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1. Introduction. Let Z, C,Qp , and Cp denote the ring of integers, the field

of complex numbers, the field of p-adic rational numbers, and the completion

of the algebraic closure of Qp , respectively. Let ordp denote the unique p-adic

ordinal over Qp such that ordp(p) = 1. The corresponding non-Archimedian

absolute value is |x|p = p−ordp(x).

Any p-adic number x ≠ 0 is uniquely represented in the canonical form

x =∑∞
k=γ(x) xkpk, where γ = γ(x) ∈ Z and xj are integers such that 0 ≤ xk ≤

p−1, x0 > 0, k = 0,1,2, . . . . The fractional part {x}p of a number x ∈ Qp is

defined by

{x}p =


0, if γ ≥ 0 or x = 0,
−1∑
k=γ
xkpk, if γ < 0.

(1.1)

It is easy to see from this definition that pγ ≤ {x}p ≤ 1−pγ if γ < 0. The func-

tion χp(ξx) = exp(2πi{ξx}p) for every fixed ξ ∈Qp is an additive character

of the field Qp and the group Bγ (see [10]). From the relation for fractional

parts we have {x+y}p = {x}p+{y}p−N, N = 0,1. For later use, we define

the step function Ω(t) by

Ω(t)=
1, if 0≤ t ≤ 1,

0, if t > 1.
(1.2)
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The space Qnp consists of points x = (x1, . . . ,xn), xj ∈Qp, j = 1,2, . . . ,n. The

norm on Qnp is |x|p = max1≤j≤n |xj|p, xj ∈ Qp . This is a non-Archimedian

norm since |x +y|p ≤ max(|x|p,|y|p), x,y ∈ Qnp . The space Qnp is clearly

complete metric, locally compact, and totally disconnected space. We intro-

duce the inner product by 〈x,y〉 = x1y1+···+xnyn, x,y ∈Qnp .

We denote by Bnγ (a) the ball of radius pγ with center at the point a ∈ Qnp
and by Snγ (a) its boundary (sphere), that is,

Bnγ (a)=
{
x ∈Qnp : |x−a|p ≤ pγ

}
,

Snγ (a)=
{
x ∈Qnp : |x−a|p = pγ

}
.

(1.3)

For the notational convenience, let Bnγ (0) = Bnγ and Snγ (0) = Snγ ,γ ∈ Z. If a =
(a1, . . . ,an) ∈ Qnp , then Bnγ (a) = Bγ(a1)× ···×Bγ(an) in Qnp . Clearly, Bnγ (a)
and Snγ (a) are closed-open sets.

Recently, very interesting properties of spectral theory in the p-adic number

field were studied (cf. [5, 6, 8, 10]). The important basic operator in the analysis

on complex-valued functions over non-Archimedian local fields K =Qp is the

fractional differential operator Dα (see Section 1) introduced and studied by

Vladimirov in [8], and for a general local field K by Kochubei [5]. This operator

considered on L2(Qp) has a pure point spectrum with eigenvalues of the in-

finite multiplicity. An explicit construction of an eigenbasis was first given by

Vladimirov [8]. Due to the infinite multiplicity, it is possible to construct eigen-

bases with different properties, and a new simpler construction was proposed

recently by Kozyrev (see [6]) and applied by him to the 2-adic interpretation

of wavelets. His result was a motive for our study (see Section 3). A detailed

analysis of the spectrum and eigenfunctions of the Schrödinger-type operator

Dα+V(|x|p) over Qp , with V(r)→∞ as r →∞, is given in [10].

In Section 2, we try to generalize an explicit construction for an orthonor-

mal system of eigenfunctions of the Vladimirov operator on L2(Qnp ) which was

originally given by Vladimirov [8], and their properties of dimension 1 are

also given in [6]. In Section 3, we give a generalization of Kozyrev’s results

(see Theorem 3.4). Those of multidimensional case with some conditions are

proved. Also the multiwavelet analysis can be considered as the p-adic spectral

analysis in L2(Qnp).

2. The Vladimirov operator Dα on L2(Qnp). We now recall the definitions

and results from the p-adic spectral theory on the p-adic space Qnp (see [2, 4,

5, 6, 8, 9, 10]). The Haar measure dxi (i= 1,2, . . . ,n) is the essentially invariant

measure on the additive group Qp : d(xi+a)= dxi for any a∈Qp and so it is

extended up to an invariant measure dx = dx1dx2 ···dxn onQnp in a standard

way, and all integration theories are carried over toQnp . Normalization is fixed

by taking the measure of Znp , the n-times Cartesian product of p-adic integers,
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as being equal to 1:

µ
(
Znp
)= ∫

Znp
dx =

∫
|x|p≤1

dx = 1. (2.1)

It is now straightforward to calculate the measure of any n-ball and also of

n-sphere, that is, for γ ∈ Z,

µ
(
Bnγ
)= ∫

Bnγ
dx = pnγ, (2.2)

µ
(
Snγ
)= ∫

Snγ
dx =

∫
Bnγ
dx−

∫
Bnγ−1

dx = pnγ
(

1− 1
pn

)
. (2.3)

A complex-valued function f(x) defined on Qnp is called locally constant if

for any point x ∈Qnp there exists an integer l(x)∈ Z such that

f(x+x′)= f(x), |x′|p ≤ pl(x). (2.4)

For the set of locally constant functions onQnp we denote �= �(Qnp). We call a

test function for each function in � compact support. The set of test functions

which are linear is denoted by � = �(Qnp). Let ϕ ∈ �. Then there exists l ∈ Z
such that

ϕ(x+x′)=ϕ(x), x′ ∈ Bnl , x ∈Qnp. (2.5)

Such largest number l we call it the parameter of constancy of a function ϕ,

l = l(ϕ). We denote by �lγ = �lγ(Qnp) the set of test functions with support

in the disc Bnγ and with parameter of constancy greater than or equal to l. Let

ϕ ∈�. Its Fourier-transform F[ϕ]= ϕ̃ is defined by the formula

ϕ̃(ξ)= F[ϕ](ξ)=
∫
Qnp
χp
(〈ξ,x〉)ϕ(x)dx, ξ ∈Qnp. (2.6)

The Fourier transform ϕ → ϕ̃ is the linear isomorphism from � onto �, and

also the inversion formula is valid:

ϕ(x)= F−1[ϕ̃](x)=
∫
Qnp
χp
(−〈x,ξ〉)ϕ̃(ξ)dξ, ϕ̃,ϕ ∈�. (2.7)

Lemma 2.1. Let �′ be the set of linear continuous functionals on �. Every

function f ∈ L1
loc(Qnp) defines a generalized function f ∈�′ by

〈f ,ψ〉 =
∫
Qnp
f (x)ψ(x)dx, ϕ ∈�. (2.8)

The Vladimirov operator Dα :ψ→Dαψ is defined by the convolution of gener-

alized function f−α and ψ :(
Dαψ

)
(x)= (f−α∗ψ)(x)

= 〈f−α(y),ψ(x−y)〉, α≠−n∈ C, x,y ∈Qnp,
(2.9)
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where f−α(x)= (1−pα)/(1−p−α−n)|x|−α−np . Then(
Dαψ

)
(x)= (F−1 ◦|ξ|αp ·F[ψ]

)
(x)

= pα−1
1−p−α−n

∫
Qnp

ψ(x)−ψ(y)
|x−y|α+np

dy.
(2.10)

Proof. By (2.2) and (2.3) we calculate the following integrals:∫
Bn0
|x|α−np dx =

∑
−∞<γ≤0

pγ(α−n)
∫
Snγ
dx

=
(

1− 1
pn

) ∑
−∞<γ≤0

pγα = 1−p−n
1−p−α (Reα> 0),

∫
Qnp\Bn0

|x|α−np dx =
∑

1≤γ<∞
pγ(α−n)

∫
Snγ
dx

=
(

1− 1
pn

) ∑
1≤γ<∞

pγα =−1−p−n
1−p−α (Reα< 0),

(2.11)

and we have an analytical continuation for Reα≥ 0, α≠ αk = 2kπi/ lnp, k∈
Z. Therefore,∫

Qnp
|x|α−np dx =

∫
Bn0
|x|α−np dx+

∫
Qnp\Bn0

|x|α−np dx = 0, (2.12)

where α≠αk, k∈ Z. Then we see that

〈|x|α−np ,ψ
〉= ∫

Qnp
|x|α−np ψ(x)dx =

∫
Qnp
|x|α−np

[
ψ(x)−ψ(0)]dx (2.13)

for α≠αk, k∈ Z. Set

f−α(x)= 1−pα
1−p−α−n |x|

−α−n
p . (2.14)

We obtain(
Dαψ

)
(x)= (f−α∗ψ)(x)= 1−pα

1−p−α−n
〈|y|−α−np ,ψ(x−y)〉

= 1−pα
1−p−α−n

∫
Qnp
|y|−α−np

[
ψ(x−y)−ψ(x)]dy

= pα−1
1−p−α−n

∫
Qnp

ψ(x)−ψ(x−y)
|y|α+np

dy

= pα−1
1−p−α−n

∫
Qnp

ψ(x)−ψ(ỹ)
|x−ỹ|α+np

dy.

(2.15)

On the other hand, by the formula (2.3) we obtain

F
[
f−α(x)

]= F[ 1−pα
1−p−α−n |x|

−α−n
p

]
= |ξ|αp, (2.16)
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for α≠αk, k∈ Z. Since Dαψ= f−α∗ψ, we have

F
[
Dαψ

]= F[f−α∗ψ]= F[f−α]·F[ψ] (
see [5, 10]

)
⇐⇒ F[Dαψ]= |ξ|αp ·F[ψ]
⇐⇒Dαψ= F−1 ◦|ξ|αp ·F[ψ].

(2.17)

This completes the proof.

Lemma 2.2 (see [2, 5, 10]). Let χp be the additive character of the field Qp .

Then ∫
Bnγ
χp
(〈ξ,x〉)dx = pnγΩ(∣∣ξp−γ∣∣p); (2.18)

∫
Snγ
χp
(〈ξ,x〉)dx =


pnγ

(
1−p−n), |ξ|p ≤ p−γ,

−pn(γ−1), |ξ|p = p−γ+1,

0, |ξ|p ≥ p−γ+2;

(2.19)

∫
Snγ

[
χp
(〈ξ,x〉)−1

]
dx =


0, |ξ|p ≤ p−γ,
−pnγ, |ξ|p = p−γ+1,

−pnγ(1−p−n), |ξ|p ≥ p−γ+2.

(2.20)

Corollary 2.3 (cf. [5, page 37, Proposition 2.3]). Let ξ ∈Qnp with |ξ|p ≤ 1

and let Reα< 0. Then

|ξ|−αp = 1−p−α
1−pα−n

∫
Qnp
|ξ|α−np

[
χp
(〈ξ,x〉)−1

]
dx. (2.21)

Proof. Since Qnp =∪γ∈ZSnγ ,∫
Qnp
|ξ|α−np

[
χp
(〈ξ,x〉)−1

]
dx

=
∑

−∞<γ<∞
pγ(α−n)

∫
Snγ

[
χp
(〈ξ,x〉)−1

]
dx.

(2.22)

Let |ξ|p = p−k, k≥ 0. By Lemma 2.2, we see that

∑
−∞<γ<∞

pγ(α−n)
∫
Snγ

[
χp
(〈ξ,x〉)−1

]
dx =−p(k+1)α−

∑
k+2≤γ<∞

pγα
(
1−p−n)

= pkα 1−pα−n
1−p−α .

(2.23)

We therefore obtain the corollary.

Lemma 2.4. For a∈Qnp with |a|p > 1, the Vladimirov function

ψ(x)= χp
(〈a,x〉)Ω(|x|p) (2.24)
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is an eigenfunction of the Vladimirov operator

Dαψ(x)= |a|αpψ(x). (2.25)

Proof. Note that, by Lemma 2.1,

(
Dαψ

)
(x)= (F−1 ◦|ξ|αp ·F[ψ]

)
(x)

=
(
pα−1

)
χp
(〈a,x〉)

1−p−α−n
∫
Qnp

Ω
(|x|p)−χp(〈a,y−x〉)Ω(|y|p)

|x−y|α+np
dy,

d(cx)= |c|pdx for c ∈Q∗
p .

(2.26)

Let |x|p ≤ 1. Then using the fact that every point of a disk is the center of this

disk, we get

∫
Qnp

Ω
(|x|p)−χp(〈a,y−x〉)Ω(|y|p)

|x−y|α+np
dy =

∫
Qnp

1−χp
(〈a,y−x〉)Ω(|y|p)
|x−y|α+np

dy

=
∫
Qnp

1−χp
(〈a,z〉)Ω(|z|p)
|z|α+np

dz.

(2.27)

Let |x|p > 1. We see that

∫
Qnp

χp
(〈a,y−x〉)Ω(|y|p)

|x−y|α+np
dy = 1

|x|α+np

∫
|y|p≤1

χp
(〈a,y−x〉)dy

= χ
−1
p
(〈a,x〉)
|x|α+np

∫
|y|p≤1

χp
(〈a,y〉)dy. (2.28)

By (2.18) of Lemma 2.2 with |a|p > 1, we have

∫
Bn0
χp
(〈a,x〉)dx =

0, if |a|p > 1,

1, if |a|p ≤ 1.
(2.29)

Therefore, for a,x ∈Qnp with |x|p > 1 and |a|p > 1,

∫
Qnp

Ω
(|x|p)−χp(〈a,y−x〉)Ω(|y|p)

|x−y|α+np
dy

=−
∫
Qnp

χp
(〈a,y−x〉)Ω(|y|p)

|x−y|α+np
dy = 0.

(2.30)
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If |z|p > 1, that is, |z|p = p1, |z|p = p2, . . . , then Ω(|z|p) = 0. From (2.19) of

Lemma 2.2 we obtain∫
Qnp

1−χp
(〈a,z〉)Ω(|z|p)
|z|α+np

dz =
∫
|z|p≥p

1
|z|α+np

dz =
∑

1≤γ<∞

∫
Snγ
|z|−α−np dz

=
∑

1≤γ<∞
p−γ(α+n)pγn

(
1− 1
pn

)
= 1−p−n
pα−1

.
(2.31)

Suppose that |z|p ≤ 1, that is, Ω(|z|p)= 1. Then by (2.19) of Lemma 2.2 and

µ(Snγ )= pnγ(1−p−n), we have∫
Qnp

1−χp
(〈a,z〉)Ω(|z|p)
|z|α+np

dz

=
∑

−∞<γ≤0

p−γ(α+n)
(∫

Snγ

(
1−χp

(〈a,z〉))dz)

= 1−p−n
1−pα −

∑
0≤γ<∞

pγ(α+n) ·


p−nγ

(
1− 1
pn

)
, |a|p ≤ pγ,

−pn(−γ−1), |a|p = pγ+1,

0, |a|p ≥ pγ+2.

(2.32)

We now set |a|p = pk, k≥ 1. Then∫
Qnp

1−χp
(〈a,z〉)Ω(|z|p)
|z|α+np

dz

= 1−p−n
1−pα −

∑
0≤γ<∞

pγ(α+n) ·


p−nγ

(
1− 1
pn

)
, k≤ γ,

−p−n(γ+1), k−1= γ,
0, k−2≥ γ

= 1−p−n
1−pα −

 ∑
k≤γ<∞

pγ(α+n)p−nγ
(

1− 1
pn

)
−p(k−1)(α+n)p−nk

.

(2.33)

Hence we have

Dαψ(x)=
(
pα−1

)
χp
(〈a,x〉)

1−p−α−n
∫
Qnp

1−χp
(〈a,z〉)Ω(|z|p)
|z|α+np

dz

=ψ(x)
(
pα−1

)
1−p−α−n

(
1−p−n
pα−1

+ 1−p−n
1−pα −

1−p−npkα
1−pα +p(k−1)α−n

)

=ψ(x)
(
pα−1

)
1−p−α−n

pkα
(
1−p−α−n)
pα−1

=ψ(x)pkα = |a|αpψ(x)
(2.34)

that finishes the proof of the lemma.
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We will consider a direct product group

G(n) =Qp/Zp×···×Qp/Zp︸ ︷︷ ︸
n times

. (2.35)

Then any nonzero element N ∈G(n) is representable in the form

N = (N1, . . . ,Nn
)=

m1∑
i=1

N1ip−i, . . . ,
mn∑
i=1

Nnip−i
, (2.36)

where Nki ∈ {0,1, . . . ,p−1}, k= 1, . . . ,n.

Theorem 2.5. Suppose that Vladimirov functions are as follows:

ψ(n)γ,j,N(x)=
p−γn/2√
c
(|a|p,n)χp

(〈
aj,pγx

〉)
Ω
(∣∣pγx−N∣∣p), |a|p > 1, (2.37)

where γ ∈ Z, N ∈G(n), j = 1, . . . ,p−1, and a,x ∈Qnp such that

√
c
(|a|p,n)= pn(p−1)

|a|np
(
pn−1

) . (2.38)

Denote by (·,·) the inner product in L2(Qnp). Set the inner product

(
ψ(n)γ,j,N ,ψ

(n)
γ′,j′,N′

)
= p

−(γn+γ′n)/2

c
(|a|p,n)

∫
Qnp
χp
(−〈aj,pγx〉)Ω(∣∣pγx−N∣∣p)

×χp
(〈
aj′,pγ

′
x
〉)
Ω
(∣∣pγ′x−N′∣∣p)dx.

(2.39)

Then

(
ψ(n)γ,j,N ,ψ

(n)
γ′,j′,N′

)
= 1
c
(|a|p,n)δγγ′δNN′δjj′ , (2.40)

where δαβ is the Kronecker symbol.

Proof. Without loss of generality, we now assume that γ ≤ γ′. If |pγx|p ≠
|N|p > 1, then by the isosceles triangle principle of the non-Archimedian norm,

Ω
(∣∣pγx−N∣∣p)= 0. (2.41)

This means that we can set |pγx|p = |N|p and also denote

Ω
(∣∣pγx−N∣∣p)Ω(∣∣pγ′x−N′∣∣p)=Ω(∣∣pγx−N∣∣p)Ω(∣∣pγ′−γN−N′∣∣p).

(2.42)
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Therefore we have

(
ψ(n)γ,j,N ,ψ

(n)
γ′,j′,N′

)
= p

−(γn+γ′n)/2

c
(|a|p,n)

∫
Qnp
χp
(〈
a
(
pγ

′
j′ −pγj),x〉)

×Ω
(∣∣pγx−N∣∣p)Ω(∣∣pγ′−γN−N′∣∣p)dx

=


0, if γ < γ′,
p−γn

c
(|a|p,n)

∫
Qnp
χp
(〈
apγ(j′ −j),x〉)

×Ω
(∣∣pγx−N∣∣p)Ω(|N−N′|p)dx, if γ = γ′.

(2.43)

Since N,N′ ∈G(n), Ω(|N−N′|p)= δNN′ . Let |a|p > 1. We note that

p−γn
∫
Qnp
χp
(〈
apγ(j′ −j),x〉)Ω(∣∣pγx−N∣∣p)dx

= p−γn
∫
|pγx−N|p≤1

χp
(〈
apγ(j′ −j),x〉)dx

= χp
(〈
a(j′ −j),N〉)∫

|x̃|p≤1
χp
(〈
a(j′ −j),x̃〉)dx̃

=
0, j ≠ j′,

1, j = j′,

(2.44)

using (2.18) of Lemma 2.2. From above it follows the formula

(
ψ(n)γ,j,N ,ψ

(n)
γ′,j′,N′

)
= 1
c
(|a|p,n)δγγ′δNN′δjj′ . (2.45)

This completes the proof.

Theorem 2.6. Let the inner product (·,·), and so forth, be as in Theorem 2.5.

Then

(
Ω
(|x|p),ψ(n)γ,j,N)= p−γn/2√

c
(|a|p,n)θ(γ,a)δN0, (2.46)

where θ(γ,a)= 0 if |a|p ≥ pγ+1 and θ(γ,a)= 1 if |a|p ≤ pγ .

Proof. First, let |pγx|p ≠ |N|p . Then |pγx −N|p = max(|pγx|p,|N|p).
Since N ∈G(n), |N|p ≥ p. Hence we see that

Ω
(∣∣pγx−N∣∣p)= 0 if

∣∣pγx∣∣p ≠ |N|p. (2.47)
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Next, let |pγx|p = |N|p , that is, ordp(pγx) = ordp(N). Set pγx = (pγx1, . . . ,
pγxn) and N = (N1, . . . ,Nn). Then

min
1≤i≤n

{
ordp

(
pγxi

)}= min
1≤i≤n

{
ordp

(
Ni
)}
. (2.48)

If |x|p > 1, Ω(|x|p) = 0, and we assume that |x|p ≤ 1, then it follows the

canonical form

xi = xi0+xi1p+···+xi(|γ|−1)p|γ|−1+xi|γ|p|γ| +··· ,

Ni = pγNi|γ| +···+p−1Ni1, i= 1, . . . ,n,
(2.49)

where x = (x1, . . . ,xn)∈ Znp and 0≤ xij ≤ p−1, j = 0,1, . . . . Then we get

pγx−N = (pγx1, . . . ,pγxn
)−(N1, . . . ,Nn

)
= (pγ(x10+···+x1|γ|p|γ| +···

)
, . . . ,pγ

(
xn0+···+xn|γ|p|γ| +···

))
−((pγN1|γ| +···+p−1N11

)
, . . . ,

(
pγNn|γ| +···+p−1Nn1

))
= ((x̃10pγ+···+ x̃1(|γ|−1)p−1+x1|γ| +x1(|γ|+1)p+···

)
, . . . ,

(
x̃n0pγ+···+ x̃n(|γ|−1)p−1+xn|γ| +xn(|γ|+1)p+···

))
.

(2.50)

If x̃i0 ≠ 0, . . . , or x̃i(|γ|−1) ≠ 0 for i= 1, . . . ,n, then

Ω
(∣∣pγx−N∣∣p)= 0 since

∣∣pγx−N∣∣p ≥ p. (2.51)

Let x̃i0 = ··· = x̃i(|γ|−1) = 0 for i= 1, . . . ,n; we have

Ω
(∣∣pγx−N∣∣p)≠ 0, (2.52)

that is, pγx−N = ((x1|γ|+x1(|γ|+1)p+···), . . . ,(xn|γ|+xn(|γ|+1)p+···))∈ Bn0 .

Hence

(
Ω
(|x|p),ψ(n)γ,j,N)= p−γn/2√

c
(|a|p,n)

∫
Qnp
Ω
(|x|p)χp(〈aj,pγx〉)Ω(∣∣pγx−N∣∣p)dx

= p−γn/2√
c
(|a|p,n)

∫
Bn0
χp
(〈ajpγ,x〉)dx = 0

(2.53)
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by (2.18) of Lemma 2.2 with γ < 0. Under the assumption thatN ≠ 0, we always

obtain (
Ω
(|x|p),ψ(n)γ,j,N)≡ 0. (2.54)

On the other hand, now set N = 0, we see that

(
Ω
(|x|p),ψ(n)γ,j,N)= p−γn/2√

c
(|a|p,n)

∫
x∈Bn0 , x∈Bnγ

χp
(〈
aj,pγx

〉)
dx

=


0, if Bnγ � B

n
0

p−γn/2√
c
(|a|p,n)

∫
x∈Bn0

χp
(〈
aj,pγx

〉)
dx, if Bn0 � Bnγ

=


p−γn/2√
c
(|a|p,n) , |a|p ≤ pγ,

0, |a|p ≥ pγ+1.

(2.55)

Therefore, we have

(
Ω
(|x|p),ψ(n)γ,j,N)= p−γn/2√

c
(|a|p,n)θ(γ,a)δN0 (2.56)

for θ(γ,a) = 0 if |a|p ≥ pγ+1 and θ(γ,a) = 1 if |a|p ≤ pγ . This completes the

proof.

Theorem 2.7. The system of Vladimirov function in Theorem 2.5 with |a|p >
1 is a complete orthonormal system of eigenfunctions of Vladimirov operator

Dα in L2(Qnp).

Proof. To prove that {ψ(n)γ,j,N} is a complete system, it is enough to check

that the Parseval identity for the function Ω(|x|p) forms an orthonormal basis

in L2(Qnp) (see [3, 4]). Set |a|p = pk for k= 1,2, . . . . By Theorem 2.6, it is obvious

that

∑
γ,j,N

(〈
Ω
(|x|p),ψ(n)γ,j,N〉)2

=
∞∑
γ=k

p−1∑
j=1

p−γn

c
(|a|p,n)

= p−1
c
(|a|p,n) p−kn

1−p−n = 1,

(2.57)

where
√
c(|a|p,n)= pn(p−1)/|a|np(pn−1). On the other hand, by (2.39),

(
Ω
(|x|p),Ω(|x|p))= 1, (2.58)

which implies our result.
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Corollary 2.8 (see [6]). The system of Vladimirov function in Theorem 2.7

with a= p−1 and n= 1 is a complete orthonormal system of eigenfunctions of

Vladimirov operator Dα in L2(Qp).

3. Interpretation of multiwavelets. Multiwavelets have been used in the

data compression, noise reduction, and solution of integral equations. Be-

cause multiwavelets are able to offer a combination of orthogonality, sym-

metry, higher order of approximation, and short support, methods using mul-

tiwavelets frequently outperform those using the comparable scale wavelets.

Multiresolution produces an orthonormal basis of wavelets at all scales γ ∈ Z
(cf. [1]).

The wavelet basis in L2(Rn+) is a basis given by shifts and dilations of the so-

called mother wavelet function. For x ∈Rn+, we define the Haar wavelet Ψ (n)(x)
by

Ψ (n)(x)≡


1, x ∈

[
0,

1
2

]n
,

−1, x ∈
[

1
2
,1
]n
,

0, otherwise,

(3.1)

where

[a,b]n = [a,b]×···×[a,b]︸ ︷︷ ︸
n times

for a,b ∈R. (3.2)

A wavelet basis is a function Ψ (n) ∈ L2(Rn+) such that

{
Ψ (n)γ,N(x)≡ 2−γn/2Ψ (n)

(
2−γx−N) : γ ∈ Z, N ∈ Zn

}
(3.3)

is a basis for L2(Rn+) (see [7]).

Remark 3.1. Spline bases have a maximal approximation order with re-

spect to their length; however, spline uniwavelets are only semiorthogonal. A

family of spline multiwavelets that are symmetric and orthogonal is developed

(cf. [1]).

We may define a mapping ρ :Qnp →Rn+ by

ρ

 ∞∑
i1=γ1

ai1p
i1 , . . . ,

∞∑
in=γn

ainp
in

= 1
p

 ∞∑
i1=γ1

ai1p
−i1 , . . . ,

∞∑
in=γn

ainp
−in

, (3.4)
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where γj ∈ Z and aij ∈ {0,1, . . . ,p−1} for j = 1, . . . ,n. This map ρ is clearly not

one to one. The following map is a one-to-one map:

ρ :G(n) �→ Zn+, (3.5)

where Zn+ =Nn∪{0}, N= {1,2, . . .}.
Lemma 3.2. (1) The map ρ satisfies the estimate

∣∣ρ(x)−ρ(y)∣∣≤√n|x−y|p. (3.6)

(2) For N ∈G(n) and m,k∈ Z, the map ρ satisfies the conditions

ρ : pmN+pkZnp �→ p−mρ(N)+
[
0,p−k

]n,
ρ :Qnp\

{
pmN+pkZnp

}
�→Rn+\

{
p−mρ(N)+[0,p−k]n}, (3.7)

up to a finite number of points.

(3) The map ρ maps the Haar measure µ on Qnp onto the Lebesgue measure

ν on Rn+ : for measurable subspace X ⊂Qnp ,

µ(X)= ν(ρ(X)). (3.8)

(4) Suppose that

ρ∗ : L2(Rn+) �→ L2(Qnp); f(x) � �→ f (ρ(x)) (3.9)

is a unitary operator. Then the map ρ maps the Haar wavelet (3.1) onto the

Vladimirov function ψ(x) in Lemma 2.4 with p = 2 and (2−1, . . . ,2−1) ∈ Qn2 ,

that is,

ρ∗ : Ψ (n)(x) � �→ψ(x). (3.10)

Proof. The proof is essentially due to [6, Lemma 3-6].

Corollary 3.3. Let Sγ = {x ∈Qnp | |x|p = pγ}. Then

ρ
(
pkZnp

)= ⋃
γ≤0

ρ
(
pkSγ

)
,

ρ
(
pkSγ

)∩ρ(pkSγ′)=


1
pγ+k

, γ′ = γ+1,

∅, otherwise.

(3.11)

Theorem 3.4. For p = 2, the map ρ maps the orthonormal basis of wavelets

in L2(Rn+) (see (3.3)) onto the basisψ(n)γ,1,N of the eigenfunctions for the Vladimirov
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operator in Theorem 2.5 with a= (2−1, . . . ,2−1)∈Qn2 and |a|2 > 1:

ρ∗ : Ψ (n)γ,ρ(N)(x) � �→ (−1)|N|
(
2n−1

)
ψ(n)γ,1,N(x), (3.12)

where |N| =N1+···+Nn.

Proof. From (3.3) and Part (4) of Lemma 3.2, we obtain

Ψ (n)γ,ρ(N)
(
ρ(x)

)= 2−γn/2Ψ (n)
(
2−γρ(x)−ρ(N))

= 2−γn/2Ψ (n)
(
ρ
(
2γx−N))

= 2−γn/2ρ∗
(
Ψ (n)

(
2γx−N))

= 2−γn/2ψ
(
2γx−N).

(3.13)

Next, by the definition
√
c(|a|2,n) with a= (2−1, . . . ,2−1)∈Qn2 , we have

√
c
(|a|2,n)= 1(

2n−1
) . (3.14)

Hence

ψ(n)γ,1,N(x)=
2−γn/2√
c
(|a|2,n)χ2

(〈
a,2γx

〉)
Ω
(∣∣2γx−N∣∣2

)
= (−1)|N|2−γn/2

(
2n−1)ψ(2γx−N)

(3.15)

sinceψ(2γx−N)= χ2(−〈a,N〉)χ2(〈a,2γx〉)Ω(|2γx−N|2). The proof now fol-

lows directly.
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