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We study discrete solutions of nonlinear optimal control problems. By value func-
tions, we construct difference equations to approximate the optimal control on
each interval of “small” time. We aim to find a discrete optimal feedback control.
An algorithm is proposed for computing the solution of the optimal control prob-
lem.
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1. Introduction and statement of the problem. For nonlinear analytic sys-

tems, there have been many works on control problems since the eighties of

the last century. In [3, 4, 5, 6], Lie series was used in studying the controllability

of nonlinear analytic systems. In [1], the discrete method in solving Hamilton-

Jacobi-Bellman equations for value functions of nonlinear problems was dis-

cussed. In this paper, we use Lie series to construct difference equations by

value functions in obtaining the discrete solutions of nonlinear optimal control

problems. Taking advantage of the uniform convergence of Lie series on an in-

terval of “small” time, we focus on the integral of the optimal control function.

We aim to find a discrete optimal feedback control. We see that the optimal

controls of a given problem can be constructed by these integral dates. We pro-

pose an algorithm which includes the process of pre-estimation and correction

of an approximation to the solution of the optimal control problem.

We begin by considering the following nonlinear control system:

ẋ = f(x)+G(x)u, x(0)= x0 ∈X ⊂Rn, t ∈ [0,T ], (1.1)

where f :Rn→Rn and G :Rn→Rn×m,

G = (g1, . . . ,gm
)
, (1.2)

are real analytic mappings. We consider the admissible controls u(t), which

take values in some compact set U ⊂ Rm, to be integrable. Throughout this

paper, it is assumed that the state space X is bounded. LetQ(x) be a Lipschitz

function. Denote by xu(t) the solution of system (1.1) relative to the control

u. We pose the following optimal control problem: find an admissible control
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û(·) such that

Q
(
x̂(T)

)=min
u∈U

{
Q
(
xu(T)

)}
, (1.3)

where x̂(·) is the solution of (1.1) relative to the optimal control û(·).

2. A lemma on Lie series. We introduce Lie series for system (1.1) and real

analytic function P(x) (see [4, pages 698–699]) in the following lemma.

Lemma 2.1. Let P(x) be a real analytic function on Rn and let � be compact

in Rn. Suppose that x0 ∈� and consider the admissible controls u(·) satisfying

‖u(·)‖ ≤M , a.e. on [0,T ]. The solution of (1.1) corresponding to an admissible

control u(·) is denoted by xu(·). For a given positive integer l, denote N =
ml. Further, define f0 = f and fi = gi, i = 1,2, . . . ,m. Meanwhile, for each

positive integer k, denote Ik = (i1, i2, . . . , ik), 0 ≤ ij ≤ m (j = 1,2, . . . ,k), and

|Ik| = i1+i2+···+ik. Further set

SerN(u)(P)
(
t,x0

)

=
m∑
i=0

{∫ t
0
ui(s)ds

}(
fiP

)(
x0
)

+
∑

i+j≤2m

{∫ t
0

∫ s
0
ui(s)uj(τ)dτds

}(
fifjP

)(
x0
)+···

+
∑

|Il|≤N

{∫ t
0

∫ τl
0
···

∫ τ2

0
uil
(
τl
)···ui1(τ1

)
dτ1 ···dτl

}(
fil ···fi1P

)(
x0
)
,

(2.1)

where u0(t) ≡ 1 and (fi1P)(x) = Lfi1P , and in turn, for each positive integer

k, (fik ···fi1P)(x)= (fik ···fi2(fi1P))(x). Then there exists a positive number

δ < 1 which depends only on P , f , G, M , and � such that if 0< t < δ,

P
(
xu(t)

)−P(x0
)= SerN(u)(P)

(
t,x0

)+RN(u)(P)(t,x0
)
, (2.2)

where RN(u)(P)(t,x0) is uniformly convergent to zero, when N →∞, as long

as x0 ∈� and ‖u(s)‖ ≤M , a.e. on [0, t]. Moreover, for the sufficiently large N,

∣∣RN(u)(P)(t,x0
)∣∣< 2t2, (2.3)∣∣∣∣∣∣SerN(u)(P)

(
t,x0

)− m∑
i=0

{∫ t
0
ui(s)ds

}(
fiP

)(
x0
)∣∣∣∣∣∣< C̃t2, (2.4)

where C̃ only depends on N, �, M , m, fi (i= 0,1,2, . . . ,m), and P .

Proof. Since P(x),fi(x) are real analytic and � is compact, [4, Proposi-

tion 4.3] indicates that there is a positive δ < 1 such that, when 0 < t < δ,

RN(u)(P)(t,x0) is uniformly convergent to zero for all admissible controls
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u(·) (satisfying ‖u(·)‖ ≤M , a.e. on [0,T ]) and all x0 in �. Following the proof

of Proposition 4.3 due to Sussmann [4, pages 698–699], we can get a constant

C > 0 only depending on N, �, M , m, fi (i = 0,1,2, . . . ,m), and P such that,

when 0< t < δ < 1,

∣∣RN(u)(P)(t,x0
)∣∣≤ [CMt(m+1)

]N+1, (2.5)

CMt(m+1) <
1
2
. (2.6)

It is easy to see from (2.6) that, when N is sufficiently large, we have

CMt(N−1)/(N+1)(m+1) < 1. (2.7)

Consequently, by (2.5) and (2.7), we conclude (2.3) by the following estimation:∣∣RN(u)(P)(t,x0
)∣∣≤ CN+1MN+1tN−1(m+1)N+1t2

≤ [CMt(N−1)/(N+1)(m+1)
]N+1t2 ≤ 2t2.

(2.8)

On the other hand, fixing the positive N = lm, by (2.1), we see that, by (2.2),∣∣∣∣∣∣SerN(u)(P)
(
x0
)− m∑

i=0

{∫ t
0
ui(s)ds

}(
fiP

)(
x0
)∣∣∣∣∣∣

≤
∑

i+j≤2m

{∫ t
0

∫ s
0

∣∣ui(s)∣∣∣∣uj(τ)∣∣dτds
}∣∣(fifjP)(x0

)∣∣+···

+
∑

|Il|≤N

{∫ t
0

∫ τl
0
···
∫ τ2

0

∣∣uil(τl)∣∣···∣∣ui1(τ1
)∣∣dτ1 ···dτl

}∣∣(fil ···fi1P)(x0
)∣∣

≤ BN,�
(
M2t2+···+Ml+1tl+1)

≤ BN,�
(
M2+M3t+···+Ml+1tl−1)t2,

(2.9)

where BN,� only depends on N, �, fi (i = 0,1,2, . . .), and P . Since t < δ < 1,

from (2.9), we conclude (2.4).

3. The formulation of discrete solutions to the optimal control problem.

We define the value function, for (t,x)∈ [0,T ]×X,

V(t,x) := inf
u∈U

{
Q
(
xu(T ,x)

)−Q(x)}, (3.1)

where xu(s,x) is the solution of the following equation:

ẋ = f(x)+G(x)u(s), x(t)= x, s ∈ [t,T]. (3.2)

It is well known that the value function is granted the following boundary

condition:

V(T ,x)= 0 ∀x ∈X. (3.3)
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We introduce the discrete scheme as follows. For a given positive integer L,

divide [0,T ] into L parts: [(i−1)T/L,iT/L], i= 1,2, . . . ,L. Denote ti = iT/L. Let

xi, i= 1,2, . . . ,L, be the state point associated with ti. For every j, j = 1,2, . . . ,n,

denote eTj = (0, . . . ,0,1,0, . . . ,0) which has a 1 on the jth place and zeros on

other places. For every vector x ∈ Rn, x(j) = eTj x, which is denoted by Pj(x).
We need the following elementary lemma.

Lemma 3.1. Let {xi, i = 1, . . . ,L} be a set of state points. Suppose that, for

each i∈ {1,2, . . . ,L},

V
(
ti,xi

)= V(0,x0
)+Q(x0

)−Q(xi). (3.4)

If there exists an admissible control ûi(·) in [ti−1, ti] steering system (1.1) from

xi−1 to xi, i= 1,2, . . . ,L, then the admissible control û(·) which equals ui(·) on

each [ti−1, ti] is an optimal control for the nonlinear optimal control problem

(1.3).

Proof. By the formulation of û(·), we see that

xL = xû(T). (3.5)

By (3.3) and (3.4), we have, for i= L,

0= V(T ,xL)= V(0,x0
)+Q(x0

)−Q(xL). (3.6)

Thus

V
(
0,x0

)=Q(xû(T))−Q(x0
)
. (3.7)

But (3.7) means that û(·) is an optimal control of (1.3) according to definition

(3.1).

Remark 3.2. By Lemma 2.1, we see that when τ (= T/L) is sufficiently

small, û(·), given by Lemma 3.1, steers xi−1 to xi, which amounts to, for

j = 1,2, . . . ,n,

x(j)i −x(j)i−1 = SerN(û)
(
Pj
)(
τ,xi−1

)+RN(û)(Pj)(τ,xi−1
)

= τ(fPj)(xi−1
)+ m∑

k=1

{∫ ti
ti−1

û(k)i (s)ds
}(
gkPj

)(
xi−1

)+O(τ2), (3.8)

where the term RN(û)(Pj)(τ,xi−1) converges uniformly to zero (N →∞). On

the other hand, condition (3.4) ensures the optimality of state points.

Now we derive the following difference equations. For each i= 0,1,2, . . . ,L−1,

when xi is obtained,

x(j)i+1−x(j)i = τeTj f
(
xi
)+ m∑

k=1

Sk(i)eTj gk
(
xi
)
, j = 1,2, . . . ,n, (3.9)
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where for i= 0,1, . . . ,L−1, Sk(i) stands for the following integral form for an

admissible control u(·):

Sk(i)=
∫ ti+1

ti
u(k)(s)ds. (3.10)

We establish

V
(
ti+1,xi+1

)= V(0,x0
)+Q(x0

)−Q(xi+1
)
. (3.11)

We see that (3.9) can be rewritten in the vector form as follows:

xi+1 = xi+τf
(
xi
)+ m∑

k=1

Sk(i)gk
(
xi
)
. (3.12)

Substituting expression (3.12) for xi+1 in (3.11), we have

V
[
ti+1,xi+τf

(
xi
)+ m∑

k=1

Sk(i)gk
(
xi
)]

= V(0,x0
)+Q(x0

)−Q
[
xi+τf

(
xi
)+ m∑

k=1

Sk(i)gk
(
xi
)]
.

(3.13)

The discrete solution for each i will be constructed by solving (3.13) for

S1(i),S2(i), . . . ,Sm(i), (3.14)

satisfying

∣∣Sk(i)∣∣≤ T supu∈U ‖u‖
L

, k= 1,2, . . . ,m. (3.15)

Next suppose we have got xi+1 such that

V
(
ti+1,xi+1

)= V(0,x0
)+Q(x0

)−Q(xi+1
)
, (3.16)

and S̃k(i), |S̃k(i)| ≤ T supu∈U ‖u‖/L (k= 1,2, . . . ,m), such that

xi+1 = xi+τf
(
xi
)+ m∑

k=1

S̃k(i)gk
(
xi
)
. (3.17)

We take a control ũi(·) on each [ti,ti+1], i= 0,1, . . . ,L−1, such that

S̃k(i)=
∫ ti+1

ti
ũ(k)i (s)ds. (3.18)

Suppose that ũi(·) steers system (1.1) from xi to x̃i+1. We have, by Lemma 2.1,

x̃i+1 = xi+τf
(
xi
)+ m∑

k=1

S̃k(i)gk
(
xi
)+O(τ2). (3.19)
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By (3.17) and (3.19), we have

xi+1− x̃i+1 =O
(
τ2), Q

(
xi+1

)−Q(x̃i+1
)=O(τ2). (3.20)

Further, we have

V
(
ti+1,xi+1

)−V(ti+1, x̃i+1
)=O(τ2), (3.21)

noting by hypothesis that Q(x) is a Lipschitz function and so is V(t,x) by

Lemma 3.3. Therefore, we have S̃k(i), |S̃k(i)| ≤ T supu∈U ‖u‖/L (k= 1,2, . . . ,m),

such that

V
(
ti+1, x̃i+1

)= V(0,x0
)+Q(x0

)−Q(x̃i+1
)+O(τ2). (3.22)

Then define xi+1 = x̃i+1 to carry out the process (3.11), (3.12), (3.16), (3.17),

(3.18), and (3.19) again.

Lemma 3.3. For a given t, V(t,x) is a Lipschitz function with respect to x.

Proof. Given x′, x′′ ∈X, we show, for arbitrarily given ε > 0, that

∣∣V(t,x′)−V(t,x′′)∣∣≤ C|x′ −x′′|+ε. (3.23)

By definition (3.1), we are able to get admissible controls u′,u′′ such that

V(t,x′) >Q
(
xu′(T ,x′)

)−Q(x′)−ε,
V(t,x′′) >Q

(
xu′′(T ,x′′)

)−Q(x′′)−ε. (3.24)

Then we see that

V(t,x′)−V(t,x′′)≤Q(xu′′(T ,x′))−Q(x′)−[Q(xu′′(T ,x′′))−Q(x′′)−ε],
V(t,x′′)−V(t,x′)≤Q(xu′(T ,x′′))−Q(x′′)−[Q(xu′(T ,x′))−Q(x′)−ε].

(3.25)

Noting that Q(x) is a Lipschitz function, f(x) and G(x) are real analytic, and

the state space is bounded, we deduce that

∣∣V(t,x′)−V(t,x′′)∣∣≤ ∣∣Q(x′)−Q(x′′)∣∣+∣∣Q(xu′(T ,x′))−Q(xu′(T ,x′′))∣∣
+∣∣Q(xu′′(T ,x′))−Q(xu′′(T ,x′′))∣∣+ε

≤ C|x′ −x′′|+ε
(3.26)

by means of Gronwall inequality [2, page 829]. Since ε > 0 is arbitrary, we see

that V(t,x) is a Lipschitz function with respect to x.
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4. The algorithm for computing an optimal endpoint and an optimal con-

trol. The discussion in Section 3 suggests the following algorithm which in-

cludes the process of pre-estimation and correction.

Algorithm 4.1. (i) Take the initial value x0 = x̃0.

(ii) (Pre-estimation). For i= 0,1,2, . . . ,L−1, after having got x̃i, we solve

V


ti+1, x̃i+τf

(
x̃i
)+ m∑

k=1

S̃k(i)gk
(
x̃i
)

= V(0,x0
)+Q(x0

)−Q

x̃i+τf (x̃i)+

m∑
k=1

S̃k(i)gk
(
x̃i
)

(4.1)

for S̃k(i), k = 1,2, . . . ,m, satisfying |S̃k(i)| ≤ T supu∈U ‖u‖/L, k = 1,2, . . . ,
m, to get

xi+1 = x̃i+τf
(
x̃i
)+ m∑

k=1

S̃k(i)gk
(
x̃i
)
. (4.2)

(iii) (Correction). For i = 1,2, . . . ,L−1, we take an admissible control ũi(·)
on each [ti,ti+1] such that

S̃k(i)=
∫ ti+1

ti
ũ(k)i (s)ds. (4.3)

Define x̃i+1 to be the state point to which the control ũi(·) steers system (1.1)

from x̃i in the time interval [ti,ti+1].

Remark 4.2. In the process of this algorithm, we see that for i=0,1, . . . ,L−1,

x̃i+1 is determined by x̃i and xi+1. Under this algorithm, we have, by (3.22),

0= V(T ,x̃L)= V(0,x0
)+Q(x0

)−Q(x̃L)+O(τ2) (4.4)

and produce the admissible control ũ(·) (which equals ũi(·) on each time in-

terval [ti,ti+1], i= 0,1,2, . . . ,L−1) which steers (1.1) fromx0 toxũ(T ,x0)= x̃L.

In the following, we indicate that carrying out Algorithm 4.1, we can com-

pute to get approximation to an optimal endpoint and an optimal control in

general.

Theorem 4.3. Suppose that there is an optimal control û(·) for problem

(1.1), (1.2), and (1.3). Denote by x̂(T) the endpoint of (1.1) with respect to û(·),
that is,

Q
(
x̂(T)

)=min
u∈U

{
Q
(
xu(T)

)}
. (4.5)
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Meanwhile, for each positive integer L, with τ = T/L, let ũ(·) and x̃L be obtained

by Algorithm 4.1. Then there is a positive real C which only depends on the state

space X (which is assumed to be bounded) and f(x), G(x) such that, for every

large positive real L (τ = T/L),

∣∣Q(x̃L)−Q(x̂(T))∣∣≤ Cτ2. (4.6)

Proof. By (3.20) and (3.21), we have

xL− x̃L =O
(
τ2), (4.7)

Q
(
xL
)−Q(x̃L)=O(τ2). (4.8)

Noting (see Algorithm 4.1(ii))

V
(
T ,xL

)= V(0,x0
)+Q(x0

)−Q(xL), (4.9)

we have, by (4.7) and (4.8),

V
(
T ,xL

)= V(0,x0
)+Q(x0

)−Q(x̃L)+O(τ2). (4.10)

By noting that, for each x ∈X, V(T ,x)= 0, we deduce, from (4.10), that

V
(
0,x0

)=Q(x̃L)−Q(x0
)+O(τ2). (4.11)

Since x̂ is the optimal endpoint, by the definition of V(0,x0) (see (3.1)), we

have

V
(
0,x0

)=Q(x̂)−Q(x0
)
. (4.12)

Combining (4.11) and (4.12), noting that the state space is assumed to be

bounded, we conclude that there is a positive constant C :

∣∣Q(x̃L)−Q(x̂(T))∣∣≤ Cτ2. (4.13)

At the end of this section, we would state that in some cases by Algorithm 4.1

one can compute an exact optimal control. For example, if we consider the

simple linear system ẋ =u in R1, the algorithm will be as follows.

(i) Take the initial value x0 = x̃0.

(ii) For i= 0,1,2, . . . ,L−1, while having got x̃i, we solve

V
[
ti+1, x̃i+S(i)

]= V(0,x0
)+Q(x0

)−Q[x̃i+S(i)] (4.14)
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for S(i), satisfying |S(i)| ≤ T supu∈U ‖u‖/L, to get

x̃i+1 = x̃i+S(i). (4.15)

(iii) For i = 1,2, . . . ,L−1, take an admissible control ũi(·) on each [ti,ti+1]
such that

S(i)=
∫ ti+1

ti
ũ(k)i (s)ds. (4.16)

It is easy to see that x̃i+1 is just the state point to which the control ũi(·)
steers the system ẋ =u from x̃i in the time interval [ti,ti+1]. Under this algo-

rithm, we have, noting V(T ,x)= 0 for each x ∈X,

0= V(T ,x̃L)= V(0,x0
)+Q(x0

)−Q(x̃L), (4.17)

and produce the admissible control ũ(·) which equals ũi(·) on each time in-

terval [ti,ti+1], i = 0,1,2, . . . ,L− 1, and steers (1.1) from x0 to xũ(T) = x̃L.
Together with (4.17), noting the definition of V(0,x0), we see that ũ(·) is the

optimal control.

5. An example demonstrating the results of Section 4. We would demon-

strate the above process by the following simple example.

Example 5.1. Consider the following system in R1:

ẋ = xu, x(0)= 1, t ∈ [0,1], u∈ [−1,1]. (5.1)

Let Q(x)= x. We pose the optimal control problem

min
u∈[−1,1]

Q
(
xu(1)

)
. (5.2)

Since u(·) is integrable and |u| ≤ 1, we have

V(t,x)= inf
u

{[
xe

∫ 1
t u(s)ds

]
−x

}
=

x
(
et−1−1

)
, for x ≥ 0,

x
(
e1−t−1

)
, for x < 0.

(5.3)

Now the difference equations for i ∈ {0,1,2, . . . ,L−1} (L > 2) are as follows.

First, corresponding to (3.9), we have

xi+1 = xi+S(i)xi. (5.4)
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By noting that x0 = 1 > 0 and |S(i)| < 1 (for L > 2), we see that xi > 0, i =
0,1, . . . ,L. Another equation (corresponding to (3.11)) for each i is

xi+1
(
eti+1−1−1

)= e−1−xi+1, (5.5)

that is,

xi+1 = e−ti+1 . (5.6)

By noting that ti = i/L, i= 0,1,2, . . . ,L−1,L, we see that, by (5.4) and (5.6),

S(i)= e−1/L−1, (5.7)

and we can choose ũi(·) = L(e−1/L−1) on [ti,ti+1] by the following integral

equality:

∫ ti+1

ti
u(s)ds = e−1/L−1, (5.8)

which steers xi to

x̃i+1 = xie
∫ ti+1
ti

ũi(s)ds = xiee−1/L−1
. (5.9)

By this process, we have, by (5.6),

xi+1− x̃i+1 = e−(i+1)/L−e−i/Lee−1/L−1

= e−(i+1)/L[1−e{1/L+e−1/L−1}]=O( 1
L2

)
.

(5.10)

Finally, from (5.6), (5.7), (5.8), and (5.9), we see that

x̃L = e−(L−1)/Lee
−1/L−1 = e−1e1/Lee

−1/L−1 �→ e−1 (L �→∞). (5.11)

It is easy to see that the optimal control for this problem is û(·) ≡ −1 and

the optimal endpoint is x̂(1)= e−1. Note that Algorithm 4.1 suggests that the

approximation of the optimal control for this problem is ũ(·) ≡ L(e−1/L−1)
which tends to −1 as L→∞, by (5.11).

6. An application in singular linear quadratic optimal control problems.

We would like to present an application of the approximation approach in

Sections 2 and 3 in singular linear quadratic optimal control problems by the

following example. We aim to find a discrete optimal feedback control.
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Example 6.1. Consider the following linear control system in R1:

ẋ = x+u, x(0)= 1
3
, t ∈ [0,1], u∈U = [−1,1], (6.1)

where we consider the admissible control u(·) to be piecewise continuous. We

define the quadratic cost functional

J(u)=
∫ 1

0

(
x2+xu)dt (6.2)

and pose the optimal control problem: find an admissible control û(·) such

that

J(û)=min
u∈U

J(u). (6.3)

We define the value function for problem (6.1), (6.2), and (6.3):

V(t,x)= inf
u∈U

∫ 1

t

(
x2
u+xuu

)
ds, (6.4)

where xu is the solution of ẋ = x+u, x(t)= x, and s ∈ [t,1].
Next we transfer problem (6.1), (6.2), and (6.3) into the Mayer problem which

is equivalent to the original problem. Consider the system

ẋ = x+u, ẏ = x2+xu, x(0)= 1
3
, y(0)= 0, t ∈ [0,1], (6.5)

and find the admissible control û(·) such that

yû(1)=min
u∈U

yu(1). (6.6)

If, according to (3.1), we define the value function of problem (6.5) and (6.6):

Ṽ (t,x,y)=min
u∈U

(
yu(t,1)−y

)
, (6.7)

where yu(t,1) is the solution of ẋ = x+u, ẏ = x2+xu, x(t) = x, y(t) = y ,

and s ∈ [t,1], we see that

V(t,x)= Ṽ (t,x,y). (6.8)

To carry out Algorithm 4.1 for this example, for given positive integer L,

we divide [0,1] into L equal parts: [i/L,(i+1)/L], i = 0,1,2, . . . ,L−1. Denote

ti = i/L, i= 0,1,2, . . . ,L−1. The iterative process is as follows:

(i) take the initial values

x̃0 = 1
3
, ỹ0 = 0; (6.9)
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Table 6.1

L Control (u) Trace (x̃)

0 −0.333333333 0.333333333

1 −0.333333333 0.333333333

2 −0.333333333 0.333333333

3 −0.333333333 0.333333333

4 −0.333333333 0.333333333

5 −0.333333333 0.333333333

6 −0.333333333 0.333333333

7 −0.333333333 0.333333333

8 −0.333333333 0.333333333

9 −0.333333333 0.333333333

10 −0.333333333 0.333333333

11 −0.347917818 0.333333333

12 −0.622540238 0.332585571

13 −0.877211794 0.317719277

14 −0.934028646 0.289033482

15 −0.929048395 0.255963873

16 −0.912656792 0.221454092

17 −0.888671881 0.186015371

18 −0.863446877 0.149989402

18 −0.84136498 0.113409655

20 — 0.076086587

(ii) if x̃i and ỹi are obtained, solve

V
(
ti+1, x̃i+ 1

L
x̃i+S(i)

)
= V

(
0,

1
3

)
−ỹi− 1

L
x̃2
i −S(i)x̃i (6.10)

for S(i) satisfying |S(i)| ≤ 1/L. Here we apply optimization method to

compute V(t,x) and approximate S(i) by an iterative process. Then

compute

ỹi+1 = ỹi+ 1
L
x̃2
i +S(i)x̃i; (6.11)

(iii) define ûi = LS(i) and compute

x̃i+1 = e1/L[x̃i+LS(i)(e−ti−e−ti+1
)]
, (6.12)

then, go to (ii).

Carrying out the iterative process via Matlab, we list the data of x̃i and ui,
i= 1,2, . . . ,L, for L= 20 in Table 6.1.
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