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ABSTRACT. In this paper we give a further result which states sufficient con-

ditions for the theory of convergence of minimizing sequences to be applicable,

develop the theory further, and give an application.
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1. INTRODUCTION.

Let X be a normed space, C a closed bounded convex set in X, and f: C+R

a (nonlinear) functional to be minimized on C. A minimizing sequence for f

on C is a sequence (Xn) in C such that f(xn) / 8 inf f(C).

In [4] and [6], certain conditions were given which guarantee that any
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minimizing sequence of f on C will converge in norm to a minimum (when it exists).

In this paper we give a further result which states sufficient conditions for the

theory of [4] to be applicable, develop the theory further, and give an application.

2. SOME DEFINITIONS AND THEOREMS

The closed convex hull of a set S in X is denoted by cl-conv(S). We say S

is dentable at x e S whenever: given any e > 0, x cl-conv (SB (x)), where

B (x) is the open e-ball centered on x. In this case x is called a denting

point of S [5] (strongly extremal point of S, [2; p. 97]). See [9] for the

origin of the term "dentable".

A function f on a convex set C is said to be dentable [4] at x
0

e C iff

(x0, f(x0)) is a denting point of epi(f) {(x,) X R --> f(x)}. It

was shown in [4] that if f is a 1.s.c. (lower semi-continuous) quasi-convex

functional on a weakly compact convex set C and has a unique minimum x0 C,

then every minimizing sequence of f converges in norm to x0 iff f is dentable

at x0. We say that f is quasi-convex on C iff the level sets L {x e C:

f(x) =< are convex. This is equivalent to the following: for any x, y e C,

f(%x + (i -%)y) <= max {f(x), f(y)}, 0 =< % < i. Convex functionals are quasi-

convex, but not conversely.

A normed space X, its closed unit ball, and its norm are all said to be

uniformly convex iff given e > 0 and x, y with lxll =< i, lYll -< I and

II x Yll > e, there exists () > 0 such that l1/2x + Yll -< I (). Every such

space is strictly convex, i.e., l%x + (I %)Yll < %11xl + (I %)IIYlI,

0 < % < I. It is shown [3] that thep
and L spaces are uniformly convex

P

for < p < . When the modulus of convexity depends on the point x also,

i.e., (x,) > 0, then we say that II is locally uniformly convex [8]

Locally uniformly convex spaces are not generally uniformly convex, but the

converse is true. Also, locally uniformly convex spaces are strictly convex,
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but not conversely.

THEROEM i. If X is a locally uniformly convex space, then every boundary

point of BI(0) is a denting point of BI(0).
PROOF. Let x have norm i. Given e > 0, let Qe BI(0)B (x). For any

Y e Qg, flY xll > so that there is some (x,e) > 0 such that I11/2 x + 1/2 Yll
i 6. The set BI_(0) can be strictly separated from x by a closed hyper-

plane (see, e.g., [3; p.193]) H which partitions X into two halfspaces H I and H
2

with HI being closed and containing Qe. H
2

contains x as an interior point. Then

cl-conv (Q)HI closed convex set, so that x cl-conv (Qs).
LEMMA I. Let C be a compact convex subset and f: C R be l.s.c, and have

a unique minimum x0
e C. Then for any e > 0, f is bounded away from B f(x0) on

CB ).
g
(X
O

PROOF. The set Q CB (Xo) is compact and thus f attains its infSmum y

on Q. By hypothesis, y > B. Thus f(x) -> y > B on Q.

CONSTRUCTION. Let f assume its infimum at a unique point x
0

e C closed

bounded convex subset of a normed space X that is locally uniformly convex. The

set H {(x,B): x e X} meets epi(f) at the point (x0,B). Let L be the vertical

line {(x0,): e R} in X x R. Fix r and take the point Pr (x
0

+ r) e L at

a distance r above (x0 ). Let B (Pr) be the closed ball of radius r centered
r

on Pr" Then Br(Pr meets H at the unique point (x0,8).
Put E {(x,): 8+r}epi(f).

r

THEOREM 2. Let f be a l.s.c, functional on a convex bounded set C and let

f have a unique minimum x0
e C. If X is a locally uniformly convex normed space,

then a sufficient condition for f to be dentable at x
0

is that either,

i) there exist some r > 0 such that Er be contained in Br(Pr )’ or

ii) C be compact.

PROOF. i) Since (x
0 f(x0) is a denting point of B (Pr) in X R (by

r
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Theorem 1 and the fact that the product norm I(x e) II (I Ixl 12 + leI2) 1/2
x

remains locally uniformly convex) and ErB
r (pr) it is clear that (x0, f (x0)

cl-conv(E{--Be(x0, f(x0)))Ccl-conv(Br(Pr)Be(x0, f(x0))) for any e > 0.

ii) For any e > 0, f is bounded away from f(x0) on CBe(x0). Thus

f(x0) is seprated by a closed hyperplane from epi(f)(Be(x0, f(x0)
The conditions of Theorem 2 part i) are srong, and as the next example

shows, may not be satisfied even in a finite dimensional space.
2-I/xEXAMPLE i. Let f(x) e for x # 0 and f(0) 0. Then f is a con-

tinuous quasi-convex function R, but we take C to be the compact set [-I, I].

The point x 0 is the unique minimum. Let Br(Pr be centered on Pr (0,r)

R2. The bottom branch of the sphere of B (pr) is a convex function g(x)in
r

r x We show now that llm f(x)/g(x) 0, so that f(x) < g(x) on some

nbhd of 0. It can be shown that f’ (0) 0 f"(0), by putting t I/x and

using the limit definition for derivatives at x 0. Then lim f(x)/g(x) lim
-1/2f" (x) / g" (x) 0/(r2) (by use of L ’Hospital’s Rule twice). Thus for any given

r, there is some e > 0 such that epi(f) is not contained in B (pr) for - < x <
r

Although f does not satisfy the hypothesis of Theorem 2, it is dentable by part

ii of Theorem 2.

We note that Theorem 2i can be phrased in terms of the Gteaux derivatives

of f and g, where g(x) inf {e:(x,e) r(Pr)}, i.e., we need

]f’(x;y) => ]g’(x;y) at x for all y C.

3. NEW TYPE OF QUASI-CONVEXITY AN IMPORTANT APPLICATION.

We say that a subset S of a vector space is radially convex at sO S iff

any line L through so meets S in a convex set LS. Any convex set C is

radially convex at any point of C.

A functional f defined on S is said to be, respectively, radially convex,

radially, strictly co.n.vex, radially uniformly convex, or radially locally uni-
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forml convex at so S, whenever S is radially convex at sO and f is, reap.,

convex, strictly convex, uniformly convex, or locally uniformly convex on all

segments LS through s0. We replace "convex" by "quasi-convex" to get the

resulting four new definitions for f at so in the radially convex set S.

We now consider the space C[e,8] of all continuous functions on the inter-

val Is,8] and the subset of rational functions. It is known(see [I] or [7])

that the approximation functional T (a,b) II f(’) r (a b;-) II is quasi-
p mn p

convex when p where a e Rm+l Rn+l (a0b and r (a, b; x) + +

a xm)/(b
0
+ + b xn). The norm II’II is not strictly convex since its

m n

graph on the unit ball contains horizontal llne segments.

THEOREM 3. The functional g + lgll iS radially uniformly quasl-convex

at 0 on any convex nbhd U of 0 in any normed space.

PROOF Let L be any line through 0 and put L
0

LU. We know that

II’II is convex on L0. Now suppose that there are x # y in L
0

such that

I11/2 x + 1/2 Yll max {llxll, IIYlI}" Since x, y e0, eitherllxll < IlYl] (l]xll
> ]I Yll is the same case) or else llxll IIYlI- In this latter case 1/2 x

+ 1/2 y 0, which yields a contradiction. Otherwise Iixll < IlYll and IlYll
max {llxll, IIYlI} 1/211Yll + 1/211Yll > 1/2 llxll + 1/2 IlYll I11/2 x + 1/2 YlI, another

contradiction. This completes the proof, since L
0

is compact and strict quasi-

convexity on L
0

implies uniform quasi-convexity on L
0

(see [4; Lemma i]).

We note that a norm may not be radially strictly convex, e.g., II’II and

II-II 1
are linear on line segments from 0 to any x(x must be in the positive

is uniformly convex andorthant in the case of II IIi )- For 1 < p < l’llp
therefore is radially strictly convex on any radially convex set w.r.t, to a

point.

THEOREM 4. The function a + lf (a
0 + + a xm) ll is radially uni-

m p

formly quasi-convex at the minimum a (a 0,...,am) on any closed bounded

nbhd of a for f fixed in C [e,8], < p <
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PROOF. Without loss of generality, we assume that f 0. The linear

function a / (a
0
+...+ amxm) followed by the convex map If" II is trivially

Rm+lconvex with minimum on at 0. Since the space of polynomials P [e,8] of
m

degree m or less is linearly isomorphic to Rm+l a / lla0 +...+ a xmll is
m p

actually a norm on and thus Theorem 2 holds (it is known that a unique

minimum a does indeed exist for 1 < p).

We now borrow a proposition from [7]. See [I] also.

PROPOSITION. For f fixed in C [e,8], the functional T(a,b) lf- r

(a, b, ")II is quasl-convex on any convex nbhd U of the unique minimum (a*,

b*) where r (a,b x) (a0 +...+ a xm)/(b
0
+..+ b xn).

mn m n

COROLLARY i. T is radially uniformly quasi-convex at the minimum (a*,

b*) of any closed nbhd U in Rre+n+2.
COROLLARY 2. Starting from any point (a0, b0) # (a*, b*) there is a

direction do in which T, decreases. Further, given a step size of eO there

0 dOis a 0 > 0 such that T will decrease by at least along until the

directional minimum is reached.
,

COROLLARY 2. T is dentable at its unique minimum (a, b), and any mini-
,

mizing sequence (an, bn) converges to (a, b
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