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OLD AND NEW GENERALIZATIONS OF LINE GRAPHS
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Line graphs have been studied for over seventy years. In 1932, H. Whitney showed that
for connected graphs, edge-isomorphism implies isomorphism except for K3 and K1,3. The
line graph transformation is one of the most widely studied of all graph transformations.
In its long history, the concept has been rediscovered several times, with different names
such as derived graph, interchange graph, and edge-to-vertex dual. Line graphs can also
be considered as intersection graphs. Several variations and generalizations of line graphs
have been proposed and studied. These include the concepts of total graphs, path graphs,
and others. In this brief survey we describe these and some more recent generalizations and
extensions including super line graphs and triangle graphs.

2000 Mathematics Subject Classification: 05C75, 05C45, 05C62, 05C40.

1. Introduction. The line graph L(G) of a graph G is defined to have as its vertices

the edges of G, with two being adjacent if the corresponding edges share a vertex in

G. Line graphs have a rich history. The name line graph was first used by Harary and

Norman [17] in 1960. But line graphs were the subject of investigation as far back as

1932 in Whitney’s paper [24], where he studied edge isomorphism and showed that for

connected graphs, edge-isomorphism implies isomorphism except for K3 and K1,3. The

first characterization (partition into complete subgraphs) was given by Krausz [19].

Since this is a survey on generalizations of line graphs, we will not describe line

graphs and their properties in any detail here. Instead, we refer the interested reader

to a somewhat older but still an excellent survey on line graphs and line digraphs

by Hemminger and Beineke [18]. A more recent book by Prisner [22] describes many

interesting generalizations of line graphs. For general graph theoretic concepts and

terminology not defined here, please see [9, 16].

In the rest of this section, we will make some general remarks on the nature of

research in line graphs and the generalizations that have been studied. In the following

sections, we describe some generalizations and variations of the line graph concept.

We describe two, super line graphs and triangle graphs, in somewhat greater detail. We

also mention some open problems in this area.

According to the above-mentioned article by Hemminger and Beineke, much of the

effort in the early research concentrated on the determination problem (determine

which graphs have a given graph as their line graph) and the characterization prob-

lem (characterize those graphs that are line graphs of some graph). Krausz [19] gave a

characterization of line graphs in terms of complete subgraphs. There are several other

characterizations mentioned in [18], including the forbidden subgraph characterization
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Figure 1.1

by Beineke [11], which states that a graph is a line graph if and only if it has no induced

subgraph isomorphic to any of the graphs shown in Figure 1.1.

One can view the line graph as a transformation G → L(G). Repeated applications

of this transformation yield iterated line graphs, which have been studied by several

authors.

Thus iterated line graphs are defined by L1(G)= L(G) and Ln+1(G)= L(Ln(G)) (pro-

vided that Ln(G) is not null). Questions about convergence have been considered. If

G is the path Pn on n vertices, then L(G) = Pn−1. Hence {Ln} terminates for paths. If

G is a cycle, then L(G) � G. Also L(K1,3) = K3. Hence for these graphs {Ln} becomes

a constant. For all other connected graphs, {Ln} contains arbitrarily large graphs [23].

Other properties of iterated line graphs such as Hamiltonicity have also been studied.

Theorem 1.1 [13]. Let G be a connected graph of order p that is not a path. Then

Ln(G) is Hamiltonian for all n≥ p−3.

See Prisner [22] for details on the line graph transformation and several other similar

concepts and results on iterations.

Line graphs have edges as their vertices. An edge can be viewed as a subset of two

adjacent vertices, a clique of order two, a path of length one, or a subgraph of size one,

among others. Depending on which view is considered, generalizations and extensions

of line graphs result by generalizing the corresponding view. For example, in Section 4,

we will describe a recent generalization called the triangle graph for which the vertex

set consists of the triangles of G, with two being adjacent if they share an edge.

In the next section, we describe some earlier generalizations of line graphs.

2. Old generalizations

2.1. Total graphs. The total graph T(G) of a graph G, defined by Behzad and Char-

trand [10], takes both the vertices and edges of G as elements for its set of vertices.
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Figure 2.1

Two vertices are adjacent if the corresponding elements of G are either adjacent or

incident.

Recall Vizing’s theorem, which states that ifG has maximum degree∆, thenχ(L(G))=
∆ or ∆+1, Behzad conjectured that χ(T(G)) = ∆+1 or ∆+2. Whether any graph has

total chromatic number greater than ∆+2 is still an open question [15].

2.2. Middle graphs. The middle graph mid(G) of G is obtained from G by inserting

a new vertex into every edge of G and by joining those pairs of new vertices which lie

on adjacent edges of G. Thus mid(G) can also be considered as the intersection graph

of all K1’s and K2’s in G [22].

We observe that

(i) L(G) is an induced subgraph of mid(G),
(ii) the subdivision graph S(G) is a subgraph of mid(G),

(iii) mid(G) is a subgraph of T(G).

2.3. Entire graphs. The entire graph e(G) of a plane graph G is the graph whose ver-

tices correspond to vertices, edges, and regions of G. Two vertices of e(G) are adjacent

if the corresponding elements of G are adjacent or incident. See [20] for some results

on entire graphs.

2.4. Path graphs. The rth path graph �r (G) [12] has the paths of length r inG as its

vertices and two such paths are adjacent if their union is a path or cycle of length r+1.

For r = 1, we obtain the line graph. An example for r = 2 is shown in Figure 2.1. We

observe that a path of length r in G corresponds to an isolated vertex in �r (G) if and

only if its end vertices have degree 1 in G. Thus, connectedness of G is not inherited by

the rth path graph for r > 1. Broersma and Hoede [12] also show that the numbers of

vertices and edges in �2(G) are
∑
v

(
deg(v)

2

)
and (1/2)

∑
v[(deg(v)−1)

∑
u∼v(deg(u)−

1)], respectively (where ∼ denotes adjacency).

2.5. r -subgraph distance graphs. Let �r (G) be the graph whose vertices are the

subgraphs of G having r edges, with two such being adjacent if the symmetric differ-

ence of their edge sets consists precisely of two adjacent edges of G. Sr (G) is called
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the r -subgraph distance graph (Chartrand et al. [14]). An example for r = 2 is shown in

Figure 2.2.

Note that two subgraphs (with r edges) in G are adjacent if one can be obtained from

the other by “pivoting” one edge. Because �r (G) is connected whenever G is connected

(and has at least r edges), it provides a measure of the distance between two subgraphs

of size r in G.

3. Super line graphs. In this section, we describe in somewhat greater detail a more

recent generalization, the super line graph. Super line graphs were introduced by Bagga

et al. in [6]. Since then, the study of super line graphs has progressed much further

[1, 2, 3, 4, 5, 6].

3.1. Definition and basic properties. For a fixed integer r (with 1≤ r ≤ q = |E(G)|),
the super line graph �r (G) of index r has the sets of r edges in G as its vertices, and

two vertices are adjacent if an edge in one set is adjacent (in G) to an edge in the other.

It follows that �1(G) is the usual line graph. Figure 3.1 shows an example of a graph G
and the graph �2(G). For simplicity, we denote a set {x,y} of edges by xy .

Several variations of the definition of a super line graph can be considered. For exam-

ple, one could form a multigraph by joining two vertices with as many edges as there

are adjacencies between the two sets of edges. We call this the super line multigraph.

See [3] for some results. Or, we can form the intersection graph of the sets of vertices

on the two sets of edges.

The super line graph operator has nice hereditary properties, as the next two results

show [1].

Theorem 3.1. If G is a subgraph of graph H, then �r (G) is an induced subgraph of

�r (H).

Theorem 3.2. Let G be a graph with q edges. For r < q/2, �r (G) is isomorphic to a

subgraph of �r+1(G).

The definition of adjacency in the super line graph �r (G) implies that if two vertices

(say) S and T are nonadjacent, then (with S and T considered as r -sets of edges) their
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intersection S∩T is a set of isolated edges in the subgraph (of G) of their union S∪T .

This leads to our next result [6].

Theorem 3.3. If S and T are r -sets of edges in G such that neither consists entirely

of r isolated components of G, then the distance between S and T in �r (G) is 1 or 2.

Proof. If such S and T are not adjacent in �r (G), thenG contains an edge e adjacent

to some edge in S and an edge f adjacent to some edge in T . Now let R be any set of r
edges of G containing e and f . Then both S and T are adjacent to R in �r (G), and so

the distance between them is 2.

Corollary 3.4. IfG is a graph in which fewer than r components are isolated edges,

then �r (G) has diameter 1 or 2.

Corollary 3.5. For a graph G, at most one component of �r (G) is nontrivial.

3.2. Line completion number. We observe that if �r (G) is complete, so is �s(G) for

r ≤ s ≤ q. This leads us to define the line completion number lc(G) of graph G to be

the minimum index r for which �r (G) is complete. Clearly, lc(G)≤ q. We observe that

the only graphs with the line completion number 1 are the stars and K3.

A general bound on line completion number is given by the following result [6].

Theorem 3.6. If G is a graph with q edges and c components, then lc(G) ≤ �(q+
c)/2	, and this bound is sharp.

The next theorem [5] describes which graphs have small or large line completion

numbers.

Theorem 3.7. (i) �c(G)= 1 if and only if G is K1,n or K3.

(ii) �c(G)≤ 2 if and only if G does not have 3K2 or 2P3 as a subgraph.

(iii) �c(G)≤ 3 if and only if G does not have any of the following as a subgraph: 4K2,

K2∪2K1,2, 2K3, K3∪P4, K3∪K1,3, 2K1,3, K1,3∪P4.

(iv) �c(G)= q if and only if G 
 qK2.

(v) �c(G)= q−1 if and only if G 
 P3∪(q−2)K2 or G 
 2P3∪(q−4)K2.

Line completion numbers of several classes of graphs have been found. We list some

of these in the next theorem. See [5] for more details.
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Theorem 3.8. (i) If T is a tree of order n≥ 2, then �c(T)≤ �n/2	. Furthermore, for

any integer k satisfying 1≤ k≤ �n/2	, there is a tree T of order n with �c(T)= k.

(ii) �c(Kn)= (1/2)�n/2	(�n/2	−1)+1.

(iii) �c(Pn)= �c(Cn)= �n/2	.
(iv) �c(K1+Pn)= �c(K1+Cn)= �2n/3	.
(v) �c(K1+nK2)= �3n/4	+1.

Line completion numbers of several other classes of graphs have also been obtained.

These classes include hypercubes, ladders, and grids. One class of graphs for which

only partial results are known is the class of complete bipartite graphs. We list the

known cases in the next theorem.

Theorem 3.9. (i) For m= 2r , n= 2s, lc(Km,n)= rs+1=mn/4+1.

(ii) If m|n, and m is odd, then lc(Km,n)=n(2−1)/4m.

(iii) lc(K2r ,2rq+1)= r 2q.

(iv) lc(K2r ,2rq+3)= r(rq+1) for q ≥ 1.

(v) lc(K2r+1,2r+4k)= (r +k)2 for r ≥ 4k2−3k.

A complete determination of lc(Km,n) is still open.

3.3. Cycles in super line graphs. We now describe several interesting results on

cycles in super line graphs. Even though super line graphs can be dense, they, in general,

do not satisfy well-known sufficient conditions for Hamiltonicity. For any connected

graph G, however, �2(G) turns out to be vertex pancyclic, that is, every vertex lies on

cycles of length three through the order of the graph. In fact, as we see below, this

result is true for many disconnected graphs also. We will state most results without

proof. However, to give a flavor of the techniques used, we include a special result with

proof.

Theorem 3.10. If T is a tree with q ≥ 2 edges, then �2(T) is pancyclic.

Proof. The proof is by induction on q. For q ≤ 4, it can be easily checked that �2(T)
is complete, which is also true if T is a star. Assume that T is not a star and that q > 4.

Choose a vertex u of T such that deg(u) > 1, and every neighbor of u, except one,

say v , is an end vertex. Since T is not a star, such a vertex always exists. Let S be the

star with center u, and let Tv be the subtree of T obtained by removing u and all its

neighbors except v . Let s = deg(u) so that Tv has r = q−s edges. By our choice of u
and v , it follows that r > 0 and s > 1. If r = 1, then �2(T) is complete. If r = 2 with (say)

E(Tv) = {f1,f2}, then �2(T)−f1f2 is complete, and deg�2(T) f1f2 > 1. Hence �2(T) is

pancyclic. Thus we may assume that r ≥ 3.

Now the vertex set of �2(T) is the (disjoint) union of V(�2(S)), V(�2(Tv)), and the

set W = {ab | a ∈ E(Tv), b ∈ E(S)}. Also, �2(S) is complete and, by the induction

hypothesis, �2(Tv) is pancyclic. Let Cv be a spanning cycle of �2(Tv). Also let X1X2

be an edge of Cv , where X1 = f1e and X2 = f2f , where f1,e,f2,f ∈ E(Tv) and f1 is

adjacent to f2.

We observe that |W | = rs. Since S is a star with s edges, the subgraph of �2(T)
induced byW contains the complete multipartite graphKr,r ,...,r as a spanning subgraph.
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Hence, it contains paths of lengths 1 through rs−1. We can also assume that the end

vertices of each of these paths are Y1 = f1g and Y2 = f2h, where f1 and f2 are as above,

and g,h∈ E(S).
Now, in �2(T), X1 and Y2 are adjacent, as are X2 and Y1. Hence we can construct

cycles of lengths |Cv |+j =
(
r
2

)
+j, for 2≤ j ≤ rs, by identifying the ends of each of the

above paths appropriately with those of the path Cv−X1X2.

Let C be a cycle of length
(
r
2

)
+rs so constructed. By our construction, C contains

edges from the subgraph of �2(T) induced by W . Also, every vertex of the complete

graph �2(S)=K(s2) is adjacent to all vertices of W . It follows that C can be extended to

cycles of each length from
(
s
2

)
+rs+1 to

(
s
2

)
+rs+

(
r
2

)
.

It remains to show the existence of a cycle of length
(
r
2

)
+1. For this, choose three

adjacent vertices, say, a1b1, a2b2, and a3b3 on Cv . Assume that a1 is adjacent to a,

and that a3 is adjacent to b, for some a,b ∈ E(Tv) (not necessarily distinct). Choose

two adjacent edges e1 and e2 in S and replace the P3 formed by the above three vertices

by the P4 formed by a1b1, ae1, be2, a3b3 to produce the required cycle. This completes

the proof.

Now this result can easily be extended to all connected graphs.

Theorem 3.11. If G is connected, with q ≥ 2, then �2(G) is pancyclic.

Proof. The proof is by induction on the number of cycles in G. The base case is

covered by the previous theorem. Let e=uv be a cycle edge, andw a new vertex not in

V(G). Construct a graph H = G−e+f , where f = uw. Then �2(H) is isomorphic to a

spanning subgraph of �2(G). Then H is connected and has fewer cycles than G. Hence

by the induction hypothesis, �2(H) is pancyclic. It follows that �2(G) is pancyclic.

As we stated before, however, a much stronger result than the one given in the above

theorem holds. We state this in our next theorem [2].

Theorem 3.12. If G is a graph with no isolated edges, then �2(G) is vertex pancyclic.

While it may be possible to extend this theorem to some graphs having isolated edges,

it cannot be done for all graphs, even to their nontrivial components. For example,

let G be the disjoint union P4 ∪ 2K2, then the nontrivial component of �2(G) is the

complete multipartite graph K1,1,2,5, which clearly is not Hamiltonian, and thus is not

pancyclic. However, we believe that, for a graphG with at most one isolated edge, �2(G)
is pancyclic, and that it may even be vertex pancyclic.

Further problems along these lines suggest themselves. For example, find conditions

onG under which �2(G) has isolated vertices but the nontrivial component is Hamilton-

ian, pancyclic, or vertex-pancyclic. Another open problem is to study �2(G) in relation

to Hamiltonian connectedness and panconnectedness.

3.4. Independence number. Let M be a set of independent edges in a graph G. If A
and B are r -sets of M , then A and B are nonadjacent in �r (G). However, not all pairs

of nonadjacent vertices arise in this way. It is also the case that two r -sets of edges

of G are nonadjacent in �r (G) if they generate vertex-disjoint subgraphs. What we
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show is that when one considers a set of independent vertices in �r (G) of maximum

order, then with a few exceptional families of graphs, it is produced by a maximum

independent set of edges of G. We use α(G) and α′(G) for the independence number

and edge-independence number of G, respectively. We also denote the set of all r -sets

of a set X by
(
X
r

)
.

Our next result [2] gives the independence number of �r (G) in terms of the edge-

independence number of G.

Theorem 3.13. Let G be a graph with at least r edges. Then the independence num-

ber of �r (G) is

α
(
�r (G)

)=
(
α′(G)
r

)
. (3.1)

Furthermore, if S is a maximum independent set of vertices in �r (G), then either

(i) S =
(
X
r

)
for some maximum independent set X of edges of G, or

(ii) S consists of r +1 disjoint stars K1,r , or

(iii) r = 3 and the vertices in S are K1,3’s or K3’s.

Proof. If X is a maximum independent set of edges of G, then, clearly, r -sets of X
are independent vertices in �r (G). Thus,

α
(
�r (G)

)≥
(
α′(G)
r

)
. (3.2)

To prove the reverse inequality, let V1,V2, . . . ,Vk be r -sets of E(G) which are indepen-

dent vertices in �r (G). Also, let m = number of these sets which are matchings in G,

� = number of these sets which are not matchings in G, and h = number of edges of

G in the union of the m matchings. Clearly, m ≤
(
h
r

)
. Let U = V1∪V2∪···∪Vk. We

observe that if two edges of U are adjacent in G, they must belong to the same Vi and

each such pair is in only one Vi. Thus, we form an independent set of edges in G by

taking the h edges mentioned above, and one of the nonindependent edges of each of

the � nonmatchings. Hence, �+h≤α′(G)=α′, and therefore,

k= �+m≤ �+
(
h
r

)
≤
(
�+h
r

)
≤
(
α′

r

)
, (3.3)

from which we have the desired inequality.

To prove the second part, let S = {V1,V2, . . . ,Vk} be a maximum independent set in

�r (G) with k=
(
α′
r

)
. It follows from (3.3) that

k= �+m= �+
(
h
r

)
=
(
�+h
r

)
=
(
α′

r

)
. (3.4)

If � = 0, then k = m =
(
h
r

)
=
(
α′
r

)
so that S satisfies (i). If r = 1, then again all Vi’s

are matchings so that � = 0. Thus we assume that � > 0 and r > 1. In this case, �+(
h
r

)
=
(
�+h
r

)
implies that h = 0 and � = r +1. Consequently, α′ = r +1. Moreover, it
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follows that m = 0, so that no Vi is a matching. If any Vi is not a star, then it has two

independent edges or it is a K3. In the first case, one obtains r +2 independent edges

in G, a contradiction. In the second case, it follows that r = 3 so that each Vi is a K3 or

a K1,3.

The above theorem characterizes the maximum independent sets in �r (G). We ob-

serve that more can be said about the structure of G in cases (ii) and (iii), namely, that

each additional edge in G must join the center of one star to some vertex in another

component.

3.5. Other properties and types of super line graphs. We have described several

different structural and other properties of super line graphs. The wealth of results

indicates that this is a rich and fertile area for research. Some open problems were

listed in the above subsections. Bagga et al. [1, 2, 3, 5, 6] have also studied variations

such as super line multigraphs and super line digraphs. However, only some preliminary

work has been done for these variations and further explorations are required.

4. Triangle graphs. In this section, we describe another recent generalization of line

graphs. As noted in the introduction, the vertices of the line graph can be considered as

cliques of order 2, with two being adjacent if they have a K1 in common. This concept

has been generalized to clique graphs. We will mention the general case in the next

section. Here, we consider the special case of triangles.

The triangle graph of G, denoted by �(G), is the graph with vertex set the set of

triangles in G. Two vertices are adjacent in �(G) if, as triangles of G, they share an

edge in common. If G has no triangle, then �(G) is undefined. A graph H is called a

triangle graph if H ��(G) for some G. Otherwise it is called a nontriangle graph.

In [21], the problem of determining necessary and sufficient conditions for a graph

to be a triangle graph was raised. In [7, 8], there is some recent progress towards a

solution to this problem. We describe some of these results below.

4.1. Some classes of triangle graphs. We begin by listing several classes of graphs

which are triangle graphs. It is easily seen that Kn is a triangle graph since Kn =
�(K1,1,n). Similarly, cycles and paths can be shown to be triangle graphs since Cn �
�(Wn), for n≥ 4, where Wn is the wheel, and Pn ��(Wn−e), where e is a rim edge.

Some products. Km×Kn = �(K1,m,n), Km×C3 = Km×K3 � �(K1,m,3), Km×Cn =
�(Km∨Cn), (m,n≥ 3), and Km×Pn =�(Km∨Pn+1) are all triangle graphs.

The Platonic graphs. As Figure 4.1 shows, Q3 = �(octahedron). Also, tetrahe-

dron =K4 =�(K1,1,4) and dodecahedron=�(icosahedron).
We will see below that the octahedron and the icosahedron are nontriangle graphs.

Theorem 4.1. A tree H is a triangle graph if and only if ∆(H)≤ 3.

Proof. Observe that a graph that contains K1,4 as an induced subgraph is a nontri-

angle graph. Conversely, if ∆(H)≤ 3, use induction on |(V(H))|.
We next describe a necessary condition involving K4−e [8].
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Theorem 4.2. IfH is a triangle graph with K4−e as an induced subgraph, then there

exists a vertex x in H such that x is adjacent to three vertices of one triangle of K4−e
and nonadjacent to the fourth vertex.

Corollary 4.3. For any n≥ 4, Kn−e is not a triangle graph.

Corollary 4.4. The octahedron and the icosahedron are nontriangle graphs.

4.2. Triangle labeling of a graph. We next consider another class of graphs that

strictly includes the class of triangle graphs. A triangle labeling of a graph is defined

to be a mapping f : V(H)→N3 (triples of positive integers) such that xy ∈ E(H) if and

only if |f(x)∩f(y)| = 2.

Figure 4.2 shows a triangle labeling of the Petersen graph. It can be shown by a direct

argument that the Petersen graph is not a triangle graph.

Theorem 4.5. A triangle graph admits a triangle labeling. The converse is not true.

This leads us to define some new classes of graphs as follows. Let �= the set of line

graphs, �s = the set of induced subgraphs of line graphs, �= the set of triangle graphs,
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�s = the set of induced subgraphs of triangle graphs, and �l = the set of graphs that

admit a triangle labeling. We then have the following result [8].

Theorem 4.6. (i) �=�s .

(ii) �⊂�s .

(iii) �s =�l.

For some more necessary conditions on triangle graphs, and some other classes of tri-

angle graphs, we refer the reader to [8]. The general characterization of triangle graphs

is an open problem and further explorations in this area should be undertaken.

4.3. Open problems. We conclude our discussion of triangle graphs by listing a few

problems and directions for more investigations in this area. Of course, it would be nice

to have a characterization of triangle graphs. As mentioned above, [8] has made some

progress in this direction by obtaining a number of necessary conditions, including a

forbidden subgraph condition. We saw earlier that several product graphs are triangle

graphs. Similar questions can also be asked for other products; in particular, for which

graphs G is the Cartesian product Kn×G a triangle graph? We observe that �(K5) =
L(K5). One wishes to characterize G for which �(G)� L(G). Similarly, when is �(G)�
G? Let G1 and G2 be graphs in which each edge belongs to a triangle. Under what

conditions does �(G1) � �(G2) imply that G1 � G2? Motivated by the definition of

line completion number defined in Section 3.2, we can define the triangle completion

number, tc(G), to be the minimum number of edges to be added to G so that the

resulting graph becomes a triangle graph. As a first step, one wants bounds for tc(G)
for a given graph G.

5. Some more generalizations. It was mentioned at the beginning of Section 4 that

triangle graphs are a special case of clique graphs, a more general variation on line

graphs. In this section, we briefly describe clique graphs and some other variations. For

more details and results, we refer the reader to Prisner [22]. We observe that by a clique

of a graph G, we mean a complete subgraph of G. Some authors (including Prisner

[22]) use the term simplex for a complete subgraph and clique for inclusion-maximal

simplices. Since an edge is a clique of order 2, a generalization of the line graph L(G) of

a graph G is obtained when one considers all cliques of G of a fixed order. Depending

on how one defines adjacency, several variations are possible, as we see below. The

following definitions are from [22].

(i) The k-Gallai graph �k(G) has all Kk’s in G as vertices, with two adjacent if their

union induces a Kk+1−e. Observe that �1(G)=G.

(ii) The k-in-m graph Φk,m has all Kk’s in G as vertices, with two adjacent if they lie

in a common Kr for some r ≤m.

(iii) The k-line graph Lk (k≥ 2) has all Kk’s in G as vertices, with two adjacent if their

intersection is a Kk−1. We observe that Lk(G) is the edge-disjoint union of Φk,k+1(G)
and �k(G).

(iv) The k-overlap clique graph Ck(G) of G has all maximal cliques of G as vertices,

with two adjacent whenever their intersection contains at most k vertices.
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(v) The cycle graph Cy(G) of a graph G has all induced cycles of G as vertices, with

two adjacent if they share some common edge.

For more such generalizations and their properties, we refer the reader to [22].

6. Conclusion. In this brief survey, we have described line graphs and their general-

izations. Many of the generalizations are well known and well studied. Others are more

recent. For all generalizations, a number of problems and areas of further study have

been presented. This in an active area of research. We have included a set of references

which have been cited in our description. These references are just a small part of the

literature, but they should provide a good start for readers interested in this area.
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