ′3 and N′1 = 0 = N′2 = N′3 = dΩ′1 by Proposition 3.2. It is clear that the

base space is defined by dΩ′i = 0 = N′i which are the defining relations of a Kählerian

structure.

(b) By Proposition 3.2, it is shown that N̂(U,V)= 0= N̂(1)1 (U,V). Since the fibres are

invariant by ϕi and J, then φ1 = dη1, φ2 = dη2, and dΩ = 0. Therefore, the fibres have

two Sasakian structures and a Kählerian one.

On the total space of a Riemannian submersion, O’Neill [4] defined two tensor fields

T and A of type (1,2) by setting

TDE =�∇�D�E+�∇�D�E,

ADE =�∇�D�E+�∇�D�E.
(3.3)

It is known that the configuration tensor Ameasures the integrability of the horizon-

tal distribution, while the configuration tensor T is a tool in the study of the geometry

of the fibres being essentially the second fundamental form of the embedding of the

fibre submanifolds into the total space.
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Lemma 3.5. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) → (M′4m′ ,g′,(J′i)
3
i=1) be an almost

Hermitian almost contact metric submersion of type I. If, for i= 1,2, TUV+TϕiU(ϕiV)=
0 and TUV +TJUJV = 0, then T = 0.

Proof. Since 0 = TUV +Tϕ1U(ϕ1V) = TUV +Tϕ2U(ϕ2V) = TUV +TJUJV , we have

Tϕ1U(ϕ1V)= Tϕ2U(ϕ2V)= TJUJV . Therefore, −TUV+η1(TUV)ξ1 =−TUV and −TUV+
η2(TUV)ξ2 =−TUV which implies that η1(TUV)ξ1 = η2(TUV)ξ2 and shows that TUV =
0. Then, we get T = 0.

Corollary 3.6. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) → (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. If for i = 1,2, TU(ϕiV) =
ϕiTUV and TUJV = JTUV , then T = 0.

Proof. If TU(ϕiV)=ϕiTUV , then TϕiU(ϕiV)=ϕiTϕiUV ; since ϕiU is vertical and

T is symmetric on vertical vector fields, then TϕiUV = TV(ϕiU)=ϕiTVU =ϕiTUV . It is

clear that TϕiU(ϕiV) =ϕ2
i TUV = −TUV +ηi(TUV)ξi. On the other hand, we can show

that, in this case, TUξi = 0 which implies that ηi(TUV)= 0; we then obtain TϕiU(ϕiV)=
−TUV from which we deduce that TUV +TϕiU(ϕiV) = 0. Applying the lemma, we get

T = 0.

Theorem 3.7. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an almost

Hermitian almost contact metric submersion of type I. If the total space is Sasakian-

Kählerian, closely cosymplectic nearly Kählerian, nearly K-cosymplectic nearly Kähle-

rian, or nearly cosymplectic nearly Kählerian, then the fibres are totally geodesic.

Proof. We recall that the fibres of a Riemannian submersion are totally geodesic if

the configuration tensor T vanishes identically. For each of the manifolds in hand, it is

not hard to show that the preceding corollary applies.

In [4, page 465], O’Neill has shown that a Riemannian submersion is Riemannian

sectional curvature increasing on horizontal tangent planes. In the following, we will

investigate the relations between the holomorphic sectional curvature tensors of the

total space, of the base space, and of the fibres. We will be interested in the case where

equality can be obtained. In other words, we want to determine the classes of almost

Hermitian almost contact metric submersions which preserve the holomorphic sec-

tional curvature tensor on the horizontal and eventually on the vertical vector fields.

Recall that for an almost contact metric manifold (M,g,ϕ,ξ,η), the ϕ-holomorphic

sectional curvature tensor is defined by

Hϕ(E)= ‖E‖−4g
(
R(E,ϕE)E,ϕE

)
, (3.4)

where g(E,ξ)= 0.

Proposition 3.8. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. Then, the holomorphic sec-

tional curvature tensors satisfy
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(a) Hϕi(U)= Ĥϕi(U)+‖U‖−4{‖TU(ϕiU)‖2−g(TUU,TϕiU(ϕiU))} for i= 1,2,

(b) HJ(U)=HĴ(U)+‖U‖−4{‖TUJU‖2−g(TUU,TJUJU)},
(c) HJ(X)=HJ′1(X∗)−3‖X‖−4‖AXJX‖2,

(d) Hϕ1(X)=HJ′2(X∗)−3‖X‖−4‖AX(ϕ1X)‖2,

(e) Hϕ2(X)=HJ′3(X∗)−3‖X‖−4‖AX(ϕ2X)‖2.

Proof. It is an adaptation of [14, Theorem 5.1].

Proposition 3.9. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′ ,g′,(J′i)
3
i=1) be an al-

most Hermitian almost contact metric submersion of type I. Let X be a basic vector field

on M . If the total space is Sasakian-Kählerian, quasi-Sasakian-Kählerian, cosymplectic-

Kählerian, or closely cosymplectic nearly Kählerian, then

(a) Hϕi(U)= Ĥϕ̂i(U), for i= 1,2,

(b) HJ(U)=HĴ(U),
(c) Hϕ1(X)=HJ′2(X∗),
(d) Hϕ2(X)=HJ′3(X∗),
(e) HJ(X)=HJ′1(X∗).

Proof. Since T = 0 by Theorem 3.7, we get the proofs of (a) and (b). Assertions

(c), (d), and (e) follow from the fact that AJXY = 0 = JAXY , Aϕ1XY = ϕ1AXY , and

Aϕ2XY =ϕ2AXY from which we deduce AXJX = 0=AX(ϕ1X)=AX(ϕ2X).

Now, we want to examine the properties of a type of submersions which is closely

related to those initiated by Chinea [1].

3.2. Submersions of type II

Definition 3.10. Let (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) be an almost Hermitian almost

contact metric manifold and let (M′4m′+3,g′,(ϕ′
i,ξ

′
i ,η

′
i)

3
i=1) be an almost contact metric

manifold with 3-structure. We say that a Riemannian submersion f :M4m+2 →M′4m′+3

is an almost Hermitian almost contact metric submersion of type II if it satisfies

(a) f∗(ϕiE)=ϕ′
if∗E, for i= 1,2,

(b) f∗JE =ϕ′
3f∗E−η′3(f∗E)ξ′3,

(c) f∗ξ1 = ξ′1 and f∗ξ2 = ξ′2.

Proposition 3.11. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′+3,g′,(ϕ′
i,ξ

′
i ,η

′
i)

3
i=1)

be an almost Hermitian almost contact metric submersion of type II. Then,

(a) the vertical and horizontal distributions induced by f are invariant by ϕ1 and

ϕ2;

(b) the vector fields ξ1 and ξ2 are horizontal;

(c) ηi(U)= 0 for i= 1,2;

(d) the fibres are almost contact metric manifolds, invariant by ϕi for i = 1,2, and

semi-invariant by J;

(e) η̂(JV)= 0 for all V tangent to the fibres.

Proof. See [9, 10].
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Let µ be a unitary vector field of M which is orthogonal to the fibres. We recall from

[9] that the almost contact structure (ϕ̂, ξ̂, η̂) on the fibres is given by

ξ̂ =−Jµ,
η̂(E)= g(JE,µ),
ϕ̂(E)= JE− η̂(E)µ.

(3.5)

Theorem 3.12. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1)→ (M′4m′+3,g′,(ϕ′
i,ξ

′
i ,η

′
i)

3
i=1) be

an almost Hermitian almost contact metric submersion of type II with µ analytic and

Jµ parallel. If the total space is G1- (resp., G2-) Sasakian-Kählerian, then the base space

is a (3−G1)- (resp., (3−G2)-) Sasakian manifold, while the fibres are G1- (resp., G2-)

Sasakian.

Proof. We examine the structure of the base space when the total space is a G1-

Sasakian-Kählerian manifold. Consider a basic vector field X. We have to show that

the base space is defined by (∇′X∗ϕ′
i)X∗−(∇′ϕ′

iX∗ϕ
′
i)(ϕ

′
iX∗)+η′i(X∗)(∇′ϕ′

iX∗ξi)= 0,

where i= 1,2,3. Since the total space is a G1-Sasakian-Kählerian manifold, we have

(∇Xϕi
)
X−(∇ϕiX

(
ϕi
))(
ϕiX

)+ηi(X)
(∇ϕiXξi

)= 0 for i= 1,2,
(∇XJ

)
X = 0,

(3.6)

which leads to

(∇Xϕi
)
X−ϕi∇XX+

(∇ϕiX
)
X+ϕi∇ϕiX

(
ϕiX

)= 0,

∇XJX−J∇XX = 0.
(3.7)

Using the fact that f∗(JX) = ϕ′
3f∗X −η′3(f∗X)ξ′3, a straightforward computation of

f∗(∇X(ϕiX)−ϕi∇XX +∇ϕiXX +ϕi∇ϕiX(ϕiX)) and f∗(∇XJX − J∇XX) establishes

this part, keeping in mind that µ is analytic and Jµ is parallel. The case where the

total space is G2-Sasakian-Kählerian is treated in the same way. Now, we examine the

structure of the fibres when the total space is a G2-Sasakian-Kählerian manifold. We

want to show that S{(∇̂Uφ̂)(V ,W)− (∇̂ϕ̂Uφ̂)(ϕ̂V ,W)− η̂(V)(∇̂ϕ̂U η̂)W} = 0, where U ,

V , andW are vector fields tangent to the fibres. In [9], it is shown that φ̂(U,V)=Ω(U,V),
from which we have

(∇̂Uφ̂
)
(V ,W)= (∇UΩ

)
(V ,W). (3.8)

The analyticity of µ gives

(∇̂ϕ̂Uφ̂
)
(ϕ̂V ,W)= (∇̂JUΩ

)
(JV,W). (3.9)

On the other hand, (∇̂ϕ̂U η̂)W = (∇̂JU η̂)W − η̂(U)(∇̂µη̂)W ; since µ is analytic, we have

(∇̂µη̂)W = 0 so that we get

(∇̂ϕ̂U η̂
)
W = (∇̂JU η̂

)
W. (3.10)
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But, by virtue of (2.4), (∇̂JU η̂)W = g(W,∇̂JU ξ̂) which leads to

(∇̂ϕ̂U η̂
)
W = 0 (3.11)

because ξ̂ =−Jµ and Jµ is parallel. Relations (3.8), (3.9), and (3.11) then give

S
{(∇̂Uφ̂

)
(V ,W)−(∇̂ϕ̂Uφ̂

)
(ϕ̂V ,W)− η̂(U)(∇̂ϕ̂U η̂

)
W
}

= G
{(∇UΩ

)
(V ,W)−(∇JUΩ

)
(JV,W)

}
.

(3.12)

The right-hand side of (3.12) is the defining relation of a G2-manifold; therefore it van-

ishes and the proof is obtained.

3.3. Submersions of type III

Definition 3.13. Let (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) and (M4m′+2,g′,J′,(ϕ′
i,ξ

′
i ,η

′
i)

2
i=1)

be almost Hermitian almost contact metric manifolds. By an almost Hermitian almost

contact metric submersion of type III we mean a Riemannian submersion

f :M4m+2 �→M′4m′+2 (3.13)

such that

(a) f∗ϕiE =ϕ′
if∗E, for i= 1,2,

(b) f∗JE = J′f∗E,

(c) f∗ξi = ξi, for i= 1,2.

Proposition 3.14. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) → (M4m′+2,g′,J′,(ϕ′
i,ξ

′
i ,

η′i)
2
i=1) be an almost Hermitian almost contact metric submersion of type III. Then,

(a) f∗η′i = ηi, for i= 1,2,

(b) f∗φ′i =φi, for i= 1,2,

(c) f∗Ω′ =Ω,

(d) the vertical and horizontal distributions are invariant by J and ϕi for i= 1,2,

(e) the fibres are almost quaternionic metric manifolds,

(f) ξi is horizontal for i= 1,2,

(g) if V is vertical, then ηi(V)= 0 for i= 1,2.

Proof. Each of the proofs of (a), (b), (c), (d), (f), and (g) is an adaptation of what

is done in [6, 15]. We can examine the case of (e). It is clear that the dimension of the

fibres is 4(m−m′)which is a multiple of 4. We define three almost Hermitian structures

(ĝ, Ĵi), where i= 1,2,3, by setting

Ĵ1U = JU,
Ĵ2U =ϕ1U,

Ĵ3U =ϕ2U.

(3.14)

Considering (ĝ, Ĵ2), we have (Ĵ2)2U =ϕ1(ϕ1U)=−U+η1(U)ξ1 =−U because η1(U)=
0. On the other hand, ĝ(Ĵ2U,Ĵ2V) = ĝ(ϕ1U,ϕ1V) = −ĝ(U,(ϕ1)2V) = −ĝ(U,−V)+
η1(V)ξ1; since η1(V)= 0, then ĝ(Ĵ2U,Ĵ2V)= ĝ(U,V). We have thus shown that (ĝ, Ĵ2)
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is an almost Hermitian structure. By the same procedure, we can show that (ĝ, Ĵ1) and

(ĝ, Ĵ3) are also almost Hermitian structures. It remains to show that Ĵ2◦ Ĵ3 = Ĵ1. In fact,

(Ĵ2 ◦ Ĵ3)(U) = Ĵ2(Ĵ3U) = Ĵ2(ϕ2U) = ϕ1(ϕ2U). Since (ϕ1 ◦ϕ2)(U) = JU +η1(U)ξ2 +
η2(U)ξ1 and ηi(U) = 0, then (ϕ1 ◦ϕ2)(U) = JU = Ĵ1U which shows that Ĵ2 ◦ Ĵ3 = Ĵ1.

In the same manner, we can show that Ĵ3◦Ĵ1 = Ĵ2 =−Ĵ1◦Ĵ3 and Ĵ3◦Ĵ2 =−Ĵ1U =−Ĵ2◦Ĵ3.

Proposition 3.15. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) → (M4m′+2,g′,J′,(ϕ′
i,ξ

′
i ,

η′i)
2
i=1) be an almost Hermitian almost contact metric submersion of type III. Then,

(a) Ω̂1(U,V)=Ω(U,V);
(b) Ω̂2(U,V)=φ1(U,V);
(c) Ω̂3(U,V)=φ2(U,V);
(d) �(∇Xϕi)Y is the basic vector field associated to (∇′X∗ϕ′

i)Y∗ and �(∇XJ)Y is the

basic vector field associated to (∇′X∗J′)Y∗, when X and Y are basic.

Proof. We refer to [15].

Concerning the structures of the base space and the fibres, one can see that this type

of submersions is closely related to the almost contact metric submersions of type I

[15]. Thus, we can easily obtain the properties similar to those established in [7, 8]. For

instance, [7, Proposition 2.3] can be reformulated in the following way.

Proposition 3.16. Let f : (M4m+2,g,J,(ϕi,ξi,ηi)2i=1) → (M4m′+2,g′,J′,(ϕ′
i,ξ

′
i ,

η′i)
2
i=1) be an almost Hermitian almost contact metric submersion of type III. If the to-

tal space is cosymplectic Kählerian, quasi-Sasakian-Kählerian, or Kenmotsu-Kählerian

manifold, then the base space inherits the structure of the total space, while the fibres

are almost quaternionic Kählerian.

Proof. It is clear that the manifolds under consideration have in common the fol-

lowing defining relations:

dφi(D,E,G)= b
3

S
{
ηi(D)φi(E,G)

}
(3.15)

where b is some real number;

N(1)i = 0,

dΩ(D,E,G)= 0=N. (3.16)

In fact, if b = 0, we obtain one of the defining relations of a cosymplectic Kählerian and

quasi-Sasakian-Kählerian manifolds. Taking b = 2, we get one of the defining relations

of Kenmotsu-Kählerian manifolds. Concerning the structure of the base space, we have

to show that

dφ′i
(
X∗,Y∗,Z∗

)= b
3

S
{
η′i
(
X∗
)
φ′i
(
Y∗,Z∗

)}
,

N′(1)i = 0,

dΩ′
(
X∗,Y∗,Z∗

)= 0=N′,
(3.17)
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and eventually,

dη′ = 0. (3.18)

Since, by Proposition 3.14, we have f∗η′i = ηi and f∗φ′i = φi, then f∗dη′i = dηi and

f∗dφ′i = dφi, respectively; hence dφ′i(X∗,Y∗,Z∗) = (b/3)S{η′i(X∗)φ′i(Y∗,Z∗)}. From

Proposition 3.14(c), we deduce that dΩ′ = 0 because dΩ = 0. As dηi = 0 and f∗dη′i =
dηi, then dη′i = 0 because f∗ is an isometry. It is not hard to show that f∗N

(1)
i =N′(1)i

and f∗N = N′, from which we get N′(1)i = 0 = N′. Concerning the structure of the

fibres, we have to show that dΩ̂1 = dΩ̂2 = dΩ̂3 = 0 and N̂(1)1 = N̂(1)2 = 0 = N. Since

by Proposition 3.15(a), Ω̂1(U,V) = Ω̂(U,V), then dΩ̂1 = dΩ from which dΩ̂1 = 0 be-

cause dΩ = 0. Again, by Proposition 3.15(b) and (c), we have φ1(U,V) = Ω̂2(U,V) and

φ2(U,V) = Ω̂3(U,V). On the other hand, the vanishing of ηi on vertical vector fields

leads to dφi(U,V ,W)= 0, from which dΩ̂2(U,V ,W)= 0= dΩ̂3(U,V ,W) follows. Since

N(1)i = 0=N, we have N̂(1)i = 0=N which achieves the proof.

We omit the properties of holomorphic sectional curvature tensor because they are

the same as in the case of almost contact metric submersions of type I [15].

4. Some examples

4.1. Submersions of type I. It is known that the quaternionic projective space Pm(H)
is an almost quaternionic metric manifold. In [12], Watson has shown that the canonical

mapping

P1(C) �→ P2m+1(C)
f
������������������������������������������→ Pm(H) (4.1)

is an almost Hermitian almost contact metric submersion of type I.

Let M̄ =M′4m′ ×M4m+2 be the product of an almost quaternionic metric manifold by

an almost Hermitian almost contact metric one. It is clear that the manifold product M̄
is of dimension 4(m′+m)+2 which we denote by 4n+2. We define an almost Hermitian

almost contact metric structure (ḡ, J̄,(ϕ̄i, ξ̄i, η̄i), i= 1,2) by setting

ϕ̄1(D′,D)=
(
J′2D

′,ϕ1D
)
;

ϕ̄2(D′,D)=
(
J′3D

′,ϕ2D
)
;

J̄(D′,D)= (J′1D′,JD
)
;

ξ̄i = n
m
(
0,ξi

)
, for i= 1,2;

η̄i(D′,D)= mn ηi(D), for i= 1,2;

ḡ
(
(D′,D),(E′,E)

)= g′(D′,E′)+ n2

m2
g(D,E),

(4.2)

where D′ ∈ T(M′) and D ∈ T(M).
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So, the projection f :M′4m′ ×M4m+2 →M′4m′
is an almost Hermitian almost contact

metric submersion of type I. Indeed, we have f∗J̄(D′,D) = f∗(J′1D′,JD) = J′1D′; since

D′ = f∗(D′,D), we see that f∗J̄(D′,D) = J′1f∗(D′,D) which shows that f∗J̄ = J′1f∗.

Similarly, f∗ϕ̄1 = J′2f∗ and f∗ϕ̄2 = J′3f∗. This example is suggested by one that was

given in [6].

4.2. Submersions of type II. Following Watson [14, page 680], we can construct an

example of almost Hermitian almost contact metric submersions of type II.

Let p <m and considerM4p−1
o a distribution ofM4m+2 spanned by the vector field ξo

as defined by (3.5). Obviously, the manifold M4m+2/M4p−1
o is an almost contact metric

manifold with 3-structure. So, the canonical projection f : M4m+2 → M4m+2/M4p−1
o is

an almost Hermitian almost contact metric submersion of type II.

4.3. Submersions of type III. Let M̃ =M4m×M′4m′+2 be the Cartesian product of an

almost quaternionic manifold with an almost Hermitian almost contact metric manifold

as constructed in Section 4.1.

It is clear that M̃ is an almost Hermitian almost contact metric manifold. So, the

canonical projection map f :M4m×M′4m′+2 →M′4m′+2 is an almost Hermitian almost

contact metric submersion of type III.

Indeed, setting ϕ̃1(D,D′) = (J2D,ϕ′
1D′), ϕ̃2(D,D′) = (J3D,ϕ′

2D′), and J̃(D,D′) =
(J1D,J′D′), we have f∗ϕ̃1(D,D′) = f∗(J2D,ϕ′

1D′) = ϕ′
1D′ = ϕ′

1f∗(D,D′) which

shows that f∗ϕ̃1 = ϕ′
1f∗. In the same manner, we can show that f∗ϕ̃2 = ϕ′

2f∗ and

f∗J̃ = J′f∗.
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