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ABSTRACT. The purposes of the present paper are (1) to give a necessary and
sufficient condition for the uniqueness of the separable idempotent for a
separable group ring extansion RG (R may be a non-commutative ring), and

(2) to give a full description of the set of separable idempotents for a qua-
ternion ring extension RQ over a ring R, where Q are the usual quaternions 1i,j,k
and multiplication and addition are defined as quaternion algebras over a field.
We shall show that RG has a unique separable idempotent if and only if G is
abelian, that there are more than one separable idempotents for a separable
quaternion ring RQ, and that RQ is separable if and only if 2 is invertible in

R.
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1. INTRODUCTION,

M. Auslander and O, Goldman ([1] and [2]) studied separable alge-
bras over a commutative ring. Subsequently, the investigation of se-
parable algebras (in particular, Brauer groups and Azumaya algebras)
has attracted a lot of researchers, and rich results have been obtained
(see References). K. Hirata and K. Sugano ([5]) generalized the con-
cept of separable algebras to separable ring extensions; that is, let
S be a subring of a ring T with the same identity. Then T is called a
separable ring extension of S if there exists an element Zaiﬁbi in
TQST such that x( Zaiﬁbi) = (Zai@bi)x for each x in T and Zaibi = 1.
Such an element Zaiﬁbi is called a separable idempotent for T. We
note that a separable idempotent takes an important role in many theo-
rems (for example, see [6], Section 5,6, and 7). It is easy to verify
that (1/n)(2gi®g;1) and Zei1®e]i (I41, Bxamples II and III, P. 41)
are separable idempotents for a group algebra RG and a matrix ring Mm(R)
respectively, where G = {g1,...,gn} with n invertible in R and eij are

matrix units. We also note that the separable idempotent for a commu-

tative separable algebra is unique ([6], Section 1, P. 722).

2. PRELIMINARIES.

Throughout, G is a group of order n, R is a ring with an identity
1. The group ring RG = {Zrigi / r, in R and g; in G}, which is a free
R-module with a basis {gi} and (Zrigi)(isigi) = Ztkgk where tk =

Zrisj for all possible i,j such that g.g. = g The ring R is imbed-

i®j k*
ded in RG by r—Trg,, where g4 is the identity of G (g1 = 1). The mul-

tiplication map RGE.RG —>RG is denoted by ®m. Clearly, {giﬁgj / i,j =

R
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1,...,n} form a basis for RG@RRG. An element Zrij(giﬁgj) in RGQRRG

is called a commutant element in RG@RRG if x(g rij(giﬁgj)) =

(Zrij(gi@gj))x for all x in RG.

3. MAIN THEOREMS.

We begin with a representation for M(x) for a commutant element X
in RG@RRG, and then we show that RG has a unique separable idempotent
if and only if G is abelian.

LEMMA 1. Let x = zrij(gi@gj), i, = 1,eea,0, be a commutant ele-
ment in RG@RRG. Then M%) = Zif1(zr1ki)nkicki’ where m is the number

of conjugate classes of G, n is the order of the normalizer of &

i i

and Ck is the sum of different conjugate elements of By for sone ki
i i

and k! in {1,...,n}.

PROOF., Since x is a commutant element, gpx = xgp for each gp in G.

The coefficient of the term gp@gk in gpx is rm, and the coefficient of

the same term in xgp is r where gqu = B Hence Tk = rpq whenever

pq’
gqu = B Thus x = Zkr1k(2gp®gq), where p,q run over 1,...,n, such

that gog = g,; that is, x = Zkrm(ngp@gkg;)_ Taking J§(x) =
-1 . - .
Zkrm(ngpgkgp )e For a fixed k, Zpgpgkgp = nkck where n, is the

order of the normalizer of 8 and C, is the sum of all different conju-

k
n . .
gate elements of By e Hence J(x) = zk=1r1knkck' Since conjugate class-
es form a partition of G, Ci = Cj if and only if 85 is conjugate to gj.
Renumerating elements, we let {gk yeees 8y } be all non-conjugate ele-
1 il
ments of each other; then {Ck ""’Ck} are all different elements in
1
m N
the set, {01,...,Cn}. Thus 7B(x) = Zi=1(2r1ki)nkibki, where r,, , are

coefficients of the same Ck , and m is the number of conjugate classes

i
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of G.

THEOREM 2, Let RG be a separable extension of R. Then, RG has a
unique separable idempotent if and only if G is akelian.

PROOF. Let x = Zrij(giﬁgj) be a separable idempotent for RG.

Then by the lemma, JL(X) = Zi‘r_”1(2r1k,)nk Ck , Where C is the sum of
- i i i

k.
i
all conjugate elements of g . Let g, = 1, the identity of G. Then
i 1
Ckl = 1 and nk1 = n, the order of G. Since I(x) =1, (Zrﬂq)nk#}k1 =1
A ~ - lal - s ' s o
and (Zr”{',nk S = 1 and (3 r”{!)nk.\,k. = O for each i # 1. Noting
1 1 i i i
that C]&1 = 1, we have irlk% =Ty and so the first equation becomes
Tt o= 1. Hence the order of G, n, is invertible in R. Thus o being

i
a factor of n, is also invertible in R. But conjugate classes form a

partition of G, so (g r‘”{]!-)nkicKi = O implies that 21*“{i = 0 for each

i £ 1. This system of homogeneous equations E;r1k! = 0 in the unknowns
rlk! with 1 £ 1 has trivial solutions if and only if n = m, and this
holés if and only if G is abelian. Since the uniqueness of the separ-
able idempotent (= (1/n)(§§gi®g;1)) is equivalent to the existence of
trivial solutions of the above system of equations, the same fact is equi-
valent to G being abelian,

The theorem tells us that there are many separable idempotents for
a separable group ring RG when G is non-abelian, Also, we remark that
if RG is a separable extension of R, the order of G is invertible in R
from the proof of the theorem. Next, we discuss another popular separ-
able ring extension, a quaternion ring extension RQ, where RQ =
{r1+rii+rjj+rkk / 1,3, and k are usual quaternions}. (RQ,+.) is a ring
extension of R under the usual addition and multiplication similar to

quaternion algebras over a field. Now we characterize a separable idem-
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potent for a separable quaternion ring extension RQ.
THEOREM 3., Let RQ be a separable quaternion ring extension. Then
a commutant element x = ngt(Sﬁt)’ s,t = 1,i,3,k, in RQQRRQ is a separ-
able idempotent for RQ if and only if Ty = 1/l
PROOF. Since x is a commutant element in RQQRRQ, ix = xi. The co-
efficients of the term 181 on both sides are -r., and -r

i1

Since jx = xJj, the coefficients of the term k81 on both sides are -ry

SO r., = r,.
’ i1 ¢

1i 11

1 =

so r, Also, kx = xk, so the coefficients of the term jf1

i1 T Tkj*

on both sides are -r

_rkj .

r Hence r = -r

i1 7 Tik* 11 = Ti1 = Tkj & "Tik*

by comparing coefficients of other terms, we have r

Similarly,

11 = -rii = -rjj =
-r rj1 = =Tyy = Ty and r =T

ki 1% = In other words,

k1 = -rij = rji.

= =T if ts
st ra

kk? T13 =

Top = rpq if ts = qp, and r

X = r11(1@1-i®i-jﬁj-k®k)+r1i(1Qi+iﬁ1-jﬁk+k9j)+r1j(1ﬁj+jﬁl-kﬁi+iﬂk)+

-gpe. Thus

Ty (18k+KBT =183+ JRI) e evnenenensecececreccecececccsoscnanannaa(¥)
But then T(x) = r114+r1io+r1j0+r1k0 = 4r11. Consequently, x is a se-
parable idempotent if and only if ry o= 1/4 (for mp(x) = 1).
COROLLARY 4. Let RQ be a quaternion ring extension of R. Then RQ
is separable if and only if 2 is invertible in R.
PROOF. The necessity is immediate from the theorem. The sufficien-

cy is clear since the element x with r11 =1/4, r = rlk = 0 as

117 013 7

given in (*) in Theorem 3 is a separable idempotent for RQ.
REMARK. It is easy to see that every x of the form (*) in Theorem

3 with r and r in the center of R is a commutant element

110 110 Ty 1k
in RQQRRQ. Hence, from the proof of Theorem 3, the complete set of com-

mutant elements is: C = {Eggt(sﬁt) / ry =T if qp = ts, and r_, =

Pq st

-rpq if qp = —ts}. Also, the complete set of separable idempotents for
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RQ is a subset of C such that r ., T are in the

1 117 T132 Tk

center of Re Thus there are many separable idempotents.

7 = 1/4 and r

REFERENCES

1 Auslander, M., and O, Goldman, The Brauer Group of a Commutative
Ring, Trans. Amer, Math. Soc. 97 (1960) 3%67-409.

2. Auslander, M. and O, Goldman. Maximal Orders, Trans. Amer, Math.
Soc. 97 (1960) 1-24.

3. Bass, H.e Lectures on Topics in Algebraic K-Theory, Tata Institute
of.Fundamental Research, Bombay, 1967.

L. DeMeyer, F. and E. Ingraham. Separable Algebras Over Commutative
Rings, Springer-Verlag, Berlin-Heidelberg-New York, 181, 1971.

5. Hirata, K. and K. Sugano. On Semisimple Extensions and Separable
Extensions over Non-Commutative Rings, J. Math. Soc. Japan 18
(1966) 360-373.

6. Villamayor, O. and D. Zelinsky. Galois Theory for Rings with Finite-
ly Many Idempotents, Nagoya Math, J. 27 (1966) 721-731.

7. Zelinsky, D. Brauer Groups, Springer-Verlag, Berlin-Heidelberg-
New York, 549, 1976.



