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1. Introduction. The concept of a D-metric space is introduced by the first

author in [2]. A nonempty set X, together with a function ρ : X ×X ×X →
[0,∞), is called a D-metric space with D-metric ρ if ρ satisfies the following

properties:

(i) ρ(x,y,z)= 0� x =y = z (coincidence),

(ii) ρ(x,y,z) = ρ(p{x,z,y}) (symmetry), where p is a permutation func-

tion,

(iii) ρ(x,y,z)≤ ρ(x,y,a)+ρ(x,a,z)+ρ(a,y,z) for allx,y,z,a∈X (tetra-

hedral inequality).

A few details along with some specific examples of a D-metric space appear

in [3].

A sequence {xn} ⊂X is said to be convergent to a point x ∈X if

lim
m,n→∞ρ

(
xm,xn,x

)= 0. (1.1)

Similarly, a sequence {xn} ⊂X is called D-Cauchy if

lim
m,n,p→∞ρ

(
xm,xn,xp

)= 0. (1.2)

A completeD-metric space is one in which everyD-Cauchy sequence converges

to a point. Further, a subset S of a D-metric space X is called bounded if there

exists a constant k > 0 such that ρ(x,y,z) ≤ k for all x,y,z ∈ S, and the

constant k is called a D-bound of S. The infinimum of all such D-bounds k is

called the diameter of S, and it is denoted by δ(S). Finally, it is known that a
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mapping f : X → X is continuous if and only if, for any sequence {xn} ⊂ X,

xn→ x∗ implies fxn→ fx∗.

It has been shown in [5] that the D-metric ρ is continuous on X3 in the

topology ofD-metric convergence which is Hausdorff. For details of aD-metric

space, the reader is referred to Dhage [5].

The general existence principles for the fixed-point theorems for a single and

a pair of maps in D-metric space have been established in Dhage and Rhoades

[6] and Dhage [1], respectively. However, the extension of these existence prin-

ciples to three or four maps is not possible.

In this paper, we just formulate the general procedure for common fixed-

point theorems for more than two selfmaps of a D-metric space and discuss

some of its applications.

We need the following auxiliary results in the sequence.

Proposition 1.1. Let {xn} be a sequence in a D-metric space X satisfying

ρ
(
xn,xn+1,z

)≤ λρ(xn−1,xn,z
)

(1.3)

for all n∈N and z ∈ {xn}, where 0≤ λ < 1. Then,

ρ
(
xn,xn+1,xm

)≤ λnk (1.4)

for all m>n, where k= (2/(1−λ))max{ρ(x0,x0,x1),ρ(x0,x1,x1)}.
Proof. From (1.3),

ρ
(
xn,xn+1,xm

)≤ λρ(xn−1,xn,xm
)

(1.5)

for each m>n∈N. By induction,

ρ
(
xn,xn+1,xm

)≤ λnρ(x0,x1,xm
)
. (1.6)

Let q =max{ρ(x0,x0,x1),ρ(x0,x1,x1)}. Using the tetrahedral inequality,

ρ
(
x0,x1,xm

)≤ ρ(x0,x1,xm−1
)+ρ(xm−1,x0,xm

)+ρ(xm−1,xm,x1
)

= ρ(x0,x1,xm−1
)+ρ(xm−1,xm,x0

)+ρ(xm−1,xm,x1
)

≤ ρ(x0,x1,xm−1
)+λm−1ρ

(
x0,x1,x0

)+λm−1ρ
(
x0,x1,x1

)
≤ ρ(x0,x1,xm−1

)+2λm−1q

≤ ρ(x0,x1,xm−2
)+2λm−1q+2λm−2q

...

≤ ρ(x0,x1,x1
)+2

(
λ+λ2+···+λm−1)q

≤ 2
(
1+λ+λ2+···+λm−1)q < 2

1−λq = k.

(1.7)

Substituting (1.7) into (1.6) yields the desired inequality (1.4).



A GENERAL LEMMA FOR FIXED-POINT THEOREMS 663

Proposition 1.2. Every sequence {xn} ⊂X satisfying (1.3) is bounded with

a D-bound k= (2/(1−λ))max{ρ(x0,x0,x1),ρ(x0,x1,x1)}.
Proof. Let q =max{ρ(x0,x0,x1),ρ(x0,x1,x1)}. Then, for any integers r ≥

s ≥n, there exists positive integer p and t such that

ρ
(
xn,xr ,xs

)= ρ(xn,xn+p,xn+t)
≤ ρ(xn,xn+1,xn+t

)+ρ(xn,xn+1,xn+p
)+ρ(xn+1,xn+p,xn+t

)
≤ 2λnq+ρ(xn+1,xn+p,xn+q

)
≤ 2λnq+2λn+1q+ρ(xn+2,xn+p,xn+t

)
...

≤ 2


n+p−2∑

j=1

λj

q+ρ(xn+p−1,xn+p,xn+r

)

≤ 2


n+p−1∑

j=1

λj

q < 2


 ∞∑
j=1

λj

q < 2

1−λq = k.

(1.8)

Then, {xn} is bounded and the proof is complete.

2. Main results. Before going to the main results of this paper, we state a

lemma proved in Dhage [4].

Lemma 2.1 (D-Cauchy principle). Let {yn} be a bounded sequence in D-

metric space with D-bound k satisfying

ρ
(
yn,yn+1,ym

)≤ λnk (2.1)

for all m>n∈N. Then, {yn} is D-Cauchy.

Let A,B,S,T :X →X be four maps such that

A(X)⊆ T(X), B(X)⊆ S(X). (2.2)

Condition (2.2) ensures that it is possible to define a sequence {yn} in X as

follows. Let x ∈ X be arbitrary. Then, in view of condition (2.2), there exists a

sequence {xn} such that

x0 = x, Ax2n = Tx2n+1, Bx2n+1 = Sx2n+2, n≥ 0. (2.3)

Now, define {yn} in X by

y0 = Sx0, y2n+1 = Tx2n+1, y2n+2 = Sx2n+2, n≥ 0. (2.4)

A point x ∈ X is called a coincidence point of two maps A,B : X → X if

Ax = Bx, and in this case, the mappings A and B are called coincident on X.
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Similarly, a coincidence point of three or four maps on a D-metric space is

defined.

Lemma 2.2. Let A,B,S,T : X → X satisfy (2.2), and let {yn} ⊂ X be defined

by (2.4). Further, assume that {yn} is complete. Suppose that there exists a

λ∈ [0,1) such that

ρ
(
yn,yn+1,z

)≤ λρ(yn−1,yn,z
)

(2.5)

for all n∈N and z ∈ {yn}. Then, either

(a) A and S have a coincidence point,

(b) B and T have a coincidence point,

(c) A, S, and T have a coincidence point,

(d) B, S, and T have a coincidence point, or

(e) {yn} converges to a point u∈X and, for all m>n∈N,

ρ
(
yn,ym,u

)≤ 2
m∑
j=n

λjk, ρ
(
yn,u,u

)≤ 2
λn

1−λk, (2.6)

where k= δ({yn}).
Proof. Suppose thaty2n =y2n+1 for somen. Then, Sx2n = Tx2n+1 =Ax2n

and (a) holds. Also, if x2n = x2n+1, then Tx2n = Tx2n+1 and so (c) holds. Sim-

ilarly, if y2n+1 = y2n+2 for some n, then it is shown analogously that (b) and

(d) hold.

Suppose now that yn ≠ yn+1 for each n. Then, from Proposition 1.1, it fol-

lows that

ρ
(
yn,yn+1,ym

)≤ λnρ(y0,y1,ym
)≤ λnk (2.7)

for all m > n ∈ N. Now, an application of Lemma 2.1 yields that {yn} is D-

Cauchy. Since {yn} is complete, there exists a pointu∈X such that limnyn=u.

Now, for any positive integers m and n, m>n, by repeated application of

the tetrahedral inequality,

ρ
(
yn,ym,u

)≤ ρ(yn,yn+1,ym
)+ρ(yn,yn+1,u

)+ρ(yn+1,ym,u
)

≤ λnρ(y0,y1,ym
)+λnρ(y0,y1,u

)+ρ(yn+1,ym,u
)

≤ 2λnk+ρ(yn+1,ym,u
)

≤ 2λnk+2λn+1k+ρ(yn+2,ym,u
)

...

≤ 2
(
λn+λn+1+···+λm)k

= 2
m∑
j=n

λjk.

(2.8)
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The above inequality further gives that

ρ
(
yn,ym,u

)≤ 2
m∑
j=n

λjk

= 2λn
(
1+λ+···+λm−n)k

= 2λn
(

1−λm−n
1−λ

)
k.

(2.9)

Taking the limit as m→∞ in the above inequality,

ρ
(
yn,u,u

)≤ 2
λn

1−λk. (2.10)

The proof of Lemma 2.2 is complete.

The three-maps version of Lemma 2.2 is obtained in two ways: one by setting

S = T and the other by setting A = B. In the situation when S = T , condition

(2.2) reduces to

A(X)⊆ S(X), B(X)⊆ S(X). (2.11)

Then, it is possible to choose a sequence {xn} ⊂X such that

x0 = x, Ax2n = Sx2n+1, Bx2n+1 = Sx2n+2, n≥ 0. (2.12)

Now, define a sequence {yn} in X as follows:

y0 = Sx0, y2n = Sx2n, y2n+1 = Sx2n+1, n∈N. (2.13)

Lemma 2.3. Let A,B,S : X → X satisfy (2.11). Suppose that there exists an

x ∈ X such that the sequence {yn} ⊂ X defined by (2.13) is complete. Further,

suppose that

ρ
(
yn,yn+1,z

)≤ λρ(yn−1,yn,z
)

(2.14)

for all n∈N and z ∈ {yn}, where 0≤ λ < 1. Then, either

(a) A and S have a coincidence point,

(b) B and S have a coincidence point, or

(c) {yn} converges to a point u ∈ X and, for all positive integers m and n,

m>n,

ρ
(
yn,ym,u

)≤ 2
m∑
j=n

λjk, ρ
(
yn,u,u

)≤ 2
λn

1−λk, (2.15)

where k= δ({yn}).
It is known that the fixed-point theorems for more than two maps require

some sort of commutativity condition on the mappings under consideration.
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Below, we will apply Lemma 2.2 for proving the common fixed-point theorem

for four maps on a D-metric space under a suitable commutativity condition.

A sequence {xn} ⊂X is called a sequence of coincidence for the maps A,B :

X → X if limnAxn = limnBxn. In this case, the mappings A and B are called

limit coincident on X. Similarly, two maps A,B : X → X are called commuting

or commutative if (AB)(x) = (BA)(x) for all x ∈ X and limit commuting if

there exists a sequence {xn} ⊂X such that

lim
n
(AB)

(
xn
)= lim

n
(BA)

(
xn
)
. (2.16)

Finally, two mapsA,B :X →X are called limit coincidentally commuting if their

limit coincidence implies the limit commuting on X, that is, for any sequence

{xn} ⊂X if

lim
n
Axn = lim

n
Bxn �⇒ lim

n
(AB)

(
xn
)= lim

n
(BA)(xn

)
. (2.17)

It is known that the limit coincidentally commuting mappings commute at

their coincidence points. See, for details, Dhage [4].

Now, we are ready to give some applications of Lemma 2.2 for proving the

existence of a common fixed point of four maps on a D-metric space X.

An orbit of four selfmaps A, B, S, and T of a D-metric space X at a point

x ∈X is a set OA,B(S,T : x) in X defined by

OA,B(S,T : x)={
y0 = Sx0, y2n+1 =Ax2n = Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+1 :n≥ 0

}
.

(2.18)

Clearly, the orbit OA,B(S,T : x) is well defined if A, B, S, and T satisfy con-

dition (2.2). By OA,B(S,T : x), we denote the closure of the orbit OA,B(S,T : x)
in X.

Theorem 2.4. Let A,B,S,T : X → X be four selfmaps of a D-metric space X
satisfying (2.2) and

ρ(Ax,By,z)≤ λmax
{
ρ(Sx,Ty,z),ρ(Sx,Ax,z),ρ(Ty,By,z)

}
(2.19)

for all x,y,z ∈X, where 0≤ λ < 1. Assume further that

(a) OA,B(S,T : x) is complete for each x ∈X,

(b) {A,S} and {B,T} are limit coincidentally commuting,

(c) any one A, B, S, or T continuous.

Then, A, B, S, and T have a unique common fixed point.

Proof. Let x ∈ X be arbitrary, and define a sequence {yn} ⊂ X by (2.4),

which is possible in view of condition (2.4). Now, taking x = x2n and y = x2n+1
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in (2.19),

ρ
(
y2n+1,y2n+2,z

)
≤ λmax

{
ρ
(
y2n,y2n+1,z

)
,ρ
(
y2n,y2n+1,z

)
,ρ
(
y2n+1,y2n+2,z

)}
= λρ(y2n,y2n+1,z

)
(2.20)

for all n≥ 0 and z ∈ {yn}. Similarly, taking x = x2n and y = x2n−1 in (2.19),

ρ
(
y2n,y2n+1,z

)≤ λmax
{
ρ
(
y2n−1,y2n,z

)
,ρ
(
y2n,y2n+1,z

)
,ρ
(
y2n−1,y2n,z

)}
= λρ(y2n−1,y2n,z

)
(2.21)

for all n∈N and z ∈ {yn}. Hence, in general,

ρ
(
yn,yn+1,ym

)≤ λρ(yn−1,yn,ym
)

(2.22)

for all m>n∈N and 0≤ λ < 1.

We prove the conclusion of our theorem in two cases.

Case 1. If yn = yn+1, then yn = yn+k for all k ≥ 0. If yn+1 ≠ yn+2, then,

replacing n in (2.22) by n+1,

0< ρ
(
yn+1,yn+2,yn+1

)≤ λρ(yn,yn+1,yn+1
)= 0, (2.23)

which is a contradiction and yn+1 = yn+2, and, by induction, yn = yn+k for

all k ≥ 0. Therefore, by Lemma 2.2, there are points u and v in X such that

w1 =Au= Su and w2 = Bv = Tv .

We will show that w1 =w2. By (2.19),

ρ
(
w1,w2,w1

)= ρ(Au,Bv,w1
)

≤ λmax
{
ρ
(
Su,Tv,w1

)
,ρ
(
Su,Au,w1

)
,ρ
(
Tv,Bv,w1

)}
= λmax

{
ρ
(
w1,w2,w1

)
,ρ
(
w1,w1,w1

)
,ρ
(
w2,w2,w1

)}
= λρ(w1,w2,w2

)
.

(2.24)

Again,

ρ
(
w1,w2,w2

)= ρ(Au,Bv,w2
)

≤ λmax
{
ρ
(
Su,Tv,w2

)
,ρ
(
Su,Au,w2

)
,ρ
(
Tv,Bv,w2

)}
= λmax

{
ρ(w1,w2,w2),ρ

(
w1,w1,w2

)
,ρ
(
w2,w2,w2

)}
= λρ(w1,w2,w1

)
.

(2.25)

Substituting (2.25) into (2.24),

ρ
(
w1,w2,w1

)≤ λ2ρ
(
w1,w2,w1

)
, (2.26)
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which is possible only when w1 = w2 since λ < 1. Hence, Au = Bv = Su =
Tv =w. Next, we show that w is a coincidence of A, B, S, and T . Since {A,S}
and {B,T} are limit coincidentally commuting, they commute at coincidence

point. Therefore, Sw = SAu=ASu=Aw and Tw = TBv = BTv = Bw. Now,

ρ(Aw,Bw,Aw)≤ λmax
{
ρ(Sw,Tw,Aw),ρ(Sw,Aw,Aw),ρ(Tw,Bw,Aw)

}
= λmax

{
ρ(Aw,Bw,Aw),ρ(Bw,Bw,Aw)

}
= λρ(Aw,Bw,Bw).

(2.27)

Similarly,

ρ(Aw,Bw,Bw)≤ λρ(Aw,Bw,Aw). (2.28)

Substituting (2.28) into (2.27),

ρ(Aw,Bw,Aw)≤ λ2ρ(Aw,Bw,Aw), (2.29)

which is possible only when Aw = Bw. Hence, Aw = Sw = Tw = Bw is a

coincidence point of the four maps A, B, S, and T . Finally, we prove that w is

a common fixed point of A, B, S, and T . If w ≠Aw, then, by (2.19),

ρ(Aw,w,w)= ρ(Aw,Bv,w)
≤ λmax

{
ρ(Sw,Tv,w),ρ(Sw,Aw,w),ρ(Tv,Bv,w)

}
= λρ(Aw,w,Aw).

(2.30)

Similarly,

ρ(Aw,w,Aw)≤ λρ(Aw,w,w). (2.31)

From (2.30) and (2.31),

ρ(Aw,w,w)≤ λ2ρ(Aw,w,w), (2.32)

which is a contradiction to Aw =w and hence, w =Aw = Sw = Tw = Bw.

Case 2. Suppose that yn ≠ yn+1 for each n. Then, by Lemma 2.2, there

exists a point w ∈X such that limnyn =w. By definition of {yn},

lim
n
y2n = lim

n
Sx2n = lim

n
Ax2n = lim

n
Tx2n+1 =w,

lim
n
y2n+1 = lim

n
Tx2n+1 = lim

n
Bx2n+1 = lim

n
y2n+2 =w. (2.33)

Since {A,S} and {B,T} are limit coincidentally commuting, then

lim
n
ASx2n = lim

n
SAx2n,

lim
n
BTx2n+1 = lim

n
TBx2n+1.

(2.34)
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Suppose first that S is continuous on X. Then,

lim
n
SSx2n = lim

n
SAx2n = lim

n
ASx2n = Sw. (2.35)

First, we show that w is a fixed point of S. If w ≠ Sw, then, by (2.19),

ρ(Sw,w,w)

= lim
n
ρ
(
ASx2n,Bx2n+1,w

)

≤λ lim
n

max
{
ρ
(
SSx2n,Tx2n+1,w

)
,ρ
(
SBx2n,ASx2n,w

)
,ρ
(
Tx2n+1,Bx2n+1,w

)}

= λmax
{
ρ(Sw,w,w),ρ(Sw,Sw,w)

}
= λρ(Sw,Sw,w).

(2.36)

Similarly,

ρ(Sw,w,Sw)≤ λρ(Sw,w,w). (2.37)

Substituting (2.37) into (2.36),

ρ(Sw,w,w)≤ λ2ρ(Sw,w,w), (2.38)

which is a contradiction and hence, Sw =w. Similarly,

ρ(Aw,w,w)

≤ lim
n
ρ
(
Aw,Bx2n+1,w

)

≤ λ lim
n

max
{
ρ
(
Sw,Tx2n+1,w

)
,ρ
(
Tx2n+1,Bx2n+1,w

)
,ρ(Sw,Aw,w)

}

= λmax
{
0,0,ρ(Aw,w,w)

}
= λρ(Aw,w,w),

(2.39)

which implies that Aw =w, since λ < 1. From the condition A(X) ⊆ T(X), it

follows that there is a point p ∈ X such that w = Aw = Tp. We show that

Bp = Tp. If not, then

ρ(Tp,Bp,w)= ρ(Aw,Bp,w)
≤ λmax

{
ρ(Sw,Tp,w),ρ(Sw,Aw,w),ρ(Tp,Bp,w)

}
= λρ(Tp,Bp,w),

(2.40)

which is a contradiction. Hence, Bp = Tp. Since {B,T} are limit coincidentally

commuting, we obtain Bw = BTp = TBp = Bw. Now,

ρ(Aw,Bw,w)≤ λmax
{
ρ(Sw,Tw,w),ρ(Sw,Aw,w),ρ(Tw,Bw,w)

}
= λρ(Aw,Bw,Bw). (2.41)
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Similarly,

ρ(Aw,Bw,Bw)≤ λρ(Aw,Bw,w). (2.42)

Substituting (2.42) into (2.41),

ρ(Aw,Bw,w)≤ λ2ρ(Aw,Bw,w), (2.43)

which is possible only when Aw = Bw. Thus, w is a common fixed point of A,

B, S, and T .

Similarly, if T is continuous, then it is proved in an analogous way that A,

B, S, and T have a common fixed point.

Next, suppose that A is continuous. Then, we have

lim
n
AAx2n = lim

n
ASx2n = lim

n
SAx2n =Aw. (2.44)

First, we show that Aw =w. If Aw ≠w, then

ρ(Aw,w,w)

= lim
n
ρ
(
AAx2n,Bx2n+1,w

)

≤λ lim
n

max
{
ρ
(
SAx2n,Tx2n+1,w

)
,ρ
(
SAx2n,AAx2n,w

)
,ρ
(
Tx2n+1,Bx2n+1,w

)}

= λmax
{
ρ(Aw,w,w),ρ(Aw,Aw,w)

}
= λρ(Aw,Aw,w).

(2.45)

Similarly,

ρ(Aw,w,Aw)≤ λρ(Aw,w,w). (2.46)

Substituting (2.46) into (2.45),

ρ(Aw,w,w)≤ λ2ρ(Aw,w,w), (2.47)

which is a contradiction. Hence, Aw =w. Using condition (2.2), there exists a

point p ∈X such that Tp =Aw =w. We show that Bp = Tp. Now,

ρ(Aw,Bp,w)

= lim
n
ρ
(
AAx2n,Bp,w

)

≤ λ lim
n

max
{
ρ
(
SAx2n,Tp,w

)
,ρ
(
SAx2n,AAx2n,w

)
,ρ(Tp,Bp,w)

}

= λρ(w,Bp,w),
(2.48)
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which gives that Bp = Tp. Since {B,T} are limit coincidentally commuting,

they commute at coincidence point. Hence, Tw = TBp = BTp = Bw. Now,

ρ
(
Ax2n,Bw,w

)≤ λmax
{
ρ
(
Sx2n,Tw,w

)
,ρ
(
Sx2n,Ax2n,w

)
,ρ(Tw,Bw,w)

}
.

(2.49)

Taking the limit as n→∞,

ρ(w,Bw,w)≤ λρ(w,Bw,Bw). (2.50)

Similarly,

ρ(w,Bw,Bw)≤ λρ(w,Bw,w). (2.51)

Substituting (2.51) into (2.50),

ρ(w,Bw,w)≤ λ2ρ(w,Bw,w), (2.52)

which implies that w = Bw = Tw = Aw. Since B(X) ⊆ S(X), there is a point

q ∈X such that w = Bw = Sq. We show that Aq = Sq. Now,

ρ(Aq,Sq,w)= ρ(Aq,Bw,w)
≤ λmax

{
ρ(Sq,Tw,w),ρ(Sq,Aq,w),ρ(Tw,Bw,w)

}
= λρ(Sq,Aq,w),

(2.53)

which implies that Aq = Sq. Since {A,S} are limit coincidentally commuting

Sw = SAq = ASq = Aw = w. Thus, Aw = Sw = Tw = Bw, that is, w is a

common fixed point of A, B, S, and T . Similarly, if B is continuous, it is proved

that A, B, S, and T have a common fixed point.

To prove the uniqueness, let w∗(≠ w) be common fixed point of A, B, S,

and T . Then,

ρ
(
w,w∗,w∗)= ρ(Aw,Bw∗,w∗)

≤ λmax
{
ρ
(
Sw,Tw∗,w∗),ρ(Sw,Aw,w∗),ρ(Tw∗,Bw∗,w∗)}

= λρ(w,w,w∗).
(2.54)

Similarly,

ρ
(
w,w,w∗)≤ λρ(w,w∗,w∗). (2.55)

Substituting (2.54) into (2.55),

ρ
(
w,w,w∗)≤ λ2ρ

(
w,w,w∗), (2.56)

which is a contradiction. Hence, w =w∗. This completes the proof.
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Letting S = T in Theorem 2.4, we obtain the following corollary.

Corollary 2.5. Let A, B, and S be three selfmappings of a D-metric space

satisfying (2.11) and

ρ(Ax,By,z)≤ λmax
{
ρ(Sx,Sy,z),ρ(Sx,Ax,z),ρ(Sy,By,z)

}
(2.57)

for all x,y,z ∈X, where 0≤ λ < 1.

Further assume that

(a) OA,B(Sx) is complete for each x ∈X,

(b) {A,S} and {B,S} are limit coincidentally commuting,

(c) any one of A, B, and S is continuous.

Then A, B, and S have a unique common fixed point.
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